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Abstract 

     In this paper, we study a special motion, called conchoidal motion, on a dual 

hyperbolic unit sphere 2
0
ɶH  in the dual Lorentzian space3

1
�

�
D  with dual signature 

( , , )+ + − . Then, the results are carried over to the Lorentzian line space 3
1IR  by 

E. Study’s mapping. We also obtain the Study maps of the orbits drawn on the 
fixed dual hyperbolic unit sphere by unit dual vectors of an orthonormal base.  

     Keywords: Conchoidal motion, Dual hyperbolic unit sphere, Study’s 
mapping. 
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1 Introduction  
 

W.K. Clifford (1845-1879) introduced dual numbers in the form of λ λ ελ∗= +ɶ  
with 2 0ε =  for studying the non-Euclidean geometry [3]. However, its first 
applications to mechanics are due to E. Study (1860-1930) which defined dual 
numbers as dual angles to specify the relations between two lines in the Euclidean 
space 3�

ℝ . Then, he used dual numbers and dual vectors in his research on the 
geometry of lines and kinematics, and defined the mapping which is called after 
his name (E. Study’s mapping): The set of oriented straight lines in the Euclidean 
3-space 3�

ℝ  is one-to-one correspondence with the dual points on the surface of a 

dual unit sphere 2ɶS  in the dual space 3
D
�

�
 of triples of dual numbers [5]. Hence, a 

differentiable curve on a dual unit sphere 2ɶS  corresponds to a ruled surface in the 
line space 3IR  [7]. Ruled surfaces have been widely applied in surface design and 
simulation of rigid bodies [10]. 
 
It is known that dual vectors, dual angles, dual orthogonal matrices, the E. Study 
mapping, etc. are the most important notions for applications of dual geometry to 
engineering. For example, the dual angle ψ ψ εψ ∗= +ɶ  between two dual unit 
vectors is formed with real angle ψ  between corresponding two directed lines in 

the line space 3IR  and the shortest distance ψ ∗  between these directed lines. 
These notions lay the foundations for the study of spherical and spatial motions. 
Dual Lorentzian correspondences of these notions were introduced and also, 
several important theorems and results related to geometry of this space were 
given by the authors [1] [2] [6].  
 
E. Study’s mapping plays a fundamental role between the real and dual 
Lorentzian spaces [10]. By this mapping, a curve on a dual hyperbolic unit sphere 

2
0
ɶH  corresponds to a timelike ruled surface in the Lorentzian line space 3

1IR , that 

is, there exists a one-to-one correspondence between the geometry of curves on 
2
0
ɶH  and the geometry of timelike ruled surfaces in 31IR . Similarly, a timelike 

(spacelike) curve on a dual Lorentzian unit sphere 2
1
ɶS  corresponds to a spacelike 

(timelike) ruled surface in the Lorentzian line space 3
1IR , that is, there exists a 

one-to-one correspondence between the geometry of timelike (spacelike) curves 

on 2
1
ɶS  and the geometry of spacelike (timelike) ruled surfaces in 3

1IR [9].   

 
Since the dual Lorentzian metric is indefinite, the angle concept in this space is 
very interesting. For instance, the dual hyperbolic angle ψ ψ εψ ∗= +ɶ  between two 
dual timelike unit vectors is a dual value formed with the (real) hyperbolic angle 
ψ  between corresponding two directed timelike lines in the Lorentzian line space 

3
1IR  and the shortest Lorentzian distance   between these directed timelike lines.  
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Planar and spherical conchoidal motions have been introduced by Karger and 
Novac [4]. Yapar [8] defined the dual spherical conchoidal motion and gave the 
geometrical interpretations in the Euclidean line space 3IR . In this paper, we 
define the dual hyperbolic analogy of planar, spherical and dual spherical 
conchoidal motions.  
 
The Lorentzian motions in the Minkowski 3-space 31IR  are represented in the dual 

Lorentzian 3-space 3
1
�

�
D  by dual Lorentzian orthogonal 3 3×  matrices 

( ) ,ijM a= 1 ,TM Mγ γ− =  where ija  are dual functions of one variable t IR∈  and 

1 0 0

0 1 0

0 0 1

γ
 
 =  
 − 

 is a signature matrix [9]. This means that when a Lorentzian 

motion is given in 3
1IR , we can find a corresponding dual Lorentzian orthogonal 

3 3×  matrix M . 
 

2 Preliminaries 
 
In this section, we give a brief summary of the theory of dual numbers and dual 
Lorentzian vectors. Let 3

1IR  denote the 3-dimensional Minkowski space over the 
field of real numbers IR  with the Lorentzian inner product ,< >  given by 
 

1 1 2 2 3 3, a b a b a b< > = + −a b ,  

 
where ( , , )1 2 3a a a=a  and 3

1 2 3( , , )b b b IR= ∈b . A vector ( , , )1 2 3a a a=a  of 3
1IR  is 

said to be timelike if , 0< ><a a , spacelike if , 0< > >a a  or =a 0 , and lightlike 
(null ) if , 0< > =a a  and  ≠a 0 . Similarly, a curve α  is called timelike 
(spacelike) if ', ' 0α α< > <  ( ', ' 0α α< > > ), and lightlike (null) if ', ' 0α α< >= , 
where 'α is the derivative of α . 
 

The norm of a vector a  is defined by ,= < >a a a . Now, let ( , , )1 2 3a a a=a  

and 1 2 3( , , )b b b=b  be two vectors in 3
1IR , then the Lorentzian cross product of a  

and b is given by 
  

3 2 2 3 1 3 3 1 1 2 2 1( , , ).a b a b a b a b a b a b× = − − −a b  

 

A dual number has the form λ λ ελ∗= +ɶ , where λ  and λ∗  are real numbers and 
ε stands for the dual unit which is subject to the rules: 
 

.11,000,0,0 2 εεεεεεε =====≠  



A Special Motion on Dual Hyperbolic Unit...                                                        27 

Like a real number which can be considered as an angle, in differential geometry 
and motion analysis of spatial mechanisms, a dual number is also commonly 

referred as a dual angle λ λ ελ∗= +ɶ  between two lines in the space. The real part 
λ  of the dual angle is the projected angle between the lines, and the dual part λ∗  
is the length along the common normal of the lines. We denote the set of all dual 
numbers by �

�
D : 

 

{ }2, , 0IRλ λ ελ λ λ ε∗ ∗= = + ∈ =ɶ�

�
D . 

 
Equality, addition and multiplication are defined in �

�
D  by 

  
λ ελ β εβ∗ ∗+ = +  iff βλ =  and ,λ β∗ ∗=  
 
( ) ( ) ( ) ( )λ ε λ β εβ λ β ε λ β∗ ∗ ∗ ∗+ + + = + + + , 
 
And 
 
( ) ( ) ( ) ,λ ελ β ε β λβ ε λ β λ β∗ ∗ ∗ ∗+ + = + +  
 
respectively. Then it is easy to show that ( , , .)+�

�
D  is a commutative ring with 

unity.  The numbers * *( )IRελ λ ∈  are divisors of 0. We note that if λ  and β  
are two nonzero elements of a ring R  such that 0λ β⋅ = , then either λ  or β  is a 

divisor of  0 (or zero-divisor). Moreover, if ,λ λ ελ β β εβ∗ ∗= + = + ∈ɶ ɶ �

�
D  with 

0≠β  then the division is given by 
  

2
( )

λ λ ε λ λ λ λ βε
β εβ β β ββ

∗ ∗ ∗

∗

+= = + −
+

ɶ

ɶ
. 

 
Now, let f  be a differentiable function with dual variable x x xε ∗= +ɶ . Then the 
Maclaurin series generated by f  is 
  

( ) ( ) ( ) ( )f x f x x f x x f xε ε∗ ∗ ′= + = +ɶ , 
 
where )( xf ′  is the derivative of ( )f x . Then it is easy to see that 
 

* *sin ( ) = sin ( ) sin cos ,x x x x x x+ = +ε εɶ   
* *cos ( ) cos ( ) cos sin ,x x x x x x= + = −ε εɶ  

* *sinh ( ) = sinh ( ) sinh cosh ,x x x x x x+ = +ε εɶ  
* *cosh ( ) cosh ( ) cosh sinh ,x x x x x x= + = +ε εɶ  



28                                                                                               Mustafa Kazaz et al. 

*
* , ( 0) .

2

x
x x x x x

x
= + = + >ε εɶ  

 
Let 3�

�
D  be the set of all triples of dual numbers, i.e. 

 

{ }3
1 2 3( , , ) , 1 3 .i i ia a a a a a iε ∗= = = + ∈ ≤ ≤� �

� �
D Dɶ ɶ ɶ ɶ ɶa  

 
The elements of 3�

�
D  are called as dual vectors. A dual vector aɶ  may be expressed 

in the form 
2 31 2 3 1 2 3 1( , , ( , , ) ( , , )a a a )= a a a a a aε ε∗ ∗ ∗ ∗= + = +ɶ ɶ ɶ ɶa  a a , where 

( , , )1 2 3a a aa =  and 
2 31( , , )a a a∗ ∗ ∗ ∗=a  are the vectors of 3IR . Now, let ε ∗= +ɶa a a , 

3ε ∗= + ∈ɶ �

�
Db b b  and λ λ ε λ∗= + ∈ɶ �

�
D . Then we define 

  

* *
1 2 3

( ),

( , , ) ( ).a a a

ε
λ λ λ λ λ ε λ λ

∗ ∗+ = + + +

= = + +

ɶɶ

ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ

a b a b a b

a a a a
 

 
Then 3�

�
D  becomes a unitary �

�
D -module with these operations. It is called �

�
D -

module or dual space. The dual Lorentzian inner product of two dual vectors  

1 2 3( , , )a a a ε ∗= = +ɶ ɶ ɶ ɶa a a , 1 2 3( , , )b b b ε ∗= = +ɶ ɶ ɶɶb b b  is defined by 

  

1 1 2 2 3 3, , ( , , ) ,a b a b a b ε ∗ ∗< > = + − =< > + < > + < >ɶ ɶ ɶɶɶ ɶ ɶ ɶa b a b a b a b  

 
where ,< >a b  is the Lorentzian inner product of  the vectors a  and b  in the 

Minkowski 3-space 3
1 .IR  Then a dual vector  ε ∗= +a a aɶ  is said to be timelike if a  

is timelike, spacelike if a  is spacelike or =a 0 , and lightlike (null) if a  is 
lightlike (null) and ≠a 0 . The set of all dual Lorentzian vectors is called dual 
Lorentzian space and it is denoted by 3

1 :�
�
D  

 

{ }3 3
1 1, IRε ∗ ∗= = + ∈ɶ
�

�
D a a a a a . 

 

The dual Lorentzian cross product of two dual vectors aɶ  and 3
1∈bɶ D �
�

 is defined 

by 
  

3 2 2 3 1 3 3 1 1 2 2 1( ) = ( ) ,a b a b ,a b a b ,a b a b ε ∗ ∗× = − − − × + × + ×ɶ ɶ ɶ ɶ ɶ ɶɶɶ ɶ ɶ ɶ ɶ ɶ ɶa b a b a b a b  

 
where ×a b  is the Lorentzian cross product in 31IR . 
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Let ε ∗= +a a aɶ
3
1∈ �

�
D . Then aɶ  is said to be unit dual timelike vector (resp., unit 

dual spacelike vector) if the vectors a  and ∗a  satisfy the following equations: 
  

, 1(resp., , 1), , 0.∗< >=− < >= < > =a a a a a a  
 
The set of all unit dual timelike vectors (resp., all unit dual spacelike vectors) is 
called the dual hyperbolic unit sphere (resp. dual Lorentzian unit sphere), and is 

denoted by 2
0
ɶH  2

1(resp., )ɶS  [9]. 

 
A ruled surface is a surface generated by the motion of a straight line in 3IR . This 
line is the generator of the surface. A ruled surface is said to be timelike if the 
induced metric on the surface is a Lorentzian metric (i.e., the normal vector of the 
ruled surface at every point is a spacelike vector), and spacelike if the induced 
metric on the surface is a positive defined Riemannian metric (i.e., the normal 
vector of the ruled surface at every point is a timelike vector) [9].    

 
Theorem 2.1: (E. Study’s Mapping): The unit dual timelike vectors of the dual 

hyperbolic unit sphere 2
0
ɶH  are in one-to-one correspondence with the directed 

timelike lines of the Minkowski 3-space 31IR (Fig. 1). [9] 
 

 
 
 

Fig. 1: The curve ( )a tɶ  on 2
0
ɶH  and the corresponding timelike ruled surface in 3

1ℝ  

 

 
 



30                                                                                               Mustafa Kazaz et al. 

3 Conchoidal Motion on the Dual Hyperbolic Unit 
Sphere 2

0
ɶH  

 

We will define conchoidal motion on the dual hyperbolic unit sphere 2
0
ɶH . Let us 

consider a fixed dual orthonormal frame { }1 2 30; , , (timelike)R = u u uɶ ɶ ɶ  and denote 

this frame by the dual hyperbolic unit sphere H ′ .  Let 1
0H  be a great hyperbolic 

circle (a geodesic) on H ′  and C  be a point not lying on 1
0H . The frame 

{ }1 2 30; , ,u u uɶ ɶ ɶ  is chosen as shown in Fig. 2, where 2uɶ  and 3uɶ  lie in the timelike 

plane of the great hyperbolic circle 10H , and the timelike plane 1 3u uɶ ɶ  contains the 

chosen point C . Let us consider an orthonormal dual frame 

{ }1 2 30; , , (timelike)v v vɶ ɶ ɶ  as shown in Fig. 2.  

 
The frame { }1 2 30; , ,v v vɶ ɶ ɶ  moves now in such a way that the timelike vector 3vɶ  

rotates in the great hyperbolic circle 10H  while the timelike plane 1 3v vɶ ɶ  passes 

through the point C  all the time. As the parameter of the motion we choose the 
dual hyperbolic angle ψ ψ εψ ∗= +ɶ  of the timelike vectors 3vɶ  and 3uɶ , where  

3 3 2cosh sinh .ψ ψ= +v u uɶ ɶ ɶ ɶ ɶ  

  
Further, we can write 
 

2 2 2
1 1 1 2 2 3 3 1 1 1 2 3, , 1A A A A A A= + + = + − =ɶ ɶ ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶv u u u v v ,            (1) 

 

where (1 3)iA i≤ ≤ɶ  are dual numbers. By orthonormality, 

 
we have 3 1 0,< >=v vɶ ɶ , i.e. 

 

3 2 1 1 2 2 3 3cosh sinh 0, A A Aψ ψ< + + + >=ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ ɶ ɶu u u u u , 

 
or 
  

3 2cosh sinh 0A Aψ ψ− + =ɶ ɶɶ ɶ .                                                (2) 
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Fig. 2: Dual hyperbolic conchoidal motion ( 3 3, andc u vɶ ɶ ɶ  are unit dual timelike 

vectors and the others are unit dual spacelike vectors) 
 
Further, we may write cɶ  as follows: 
 

3 1cosh sinh ,∆ ∆= +c u uɶ ɶɶ ɶ ɶ  

 
where ∆ σ ε σ ∗= +ɶ  is dual hyperbolic angle between the timelike vectors cɶ  and 

3uɶ . Since the timelike plane 1 3v vɶ ɶ  has to pass through the point C  all the time, the 

vectors 1 3,v vɶ ɶ  and cɶ  must be co-planar, that is, 1 3det 0( , , ) =v v cɶ ɶ ɶ . Thus we get the 

equation. 
 

1 2 3sinh cosh cosh sinh sinh sinh 0A A Aψ ∆ ψ ∆ ψ ∆+ − =ɶ ɶ ɶɶ ɶ ɶɶ ɶ ɶ .                                  (3) 

 

Then, we have three equations altogether for the unknowns 1 2 3A , A , Aɶ ɶ ɶ : 

 

( )

2 2 2
1 2 3

3 2

2 3 1

1,

cosh sinh 0,

cosh sinh sinh sinh cosh 0.

A A A

A A

A A A

ψ ψ

ψ ψ ∆ ψ ∆

+ − =

− + =

− + =

ɶ ɶ ɶ

ɶ ɶɶ ɶ

ɶ ɶ ɶɶ ɶɶ ɶ ɶ

 

 

From the second equation, we obtain 3 2sinh coshA , Aλ ψ λ ψ= =ɶ ɶ ɶ ɶɶ ɶ for 

someλ ∈ɶ D . Substituting this into the third equation, we obtain 
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1sinh sinh cosh 0A ,λ ∆ ψ ∆+ =ɶ ɶɶ ɶɶ i.e., 1sinh tanhA .ψ λ= − ∆ɶ ɶ ɶɶ  

 
Multiplying the first equation by 2sinhψɶ , upon substitution we have 
  

( )2 2 2 2sinh tanh sinhψ λ ∆ ψ= +ɶ ɶɶ ɶ , and then ( ) 1
2 2 2sinh sinh tanh .λ ψ ψ ∆

−
= ± +ɶ ɶɶ ɶ  

 
We choose the plus sign. Then consequently we have 
 

( ) ( )

( )

1 1
2 2 2 22 2

1

1
2 2 2 2

sinh tanh tanh sinh cosh sinh tanh

sinh sinh tanh

, ,

,

ψ ∆ ∆ ψ ψ ψ ∆

ψ ψ ∆

− −

−

= − + +

+ 

ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ

ɶɶ ɶ

v
 

 

[ ]3 0 sinh cosh, , ,ψ ψ=ɶ ɶ ɶv  

 
and from 2 1 3= ×v v vɶ ɶ ɶ  we obtain 

 

( ) ( )

( )

1 1
2 2 2 22 2

2

1
2 2 2

sinh sinh tanh cosh tanh sinh tanh

sinh tanh sinh tanh

, ,

.

ψ ψ ∆ ψ ∆ ψ ∆

ψ ∆ ψ ∆

− −

−

= − + − +

− + 

v ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ

ɶ ɶɶ ɶ

 

Thus a moving orthonormal dual frame { }1 2 30; , ,ɶ ɶ ɶv v v  is chosen. Let us represent 

this moving frame by dual hyperbolic unit sphere H . Then, a dual hyperbolic 
conchoidal motion which is analogous to the real conchoidal motion [10] is 
obtained. In this case, dual hyperbolic conchoidal motion is represented by 

'H H . 
 
Now, let us choose a fixed point X  on the trace of H in the plane 1 3v vɶ ɶ  (we 

should note that the trace of a surface in any plane is simply the intersection of the 
surface and the plane). During the dual hyperbolic conchoidal motion, the dual 
point X  draws an orbit on H ′ . We denote the dual hyperbolic angles of 1v xɶ ɶ  and 

3xvɶ ɶ  by p p pε ∗= +ɶ  and q q qε ∗= +ɶ ,  respectively (see Fig. 3).  
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Fig. 3: The timelike vector xɶ  is on the plane 1 3v vɶ ɶ  

 
Then, we may write 
  

1 3sinh sinh

sinh( )

p q

p q

+=
+

ɶ ɶɶ ɶ
ɶ

ɶ ɶ

v v
x . 

 

Since 
2

p q
π+ =  and sinh( / 2) 0, cosh( / 2) 0π π≠ ≠ , we can write 

   

2

1 1

sinh( ) sinh( ) ( ) cosh( )

1 ( )cosh( 2)

sinh( 2) sinh ( 2)

constant.

p q p q p q p q

p q

a a a

ε
πε

π π
ε

∗ ∗

∗ ∗

∗

=
+ + + + +

+= +

= + = =

ɶ ɶ

ɶ

. 

  
So, xɶ  can be written as follows, 
  

1 3( sinh sinh )a p q= +ɶ ɶ ɶɶ ɶ ɶx v v .                                                                                   (4) 

 
Making the necessary calculations for xɶ  we have 
  

(
)

1 2 3

1/2 1/2

1/2 2

( , , )

tanh sinh ,   sinh cosh sinh sinh sinh ,

sinh sinh cosh sinh ;

a x x x

a A p A p q

A p q

σ ψ ψ ψ

ψ ψ

− −

−

=

= − +

+

x

                      (5) 
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(
1 2 3 1 2 3

1/2 3/2 3/2 2

2 1/2 2 1/2

3/2 2 2

( , , ) ( , , )

tanh cosh tanh sinh cosh sinh tanh

sech sinh sech sinh , sinh cosh cosh

sinh cosh cosh sinh sinh cosh sinh

a x x x a x x x

a p A p A p A

p A p p A p

q q q A p

A

σ ψ σ ψ ψ σ σ

σ σ σ ψ ψ
ψ ψ ψ ψ ψ ψ

ψ

∗ ∗ ∗ ∗ ∗

∗ − ∗ − ∗ −

∗ − ∗ −

∗ ∗ ∗ −

∗

= +

= − + +

−
+ + −
+

x

)

1/2 3/2 2

1/2 2

3/2 3 1/2

3/2 2 2

1/2 1/2

cosh 2 sinh tanh sech sinh cosh sinh , 

sinh cosh cosh cosh sinh sinh

sinh cosh sinh sinh 2 sinh

tanh sech sinh sinh

tanh sinh ,   sinh

p A p

p A p q q q

A p A p

A p

a A p A

ψ σ σ σ ψ ψ
ψ ψ ψ ψ

ψ ψ ψ ψ ψ
σ σ σ ψ

σ ψ

− ∗ −

∗ − ∗ ∗

∗ − ∗ −

∗ −

∗ − −

−

+ +
− +
−

+ −(
)1/2 2

cosh sinh sinh sinh ,

sinh sinh cosh sinh ,

p q

A p q

ψ ψ

ψ ψ−

+

+

 (6)  

 
where x  and *x  are the real and dual parts of xɶ , respectively, and 

2 2sinh tanhA ψ ψ= + , * =const., const.p, qσ εσ∆ = + =ɶ ɶ  Equations (5) and (6) 

depend on only two parameters ψ  and *ψ . Thus, equations (5) and (6) represent a 

timelike line congruence in 3
1IR (for details on congruencies, see [2] [6]). 

 
A timelike line congruence may be expressed as follows: Let *( , )ψ ψ=m m  be a 
position vector of the reference surface of a timelike line congruence, and let 

( , )ψ ψ ∗=x x  be a unit vector in direction of a timelike line x  of the timelike line 
congruence. Let y  denote the position vector of an arbitrary point 

),,( 321 yyyY =   of the fixed timelike line x  of the timelike line congruence in 
3
1IR . Then we have p= +y m x . We know that the moment vector ∗x  of the 

vector x  with respect to the origin 0  is ∗ = ×x m x  and ,∗× = + < >x x m m x x . 

Then we may write ,pλ = − m x . Thus, we have 

 

1 2 3 1 2 3 1 2 3 1 2 3

2
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

2
1 2 3 1 2 3 1 2 3

( , ) ( , ) ( , )

( , , ) ( ( , , ) ( , , )) ( , , )

( , , ) ( , , ) ( , , ) ( , , ) ( , , )

( , , ) ( , , ) ( , , ).

a x x x a x x x a x x x x x x

a x x x x x x aa x x x x x x x x x

a x x x x x x x x x

ψ ψ ψ ψ λ ψ ψ
λ

λ
λ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

∗ ∗ ∗

= × +
= × + +

= × + × +

= × +

y x x x

    (7) 

 
Since 1 2 3( , , )y y y  are the coordinates of Y  we have 

 
(

)

2 1/2 1/2 2
1

3/2 2 1 2 2

1/2 3/2 2

1/2

sinh cosh sinh sinh sinh cosh sinh

sinh cosh sinh sinh sinh sinh

cosh sinh sinh tanh sech sinh sinh sinh

tanh sinh ;

y a p A p q q A p q q

A p q A p

A p q A p q

a A p

ψ ψ ψ

ψ ψ ψ ψ ψ
ψ ψ σ σ σ ψ

λ σ

∗ − ∗ − ∗

∗ − ∗ −

∗ − ∗ −

−

= − +

− −
+ −

−

         (8) 
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(2 1/2 1/2
2

3/2 2 1 2

1/2

1 2 2 2 3/2 2 2

tanh cosh sinh cosh tanh cosh sinh cosh

tanh sinh cosh sinh sinh tanh sinh 2 sinh

tanh sinh sinh sinh

sech sinh sinh tanh sech cosh sinh s

y a p A q p q A p q

A p q A p

A p q

A p A p

σ ψ σ ψ

ψ σ ψ ψ ψ σ ψ
ψ σ ψ
σ σ ψ σ σ σ ψ

∗ − ∗ −

∗ − ∗ −

∗ −

∗ − ∗ −

= −

− −
−
+ −

) )1/2 2 1/2

inh

sech cosh sinh sinh ( sinh cosh sinh sinh sinh ;

q

A p q a A p qσ σ ψ λ ψ ψ ψ∗ − −+ + +
                                                                                                                               (9) 
and 
 

(2 1/2 1/2
3

3/2 2 1 2

1/2 3/2 2 2

1 2

tanh sinh sinh cosh tanh sinh sinh cosh

tanh sinh cosh sinh sinh tanh cosh 2 sinh

tanh cosh sinh sinh tanh sech sinh sinh sinh

sech sinh cos

y a p A q p q A p q

A p q A p

A q p A p q

A

σ ψ σ ψ

ψ σ ψ ψ ψ σ ψ
ψ σ ψ σ σ σ ψ
σ σ ψ

∗ − ∗ −

∗ − ∗ −

∗ − ∗ −

∗ −

= −

− −
− −
+ )2 1/2 2

1/2 2

h sinh sech sinh sinh sinh

( sinh sinh cosh sinh ).

p A p q

a A p q

ψ σ σ ψ

λ ψ ψ

∗ −

−

+

+ +

                         

                                                                                                                             (10) 
 
If we take 0q q qε ∗= + =ɶ , then the condition (4) gives us 1=x vɶ ɶ . Thus, from 

equations (8), (9) and (10) we have 
 

2 2 2 1 2 2 1/2
1 sinh (sinh tanh ) tanh (sinh tanh ) ,y ψ ψ ψ σ λ σ ψ σ∗ − −= − + − +            (11) 

2 2 2 2 1
2

2 2 1/2

( tanh sinh 2 sech sinh )(sinh tanh )

sinh cosh (sinh tanh ) ,

y ψ σ ψ σ σ ψ ψ σ
λ ψ ψ ψ σ

∗ ∗ −

−

= − + +

+ +
                (12) 

( )2 2 2 1
3

2 2 2 1/ 2

tanh cosh 2 sech sinh cosh (sinh tanh )

sinh (sinh tanh ) .

y ψ σ ψ σ σ ψ ψ ψ σ

λ ψ ψ σ

∗ ∗ −

−

= − + +

+ +
     (13) 

 
If we put 0  ,0 ≠= ∗σσ  in equations (11), (12) and (13), then we get 
 

1y ψ ∗= − ,                                                                                                             (14) 

2 coshy σ λ ψ∗= + ,                                                                                             (15) 

3

cosh
sinh

sinh
y

ψσ λ ψ
ψ

∗= + .                                                                                  (16) 

 
Equations (14), (15) and (16) give a two-parameter family (linear congruence) of 
the timelike straight lines which are the intersection of the planes 1y ψ ∗= −  and 

the timelike ruled surfaces given by 
 

2

2 2 2
2 3cosh sinh 0

cosh
y y

λψ ψ
ψ

 − − = 
 

.                                                            (17) 
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Thus we give the following theorem. 
 
Theorem 3.1: During the dual hyperbolic conchoidal motion, in the case of 

0  ,0 ≠= ∗σσ , the Study map in 3
1IR  of the orbit which is drawn on the 'H  by 

1=x vɶ ɶ  are the straight lines which are the intersections of the planes 1y ψ ∗= −  

and the timelike ruled surfaces given by  
2

2 2 2
2 3cosh sinh 0

cosh
y y

λψ ψ
ψ

 − − = 
 

. 

 

Now, let us take 0p p pε ∗= + =ɶ  in equation (4). In this case, 3=x vɶ ɶ . Thus from 

equations (8), (9) and (10) 
  

1y ψ ∗= ,                                                                                                               (18) 

2 sinhy λ ψ= ,                                                                                                      (19) 

3 coshy λ ψ= ,                                                                                                     (20) 

 
are obtained. From equations (18), (19) and (20) we have 
 

2 2 2
3 2 1, .y y y ∗− = =λ ψ                                                                                         (21) 

 
Thus we have the following theorem. 

 
Theorem 3.2: During the dual hyperbolic conchoidal motion / 'H H , in the case 

of 0p p pε ∗= + =ɶ  in equation (4), the Study map of the orbit which is drawn on 

the  'H  by 3=x vɶ ɶ   is the congruence, 

 
2 2 2
3 2 1, .y y y ∗− = =λ ψ  

 
Let us now give the analysis of the orbit of 2vɶ  during the dual hyperbolic 

conchoidal motion. We know that 
  

( ) ( )

( )

1 1
2 2 2 22 2

2

1
2 2 2

sinh sinh + tanh cosh tanh sinh + tanh ,

sinh tanh sinh + tanh

,

.

ψ ψ ∆ ψ ∆ ψ ∆

ψ ∆ ψ ∆

− −

−

= − −

− 

ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ

ɶ ɶɶ ɶ

v
      (22) 

From equation (22), we obtain 
 

( )1/2 1/2 1/2
2 sinh ,  tanh cosh ,   tanh sinhA A Aψ σ ψ σ ψ− − −= − − −v                      (23) 

 
and 
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3/2 2 1/2 3/2 2
2

3/2 2 1/2

3/2 2 2 1/2 2

3/2 2 1/2

3/2

( sinh cosh cosh tanh sech sinh ,

tanh sinh cosh tanh sinh

tanh sech cosh sech cosh ,   

tanh sinh cosh tanh cosh

A A A

A A

A A

A A

A

ψ ψ ψ ψ ψ σ σ σ ψ
ψ σ ψ ψ ψ σ ψ

σ σ σ ψ σ σ ψ
ψ σ ψ ψ ψ σ ψ
σ

∗ ∗ − ∗ − ∗ −

∗ − ∗ −

∗ − ∗ −

∗ − ∗ −

∗ −

= − +

−
+ −

+ −
+

v

2 2 1/2 2tanh sech sinh sech sinh )Aσ σ ψ σ σ ψ∗ −−

   (24) 

 
where 2v  and 2

∗v  are the real and dual parts of 2vɶ , respectively, and 
2 2sinh tanhA ψ σ= + . Equations (23) and (24) depend on two parameters 

  and  ψ ψ ∗  so equations (23) and (24) represent a timelike line congruence in 
3
1IR . 

 
Let g  denote the position vector of an arbitrary point ( )1 2 3, ,G g g g  of a fixed 

timelike line x  of the timelike congruence in 3
1IR . Then, considering equation (7) 

we have 
 

2 2 2( , ) ( , ) ( , )uψ ψ ψ ψ ψ ψ∗ ∗ ∗ ∗= × +g v v v .                                                               (25) 

 
Since 1 2 3( , , )g g g  are the coordinates of G  we have 

 
1 2 1/2

1 tanh sinh ,g A uAψ σ ψ∗ − −= − −                                                                    (26) 
1 2 2 1/2

2 sech sinh tanh cosh ,g A uAσ σ ψ σ ψ∗ − −= −                                               (27) 
1 1 2 1/2

3 tanh sech sinh cosh tanh sinhg A A uAψ σ σ σ ψ ψ σ ψ∗ − ∗ − −= − + − ,          (28) 

 
where 2 2sinh tanhA ψ σ= + .  
 

If we take 0 0,  σ σ ∗= ≠  in equations (26), (27) and (28), then 
  

1 2 3, , cothg u g gσ σ ψ∗ ∗= − = = .                                                                     (29) 

 
In this case, if we choose u kψ= −  (k  constant) in equation (29) we have  

1 2
1

3

tanh
g

g k
g

−  
=  

 
,                                                                                              (30) 

 
which is a Lorentzian helicoid.  
 
If we take 0,  0ψ ψ ∗= ≠  in equations (26), (27) and (28), then 
  

* *
1 2 3, , cothg g u gψ ψ σ= − = − = − .                                                              (31) 
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If we choose u kσ= −  (k  constant) in equation (31) we have 
  

1 1
2

3

tanh
g

g k
g

−  
=  

 
, 

 
which is also a Lorentzian helicoid.  
 

4 Conclusions  
 

This paper presents the conchoidal motion on the dual hyperbolic unit sphere 2
0
ɶH  

in the dual Lorentzian space 31
�

�
D . The orbits drawn on the fixed dual hyperbolic 

unit sphere by unit dual vectors of an orthonormal base { }1 2 3, ,v v vɶ ɶ ɶ  are obtained. 

This motion and its results carried to the Lorentzian line space 3
1IR  by means of 

the Study’s mapping. The results may give a way to define new motions and 
contribute to the study of surface design, manufacturing technology, robotic 
research, and special and general theory of relativity, and many other areas in 
three-dimensional Lorentzian space.  
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