Gen. Math. Notes, Vol. 31, No. 2, December 2015, pp.16-28
ISSN 2219-7184; Copyright © ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

Product of Statistical Manifolds with Doubly Warped Product

D. Djebbouri ${ }^{1}$ and S. Ouakkas ${ }^{2}$
${ }^{1,2}$ Laboratory of Geometry, Analysis, Control and Applications
University of Saida - Algeria
${ }^{1}$ E-mail: ddjebbouri20@gmail.com
${ }^{2}$ E-mail: seddik.ouakkas@gmail.com

(Received: 16-10-15 / Accepted: 27-11-15)

Abstract

In this paper, we generalize the dualistic structures on warped product manifolds to the dualistic structures on doubly warped product. We extend some results related to the dualistic structure on doubly warped product studied in [8]. We also demonstrate that a dualistic structure on a doubly warped product manifold ($M_{1} \times M_{1}, g_{f_{1} f_{2}}$) induces dualistic structures on the manifolds M_{1} and M_{2} and conversely, in this case doubly warped product manifold $\left(M_{1} \times M_{1}, g_{f_{1} f_{2}}\right)$ is a statistical manifold if and only if $\left(M_{1}, g_{1}\right)$ and $\left(M_{1}, g_{1}\right)$ are.

Keywords: Conjugate, doubly warped products, dual connection, product manifold.

1 Introduction

The warped product provides a way to construct new pseudo-riemannian manifolds from the given ones, see [13],[12] and [11]. This construction has useful applications in general relativity, in the study of cosmological models and black holes. It generalizes the direct product in the class of pseudo-Riemannian manifolds and it is defined as follows:

Definition 1.1 Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be two pseudo-Riemannian manifolds and let $f_{1}: M_{1} \longrightarrow \mathcal{R}^{*}$ be a positive smooth function on M_{1}, the warped product of $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ is the product manifold $M_{1} \times M_{2}$ equipped

Product of Statistical Manifolds with...
with the metric tensor $g_{f_{1}}:=\pi_{1}^{*} g_{1}+\left(f_{1} \circ \pi_{1}\right)^{2} \pi_{2}^{*} g_{2}$, where π_{1} and π_{2} are the projections of $M_{1} \times M_{2}$ onto M_{1} and M_{2} respectively.

The manifold M_{1} is called the base of $\left(M_{1} \times M_{2}, g_{f_{1}}\right)$ and M_{2} is called the fiber. The function f_{1} is called the warping function.
The doubly warped product construction in the class of pseudo-Riemannian manifolds generalized the warped product and the direct product. It is obtained by homothetically distorting the geometry of each base $M_{1} \times\{q\}$ and each fiber $\{p\} \times M_{2}$ to get a new "doubly warped" metric tensor on the product manifold and defined as follows:
For $i \in\{1,2\}$, let M_{i} be a pseudo-Riemannian manifold equipped with metric g_{i}, and $f_{i}: M_{i} \rightarrow \mathcal{R}^{*}$ be a positive smooth function on M_{i}. The well-know notion of doubly warped product manifold $M_{1} \times{ }_{f_{1} f_{2}} M_{2}$ is defined as the product manifold $M=M_{1} \times M_{2}$ equipped with pseudo-Riemannian metric which is denoted by $g_{f_{1} f_{2}}$, given by

$$
g_{f_{1} f_{2}}=\left(f_{2} \circ \pi_{2}\right)^{2} \pi_{1}^{*} g_{1}+\left(f_{1} \circ \pi_{1}\right)^{2} \pi_{2}^{*} g_{2} .
$$

In the cases $f_{1}=1$ or $f_{2}=1$ we obtain a warped product or a direct product.
Dualistic structures are closely related to statistical mathematics. They consist of pairs of affine connections on statistical manifolds, compatible with a pseudo-Riemannian metric [1]. Their importance in statistical physics was underlined by many authors; see [3],[4],[5] etc.
Let M be a pseudo-Riemannian manifold equipped with a pseudo-Riemannian metric g and let ∇, ∇^{*} be the affine connections on M. We say that a pair of affine connections ∇ and ∇^{*} are compatible (or conjugate) with respect to g if

$$
\begin{equation*}
X(g(Y, Z))=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X}^{*} Z\right) \quad \text { for all } X, Y, Z \in \Gamma(T M) \tag{1}
\end{equation*}
$$

where $\Gamma(T M)$ is the set of all tangent vector fields on M. Then the triplet $\left(g, \nabla, \nabla^{*}\right)$ is called the dualistic structure on M.
We note that the notion of "conjugate connection" has been attributed to A.P. Norden in affine differential geometry literature (Simon, 2000) and was independently introduced by (Nagaoka and Amari, 1982) in information geometry, where it was called " dual connection" (Lauritzen, 1987). The triplet (M, ∇, g) is called a statistical manifold if it admits another torsion-free connection ∇^{*} satisfying the equation (1). We call ∇ and ∇^{*} dual of each other with respect to g.

In the notions of terms on statistical manifolds, for a torsion-free affine connection ∇ and a pseudo-Riemannian metric g on a manifold M, the triple (M, ∇, g) is called a statistical manifold if ∇g is symmetric. If the curvature
tensor R of ∇ vanishes, (M, ∇, g) is said to be flat.
This paper extends the study of dualistic structures on warped product and double warped product manifolds in the papers [7] and [8].

The paper is organized as follows. In section 2, we collect the basic material about Levi-Civita connection, the notion of conjugate, horizontal and vertical lifts. In section 3 , we define the co-metric $\tilde{g}_{f_{1} f_{2}}$ of $g_{f_{1} f_{2}}$ the metric of the doubly warped products by using the musical isomorphisms, we calculate the gradient of the lift of f_{1} (resp. f_{2}), it has been shown that its gradient is horizontal (resp. vertical) and π_{1} related to gradient of f_{1} on M_{1} (resp. π_{2} related to gradient of f_{2} on M_{2}), we show that dualistic structures on manifolds $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ induce the dualistic structure on the doubly warped product manifold $\left(M_{1} \times M_{2}, g_{f_{1} f_{2}}\right)$ and conversely. Moreover $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ are statistical manifolds if and only if ($M_{1} \times M_{2}, g_{f_{1} f_{2}}$) is a statistical manifold.

2 Preliminaries

2.1 Statistical Manifolds

We recall some standard facts about Levi-Civita connections and the dual statistical manifold. Many fundamental definitions and results about dualistic structure can be found in Amari's monograph ([1],[2]).

Let (M, g) be a pseudo-Riemannian manifold. The metric g defines the musical isomorphisms

$$
\begin{array}{ccc}
\sharp_{g}: \Gamma\left(T^{*} M\right) & \rightarrow \Gamma(T M) \\
\alpha & \mapsto & \sharp_{g}(\alpha)
\end{array}
$$

such that $g\left(\not \sharp_{g}(\alpha), Y\right)=\alpha(Y)$, and its inverse b_{g}. We can thus define the co-metric \tilde{g} of the metric g by :

$$
\begin{equation*}
\widetilde{g}(\alpha, \beta)=g\left(\not \sharp_{g}(\alpha), \sharp_{g}(\beta)\right) . \tag{2}
\end{equation*}
$$

A fundamental theorem of pseudo-Riemannian geometry states that given a pseudo-Riemannian metric g on the tangent bundle $T M$, there is a unique connection (among the class of torsion-free connection) that "preserves" the metric; as long as the following condition is satisfied:

$$
\begin{equation*}
X(g(Y, Z))=g\left(\hat{\nabla}_{X} Y, Z\right)+g\left(Y, \hat{\nabla}_{X} Z\right) \quad \text { for } X, Y, Z \in \Gamma(T M) \tag{3}
\end{equation*}
$$

Such a connection, denoted as $\hat{\nabla}$, is known as the Levi-Civita connection. Its component forms, called Christoffel symbols, are determined by the compo-
nents of pseudo-metric tensor as ("Christoffel symbols of the second Kink")

$$
\hat{\Gamma}_{i j}^{k}=\sum_{l} \frac{1}{2} g^{k l}\left(\frac{\partial g_{i l}}{\partial x^{j}}+\frac{\partial g_{j l}}{\partial x^{i}}-\frac{\partial g_{i j}}{\partial x^{l}}\right)
$$

and ("Christoffel symbols of the first Kink")

$$
\hat{\Gamma}_{i j, k}=\frac{1}{2}\left(\frac{\partial g_{i k}}{\partial x^{j}}+\frac{\partial g_{j k}}{\partial x^{i}}-\frac{\partial g_{i j}}{\partial x^{k}}\right) .
$$

The Levi-Civita connection is compatible with the pseudo metric, in the sense that it treats tangent vectors of the shortest curves on a manifold as being parallel.

It turns out that one can define a kind of "Compatibility" relation more generally than expressed by the (3), by introducing the notion of "Conjugate" (denoted by ${ }^{*}$) between two affine connections.

Let (M, g) be a pseudo-Riemannian manifold and let ∇, ∇^{*} be affine connections on M. A connection ∇^{*} is said to be "conjugate" to ∇ with respect to g if

$$
\begin{equation*}
X(g(Y, Z))=g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X}^{*} Z\right) \quad \text { for } X, Y, Z \in \Gamma(T M) \tag{4}
\end{equation*}
$$

Clearly,

$$
\left(\nabla^{*}\right)^{*}=\nabla
$$

Otherwise, $\hat{\nabla}$, which satisfies the (3), is special in the sense that it is selfconjugate

$$
(\hat{\nabla})^{*}=\hat{\nabla}
$$

Because pseudo-metric tensor g provides a one-to-one mapping between vectors in the tangent space and co-vectors in the cotangent space, the equation (1) can also be seen as characterizing how co-vector fields are to be parallel-transported in order to preserve their dual pairing $\langle\cdot, \cdot\rangle$ with vector fields. Writing out the equation (1) explicitly,

$$
\begin{equation*}
\frac{\partial g_{i j}}{\partial x^{k}}=\Gamma_{k i, j}+\Gamma_{k j, i}^{*} \tag{5}
\end{equation*}
$$

where

$$
\nabla_{\partial_{i}}^{*} \partial_{j}=\sum_{l} \Gamma_{i j}^{* l} \partial_{l}
$$

so that

$$
\Gamma_{k j, i}^{*}=g\left(\nabla_{\partial_{j}}^{*} \partial_{k}, \partial_{i}\right)=\sum_{l} g_{i l} \Gamma_{k j}^{* l} .
$$

In the following, a manifold M with a pseudo-metric g and a pair of conjugate connections ∇, ∇^{*} with respect to g is called a " pseudo-Riemannian manifold with dualistic structure " and denoted by $\left(M, g, \nabla, \nabla^{*}\right)$.
Obviously, ∇ and ∇^{*} (or equivalently, Γ and Γ^{*}) satisfy the relation

$$
\hat{\nabla}=\frac{1}{2}\left(\nabla+\nabla^{*}\right) \quad\left(\text { or equivalently, } \hat{\Gamma}=\frac{1}{2}\left(\Gamma+\Gamma^{*}\right)\right) .
$$

Thus an affine connection ∇ on (M, g) is metric if and only if $\nabla^{*}=\nabla$ (that it is self-conjugate).
For a torsion-free affine connection ∇ and a pseudo-Riemannian metric g on a manifold M, the triplet (M, ∇, g) is called a statistical manifold if ∇g is symmetric. If the curvature tensor \mathcal{R} of ∇ vanishes, (M, ∇, g) is said to be flat.
For a statistical manifold (M, ∇, g), the conjugate connection ∇^{*} with respect to g is torsion-free and $\nabla^{*} g$ symmetric. Then the triplet $\left(M, \nabla^{*}, g\right)$ is called the dual statistical manifold of (M, ∇, g) and $\left(\nabla, \nabla^{*}, g\right)$ the dualistic structure on M. The curvature tensor of ∇ vanishes if and only if that of ∇^{*} does and in such a case, $\left(\nabla, \nabla^{*}, g\right)$ is called the dually flat structure [2].
It can be shown that for a pair of conjugate connections ∇, ∇^{*}, their curvature tensors $\mathcal{R}, \mathcal{R}^{*}$ satisfy

$$
\begin{equation*}
g(\mathcal{R}(X, Y) Z, W)+g\left(Z, \mathcal{R}^{*}(X, Y) W\right)=0 \tag{6}
\end{equation*}
$$

If the curvature tensor \mathcal{R} of ∇ vanishes, ∇ is said to be flat.
So, ∇ is flat if and only if ∇^{*} is flat. In this case, $\left(M, g, \nabla, \nabla^{*}\right)$ is said to be dually flat.

2.2 Horizontal and Vertical Lifts

Throughout this paper M_{1} and M_{2} will be respectively m_{1} and m_{2} dimensional manifolds, $M_{1} \times M_{2}$ the product manifold with the natural product coordinate system and

$$
\pi_{1}: M_{1} \times M_{2} \rightarrow M_{1} \quad, \quad \pi_{2}: M_{1} \times M_{2} \rightarrow M_{2}
$$

the usual projection maps. We recall briefly how the calculus on the product manifold $M_{1} \times M_{2}$ derives from that of M_{1} and M_{2} separately. For details see [13].

Let φ_{1} in $C^{\infty}\left(M_{1}\right)$. The horizontal lift of φ_{1} to $M_{1} \times M_{2}$ is $\varphi_{1}^{h}=\varphi_{1} \circ \pi_{1}$. One can define the horizontal lifts of tangent vectors as follows. Let $p \in M_{1}$ and $X_{p} \in T_{p} M_{1}$. For any $q \in M_{2}$ the horizontal lift of X_{p} to $T_{(p, q)}\left(M_{1} \times M_{2}\right)$ is the unique tangent vector $X_{(p, q)}^{h}$ in $T_{(p, q)}\left(M_{1} \times\{q\}\right)$ such that

$$
\left\{\begin{aligned}
d_{(p, q)} \pi_{1}\left(X_{(p, q)}^{h}\right) & =X_{p}, \\
d_{(p, q)} \pi_{2}\left(X_{(p, q)}^{h}\right) & =0 .
\end{aligned}\right.
$$

We can also define the horizontal lifts of vector fields as follows. Let $X_{1} \in$ $\Gamma\left(T M_{1}\right)$. The horizontal lift of X_{1} to $\Gamma\left(T\left(M_{1} \times M_{2}\right)\right)$ is the vector field $X_{1}^{h} \in$ $\Gamma\left(T\left(M_{1} \times M_{2}\right)\right)$ whose value at each (p, q) is the horizontal lift of the tangent vector $\left(X_{1}\right) p$ to $T_{(p, q)}\left(M_{1} \times M_{2}\right)$. For $(p, q) \in M_{1} \times M_{2}$, we will denote the set of the horizontal lifts to $T_{(p, q)}\left(M_{1} \times M_{2}\right)$ of all the tangent vectors of M_{1} at p by $\mathcal{L}_{(p, q)}^{h}\left(M_{1}\right)$. We will denote the set of the horizontal lifts of all vector fields on M_{1} by $\mathcal{L}^{h}\left(M_{1}\right)$.

The vertical lift φ_{2}^{v} of a function $\varphi_{2} \in C^{\infty}\left(M_{2}\right)$ to $M_{1} \times M_{2}$ and the vertical lift X_{2}^{v} of a vector field $X_{2} \in \Gamma\left(T M_{2}\right)$ to $\Gamma\left(T\left(M_{1} \times M_{2}\right)\right)$ are defined in the same way using the projection π_{2}. Note that the spaces $\mathcal{L}^{h}\left(M_{1}\right)$ of the horizontal lifts and $\mathcal{L}^{v}\left(M_{2}\right)$ of the vertical lifts are vector subspaces of $\Gamma\left(T\left(M_{1} \times M_{2}\right)\right)$ but neither is invariant under multiplication by arbitrary functions $\varphi \in C^{\infty}\left(M_{1} \times\right.$ M_{2}).

We define the horizontal lift of a covariant tensor ω_{1} on M_{1} to be its pullback ω_{1}^{h} to $M_{1} \times M_{2}$ by the means of the projection map π_{1}, i.e. $\omega_{1}^{h}:=\pi_{1}^{*}\left(\omega_{1}\right)$. In particular, for a 1 -form α_{1} on M_{1} and a vector field X on $M_{1} \times M_{2}$, we have

$$
\left(\alpha_{1}^{h}\right)(X)=\alpha_{1}\left(d \pi_{1}(X)\right)
$$

Explicitly, if u is a tangent vector to $M_{1} \times M_{2}$ at (p, q), then

$$
\left(\alpha_{1}^{h}\right)_{(p, q)}(u)=\left(\alpha_{1}\right)_{p}\left(d_{(p, q)} \pi_{1}(u)\right) .
$$

Similarly, we define the vertical lift of a covariant tensor w_{2} on M_{2} to be its pullback ω_{2}^{v} to $M_{1} \times M_{2}$ by the means of the projection map π_{2}.

Observe that if $\left\{\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{m_{1}}}\right\}$ is the local basis of the vector fields (resp. $\left\{d x^{1}, \ldots, d x^{m_{1}}\right\}$ is the local basis of 1-forms) relative to a chart (U, Φ) of M_{1} and $\left\{\frac{\partial}{\partial y^{1}}, \ldots, \frac{\partial}{\partial y^{m_{2}}}\right\}$ is the local basis of the vector fields (resp. $\left\{d y^{1}, \ldots, d y^{m_{2}}\right\}$ the local basis of the 1-forms) relative to a chart (V, Ψ) of M_{2}, then $\left\{\left(\frac{\partial}{\partial x^{1}}\right)^{h}, \ldots\right.$, $\left.\left(\frac{\partial}{\partial x^{m_{1}}}\right)^{h},\left(\frac{\partial}{\partial y^{1}}\right)^{v}, \ldots,\left(\frac{\partial}{\partial y^{m_{2}}}\right)^{v}\right\}$ is the local basis of the vector fields (resp. $\left\{\left(d x_{1}\right)^{h}\right.$, $\left.\ldots,\left(d x_{m_{1}}\right)^{h},\left(d y_{1}\right)^{v}, \ldots,\left(d y_{m_{2}}\right)^{v}\right\}$ is the local basis of the 1-forms) relative to the chart $(U \times V, \Phi \times \Psi)$ of $M_{1} \times M_{2}$.

The following lemma will be useful later for our computations.

Lemma 2.1 [10]

1. Let $\varphi_{i} \in C^{\infty}\left(M_{i}\right), X_{i}, Y_{i} \in \Gamma\left(T M_{i}\right), \alpha_{i} \in \Gamma\left(T^{*} M_{i}\right), i=1,2$, let $\varphi=$ $\varphi_{1}^{h}+\varphi_{2}^{v}, X=X_{1}^{h}+X_{2}^{v}$ and $\alpha, \beta \in \Gamma\left(T^{*}\left(M_{1} \times M_{2}\right)\right)$. Then
$i /$ For all $(i, I) \in\{(1, h),(2, v)\}$ we have

$$
X_{i}^{I}(\varphi)=X_{i}\left(\varphi_{i}\right)^{I}, \quad\left[X, Y_{i}^{I}\right]=\left[X_{i}, Y_{i}\right]^{I} \quad \text { and } \quad \alpha_{i}^{I}(X)=\alpha_{i}\left(X_{i}\right)^{I} .
$$

ii/ If for all $(i, I) \in\{(1, h),(2, v)\}$ we have $\alpha\left(X_{i}^{I}\right)=\beta\left(X_{i}^{I}\right)$, then $\alpha=$ β.
2. Let ω_{i} and η_{i} be r-forms on $M_{i}, i=1,2$, and set $\omega=\omega_{1}^{h}+\omega_{2}^{v}$ and $\eta=\eta_{1}^{h}+\eta_{2}^{v}$. Then we have

$$
d \omega=\left(d \omega_{1}\right)^{h}+\left(d \omega_{2}\right)^{v} \quad \text { and } \quad \omega \wedge \eta=\left(\omega_{1} \wedge \eta_{1}\right)^{h}+\left(\omega_{2} \wedge \eta_{2}\right)^{v}
$$

Remark 2.2 Let X be a vector field on $M_{1} \times M_{2}$, such that $d \pi_{1}(X)=$ $\varphi\left(X_{1} \circ \pi_{1}\right)$ and $d \pi_{2}(X)=\phi\left(X_{2} \circ \pi_{2}\right)$. Then $X=\varphi X_{1}^{h}+\phi X_{2}^{v}$.

3 About Doubly Warped Products

3.1 The Doubly Warped Product

let $\psi: M \rightarrow N$ be a smooth map between smooth manifolds and g be a metric on k-vector bundle $\left(F, P_{F}\right)$ over N. The metric $g^{\psi}: \Gamma\left(\psi^{-1} F\right) \times \Gamma\left(\psi^{-1} F\right) \rightarrow$ $C^{\infty}(M)$ on the pull-back $\left(\psi^{-1} F, P_{\psi^{-1} F}\right)$ over M is defined by

$$
g^{\psi}(U, V)(p)=g_{\psi(p)}\left(U_{p}, V_{p}\right), \quad \forall U, V \in \Gamma\left(\psi^{-1} F\right), p \in M
$$

Given a linear connection ∇^{N} on k-vector bundle $\left(F, P_{F}\right)$ over N, the pull-back connection $\stackrel{\psi}{\nabla}$ is the unique linear connection on the pull-back $\left(\psi^{-1} F, P_{\psi^{-1} F}\right)$ over M such that, for each $W \in \Gamma(F), X \in \Gamma(T M)$

$$
\begin{equation*}
\nabla_{X}(W \circ \psi)=\nabla_{d \psi(X)}^{N} W \tag{7}
\end{equation*}
$$

Further, let $U \in \psi^{-1} F, p \in M$ and $X \in \Gamma(T M)$. Then

$$
\begin{equation*}
\left(\nabla_{X}^{\psi} U\right)(p)=\left(\nabla_{d_{p} \psi\left(X_{p}\right)}^{N} \tilde{U}\right)(\psi(p)) \tag{8}
\end{equation*}
$$

where $\widetilde{U} \in \Gamma(F)$ with $\widetilde{U} \circ \psi=U$.
Now, let $\pi_{i}, \mathrm{i}=1,2$, be the usual projection of $M_{1} \times M_{2}$ onto M_{i}, given a linear connection $\stackrel{i}{\nabla}$ on vector bundle $\Gamma\left(T M_{i}\right)$, the pull-back connection ${ }^{\pi_{i}}$ is the unique linear connection on the pull-back $M_{1} \times M_{2} \rightarrow \pi_{i}^{-1}\left(T M_{i}\right)$, such that, for each $Y_{i} \in \Gamma\left(T M_{i}\right), X \in \Gamma\left(T M_{1} \times M_{2}\right)$

$$
\begin{equation*}
{\stackrel{\pi_{\dot{j}}}{X}}_{X} Y_{i} \circ \pi_{i}=\stackrel{i}{\nabla}_{d \pi_{i}(X)} Y_{i} \tag{9}
\end{equation*}
$$

Further, let $U \in \Gamma\left(\pi_{i}^{-1}\left(T M_{i}\right)\right),(p, q) \in M_{1} \times M_{2}$ and $X \in \Gamma\left(T\left(M_{1} \times M_{2}\right)\right)$. Then

$$
\begin{equation*}
\left(\stackrel{\pi}{\nabla}_{X} U\right)(p, q)=\left(\stackrel{i}{\nabla}_{d_{(p, q)} \pi_{i}\left(X_{(p, q)}\right)} \tilde{U}\right) \pi_{i}(p, q) \tag{10}
\end{equation*}
$$

Definition 3.1 Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be pseudo-Riemannian manifolds and let $f_{1}: M_{1} \rightarrow \mathcal{R}^{*}$ and $f_{2}: M_{2} \rightarrow \mathcal{R}^{*}$ be a positive smooth functions. The Doubly warped product is the product manifold $M_{1} \times M_{2}$ furnished with the metric tensor $g_{f_{1} f_{2}}$ defined by

$$
\begin{equation*}
g_{f_{1} f_{2}}=\left(f_{2}^{v}\right)^{2} \pi_{1}^{*} g_{1}+\left(f_{1}^{h}\right)^{2} \pi_{2}^{*} g_{2} \tag{11}
\end{equation*}
$$

Explicitly, if $X, Y \in \Gamma\left(T M_{1} \times M_{2}\right)$, then

$$
g_{f_{1} f_{2}}(X, Y)=\left(f_{2}^{v}\right)^{2} g_{1}^{\pi_{1}}\left(d \pi_{1}(X), d \pi_{1}(Y)\right)+\left(f_{1}^{h}\right)^{2} g_{2}^{\pi_{2}}\left(d \pi_{2}(X), d \pi_{2}(Y)\right)
$$

By analogy with [6] we will denote this structure by $M_{1} \times_{f_{1} f_{2}} M_{2}$. The function $f_{i}: M_{i} \rightarrow \mathcal{R}^{+}-\{0\}(i \in\{1,2\})$ is called the warping function.
If $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ are both Riemannian manifolds, then $M_{1} \times{ }_{f_{1} f_{2}} M_{2}$ is also a Riemannian manifold. We call $M_{1} \times{ }_{f_{1} f_{2}} M_{2}$ as a Lorentzian doubly warped product if $\left(M_{2}, g_{2}\right)$ is Riemannian and either $\left(M_{1}, g_{1}\right)$ is Lorentzian or else $\left(M_{1}, g_{1}\right)$ is a one-dimensional manifold with a negative definite metric $-d t^{2}$.

Proposition 3.2 With the notation above, let $X_{i}, Y_{i} \in \Gamma\left(T M_{i}\right), i=1,2$. Then the equation (11) is equivalent to

$$
\left\{\begin{array}{l}
g_{f_{1} f_{2}}\left(X_{1}^{h}, Y_{1}^{h}\right)=\left(f_{2}^{v}\right)^{2} g_{1}\left(X_{1}, Y_{1}\right)^{h} ; \tag{12}\\
g_{f_{1} f_{2}}\left(X_{1}^{h}, Y_{2}^{v}\right)=g_{f_{1} f_{2}}\left(X_{2}^{v}, Y_{1}^{h}\right)=0 \\
g_{f_{1} f_{2}}\left(X_{2}^{v}, Y_{2}^{v}\right)=\left(f_{1}^{h}\right)^{2} g_{2}\left(X_{2}, Y_{2}\right)^{v}
\end{array}\right.
$$

Proof: By definition of the doubly warped metric,

$$
g_{f_{1} f_{2}}\left(X_{1}^{h}, Y_{1}^{h}\right)(p, q)=f_{2}^{2}(q) g_{1}\left(X_{1}, Y_{1}\right)(p) \quad \text { and } \quad g_{f_{1} f_{2}}\left(X_{1}^{h}, Y_{2}^{v}\right)(p, q)=0
$$

Writing f_{1}^{h} for $f_{1} \circ \pi_{1}$ and f_{2}^{v} for $f_{2} \circ \pi_{2}$. Then it is easily seen that Equation (12) hold.

A direct computation using Proposition 3.2 and the definition of the musical isomorphism gives the following proposition.

Proposition 3.3 ([9]) Let $\left(M_{i}, g_{i}\right)$ be a pseudo-Riemannian manifold and let $f_{i}: M_{i} \rightarrow \mathcal{R}_{+}^{*}$, be a positive smooth function, $i=1,2$. The co-metric $\widetilde{g}_{f_{1}, f_{2}}$ of $g_{f_{1}, f_{2}}$ is characterized by the following identities

$$
\left\{\begin{array}{l}
\widetilde{g}_{f_{1} f_{2}}\left(\alpha_{1}^{h}, \beta_{1}^{h}\right)=\frac{1}{\left(f_{2}^{v}\right)^{2}} \widetilde{g}_{1}\left(\alpha_{1}, \beta_{1}\right)^{h} ; \tag{13}\\
\widetilde{g}_{f_{1} f_{2}}\left(\alpha_{1}^{h}, \beta_{2}^{v}\right)=\widetilde{g}_{f_{1} f_{2}}\left(\alpha_{2}^{v}, \beta_{1}^{h}\right)=0 ; \\
\widetilde{g}_{f_{1} f_{2}}\left(\alpha_{2}^{v}, \beta_{2}^{v}\right)=\frac{1}{\left(f_{1}^{h}\right)^{2}} \widetilde{g}_{2}\left(\alpha_{2}, \beta_{2}\right)^{v}
\end{array}\right.
$$

for any $\alpha_{i}, \beta_{i} \in \Gamma\left(T^{*} M_{i}\right), i=1,2$. Where \widetilde{g}_{i} is the co-metric of g_{i}.

Lemma 3.4 If $f_{i} \in C^{\infty}\left(M_{i}\right), i=1,2$. Then the gradient of the lifts f_{1}^{h} of f_{1} and f_{2}^{v} of f_{2} to $M_{1} \times{ }_{f_{1} f_{2}} M_{2}$ w.r.t. $g_{f_{1} f_{2}}$ is

$$
\begin{equation*}
\operatorname{grad}\left(f_{1}^{h}\right)=\frac{1}{\left(f_{2}^{v}\right)^{2}}\left(\operatorname{gradf}_{1}\right)^{h} \quad, \quad \operatorname{grad}\left(f_{2}^{v}\right)=\frac{1}{\left(f_{1}^{h}\right)^{2}}\left(\operatorname{gradf}_{2}\right)^{v} \tag{14}
\end{equation*}
$$

Proof: Let $Z_{i} \in \Gamma\left(T M_{i}\right), i=1,2$. Then, for any $(i, I),(3-i, J) \in\{(1, h),(2, v)\}$, we have

$$
g_{f_{1} f_{2}}\left(\operatorname{grad}\left(f_{i}^{I}\right), Z_{i}^{I}\right)=\left(Z_{i}\left(f_{i}\right)\right)^{I}=g_{i}\left(\operatorname{gradf}_{i}, Z_{i}\right)^{I}=\frac{1}{\left(f_{3-i}\right)^{2}} g_{f_{1} f_{2}}\left(\left(\operatorname{grad} f_{i}\right)^{I}, Z_{i}^{I}\right)
$$

and

$$
g_{f_{1} f_{2}}\left(\operatorname{grad}\left(f_{i}^{I}\right), Z_{3-i}^{J}\right)=0 .
$$

Therefore, from Equation (12), we get

$$
\operatorname{grad}\left(f_{i}^{I}\right)=\frac{1}{\left(f_{3-i}^{J}\right)^{2}}\left(\operatorname{gradf}_{i}\right)^{I} .
$$

3.2 Dualistic Structure on Doubly Warped Products

Proposition 3.5 Let $\left(g_{f_{1} f_{2}}, \nabla, \nabla^{*}\right)$ be a dualistic structure on $M_{1} \times M_{2}$. Then there exists an affine connections $\stackrel{i}{\nabla}, \nabla^{*}$ on M_{i}, such that $\left(g_{i}, \stackrel{i}{\nabla}, \nabla_{\nabla^{*}}\right)$ is a dualistic structure on $M_{i}, i=1,2$.

Proof: Taking the affine connections on $M_{i}, i=1,2$.

$$
\left\{\begin{array}{cl}
\left(\stackrel{i}{\nabla}_{X_{i}} Y_{i}\right) \circ \pi_{i}=d \pi_{i}\left(\nabla_{X_{i}^{I}} Y_{i}^{I}\right), & \forall X_{i}, Y_{i} \in \Gamma\left(T M_{1}\right) \\
\left(\nabla_{X_{i}}^{*} Y_{i}\right) \circ \pi_{i}=d \pi_{i}\left(\nabla_{X_{i}^{I}}^{*} Y_{i}^{I}\right) . & \forall(i, I) \in\{(1, h),(2, v)\}
\end{array}\right.
$$

Therefore, we have for all $X_{i}, Y_{i}, Z_{i} \in \Gamma\left(T M_{i}\right)$.

$$
\begin{equation*}
X_{i}^{I}\left(g_{f_{1} f_{2}}\left(Y_{i}^{I}, Z_{i}^{I}\right)\right)=g_{f_{1} f_{2}}\left(\nabla_{X_{i}^{I}} Y_{i}^{I}, Z_{i}^{I}\right)+g_{f_{1} f_{2}}\left(Y_{i}^{I}, \nabla_{X_{i}^{I}}^{*} Z_{i}^{I}\right) \tag{15}
\end{equation*}
$$

Since, $d \pi_{3-i}\left(Z_{i}^{I}\right)=0, X_{i}^{I}\left(f_{3-i}^{J}\right)=0$ and $g_{f_{1} f_{2}}\left(X, Z_{i}^{I}\right)=\left(f_{3-i}^{J}\right)^{2} g_{i}^{\pi_{i}}\left(d \pi_{i}(X), Z_{i} \circ \pi_{i}\right)$, for any $\stackrel{3-2}{X} \in \Gamma\left(T M_{1} \times M_{2}\right)$, then the equation (15) is equivalent to

$$
\left(f_{3-i}^{J}\right)^{2}\left(X_{i}\left(g_{i}\left(Y_{i}, Z_{i}\right)\right)\right)^{I}=\left(f_{3-i}^{J}\right)^{2}\left\{g_{i}\left(\stackrel{\nabla}{\nabla}_{X_{i}} Y_{i}, Z_{i}\right)+g_{i}\left(Y_{i}, \stackrel{i}{\nabla_{X}^{*}} Z_{i}^{*}\right)\right\}^{I} .
$$

Where $(i, I),(3-i, J) \in\{(1, h),(2, v)\}$. Hence, the pair of affine connections $\stackrel{i}{\nabla}$ and $\stackrel{i}{\nabla}^{*}$ are conjugate with respect to g_{i}.

Proposition 3.6 Let $\left(g_{i}, \stackrel{i}{\nabla}, \nabla^{*}\right)$ be a dualistic structure on $M_{i}, i=1,2$. Then there exists a dualistic structure on $M_{1} \times M_{2}$ with respect to $g_{f_{1} f_{2}}$.

Proof: Let ∇ and ∇^{*} be the connections on $M_{1} \times M_{2}$ given by

$$
\left\{\begin{align*}
d \pi_{i}\left(\nabla_{X} Y\right) & =\stackrel{\nabla}{X}_{X} d \pi_{i}(Y)+Y\left(\ln f_{3-i}^{J}\right) d \pi_{i}(X)+X\left(\ln f_{3-i}^{J}\right) d \pi_{i}(Y) \tag{16}\\
& -\left(f_{3-i}^{J}\right)^{-2} f_{i}^{I} g_{3-i}^{\pi_{3-i}}\left(d \pi_{3-i}(X), d \pi_{3-i}(Y)\right)\left(\left(\operatorname{gradf} f_{i}\right) \circ \pi_{i}\right) \\
d \pi_{i}\left(\nabla_{X}^{*} Y\right) & =\stackrel{\nabla}{X}_{X}^{\pi_{j}} d \pi_{i}(Y)+Y\left(\ln f_{3-i}^{J}\right) d \pi_{i}(X)+X\left(\ln f_{3-i}^{J}\right) d \pi_{i}(Y) \\
& -\left(f_{3-i}^{J}\right)^{-2} f_{i}^{I} g_{3-i}^{\pi_{3-i}}\left(d \pi_{3-i}(X), d \pi_{3-i}(Y)\right)\left(\left(\operatorname{gradf} f_{i}\right) \circ \pi_{i}\right)
\end{align*}\right.
$$

for any $X, Y \in \Gamma\left(T M_{1} \times M_{2}\right)$.
Or, for any $X_{i}, Y_{i} \in \Gamma\left(T M_{i}\right)$ we have

$$
\left\{\begin{array}{l}
\nabla_{X_{i}^{I}} Y_{i}^{I}=\left(\nabla_{X_{i}}^{i} Y_{i}\right)^{I}-\left(\frac{g_{i}\left(X_{i}, Y_{i}\right)}{2 f_{i}^{2}}\right)^{I}\left(g r a d f_{3-i}^{2}\right)^{J} ; \tag{17}\\
\nabla_{X_{i}^{I}}^{*} Y_{i}^{I}=\left(\nabla_{X_{i}}^{*} Y_{i}\right)^{I}-\left(\frac{g_{i}\left(X_{i} Y_{i}\right)}{2 f_{i}^{2}}\right)^{I}\left(g r a d f_{3-i}^{2}\right)^{J} ; \\
\nabla_{X_{i}^{I}} Y_{3-i}^{J}=\nabla_{X_{i}^{I}}^{*} Y_{3-i}^{J}=\left(X_{i}\left(\ln f_{i}\right)\right)^{I} Y_{3-i}^{J}+\left(Y_{3-i}\left(\ln f_{3-i}\right)\right)^{J} X_{i}^{I}
\end{array}\right.
$$

where $(i, I),(3-i, J) \in\{(1, h),(2, v)\}$. Let us assume that $\left(g_{i}, \nabla^{i}, \nabla^{i}\right)$ is a dualistic structure on $M_{i}, i=1,2$. Let A be the tensor field of type $(0,3)$ defined by

$$
A(X, Y, Z)=X\left(g_{f_{1} f_{2}}(Y, Z)\right)-g_{f_{1} f_{2}}\left(\nabla_{X} Y, Z\right)-g_{f_{1} f_{2}}\left(Y, \nabla_{X}^{*} Z\right)
$$

for any $X, Y, Z \in \Gamma\left(T M_{1} \times M_{2}\right)$, if $X_{i}, Y_{i}, Z_{i} \in \Gamma\left(T M_{i}\right), i=1,2$. Then we have

$$
X_{i}^{I}\left(g_{f_{1} f_{2}}\left(Y_{i}^{I}, Z_{i}^{I}\right)\right)=X_{i}^{I}\left(\left(f_{3-i}^{J}\right)^{2} g_{i}\left(X_{i}, Y_{i}\right)^{I}\right)
$$

Since $d \pi_{3-i}\left(X_{i}^{I}\right)=0$, it follows that $d \pi_{3-i}\left(X_{i}^{I}\right)\left(f_{3-i}\right)=X_{i}^{I}\left(f_{3-i}^{J}\right)=0$, and hence

$$
X_{i}^{I}\left(g_{f_{1} f_{2}}\left(Y_{i}^{I}, Z_{i}^{I}\right)\right)=\left(f_{3-i}^{J}\right)^{2}\left(X\left(g_{i}\left(Y_{i}, Z_{i}\right)\right)\right)^{I}
$$

As $\left(g_{i}, \stackrel{i}{\nabla}, \stackrel{i}{\nabla}\right)$ is dualistic structure, we have thus

$$
X_{i}^{I}\left(g_{f_{1} f_{2}}\left(Y_{i}^{I}, Z_{i}^{I}\right)\right)=\left(f_{3-i}^{J}\right)^{2}\left\{g_{i}\left(\nabla_{X_{i}}^{i} Y_{i}, Z_{i}\right)^{I}+g_{i}\left(Y_{i}, \nabla_{X_{i}}^{*} Z_{i}\right)^{I}\right\}
$$

From Proposition 3.2 and Equations (17), then it's easily seen that the following equation holds

$$
A\left(X_{i}^{I}, Y_{i}^{I}, Z_{i}^{I}\right)=0
$$

In the different lifts, we have

$$
\begin{gathered}
X_{3-i}^{J}\left(g_{f_{1} f_{2}}\left(Y_{i}^{I}, Z_{i}^{I}\right)\right)=2 g_{i}\left(Y_{i}, Z_{i}\right)^{I}\left(f_{3-i}^{J} X_{3-i}\left(f_{3-i}\right)\right)^{J}, \\
g_{f_{1} f_{2}}\left(\nabla_{X_{3-i}}^{J} Y_{i}^{I}, Z_{i}^{I}\right)=g_{f_{1} f_{2}}\left(\left(X_{3-i}\left(\ln f_{3-i}\right)\right)^{J} Y_{i}^{I}, Z_{i}^{I}\right)=\left(f_{3-i}^{2} X_{3-i}\left(f_{3-i}\right)\right)^{J} g_{i}\left(Y_{i}, Z_{i}\right)^{I},
\end{gathered}
$$

and

$$
g_{f_{1} f_{2}}\left(\nabla_{X_{3-i}^{J}}^{*} Z_{i}^{I}, Y_{i}^{I}\right)=g_{f_{1} f_{2}}\left(\nabla_{X_{3-i}^{J}} Z_{i}^{I}, Y_{i}^{I}\right)=\left(f_{3-i}^{2} X_{3-i}\left(f_{3-i}\right)\right)^{J} g_{i}\left(Y_{i}, Z_{i}\right)^{I}
$$

We add these equations and obtain

$$
A\left(X_{3-i}^{J}, Y_{i}^{I}, Z_{i}^{I}\right)=0
$$

Hence the same applies for $A\left(X_{i}^{I}, Y_{i}^{I}, Z_{3-i}^{J}\right)=A\left(X_{3-i}^{J}, Y_{i}^{I}, Z_{i}^{I}\right)=0$. This proves that ∇^{*} is conjugate to ∇ with respect to $g_{f_{1} f_{2}}$.

We recall that the connection ∇ on $M_{1} \times M_{2}$ induced by ∇^{1} and ∇^{2} on M_{1} and M_{2} respectively, is given by the equations (17).

Proposition $3.7\left(M_{1}, \stackrel{1}{\nabla}, g_{1}\right)$ and $\left(M_{2}, \nabla^{2}, g_{2}\right)$ are statistical manifolds if and only if $\left(M_{1} \times M_{2}, g_{f_{1} f_{2}}, \nabla\right)$ is a statistical manifold.

Proof: Let us assume that $\left(M_{i}, \stackrel{i}{\nabla}, g_{i}\right),(i=1,2)$ is a statistical manifold.
Firstly, we show that ∇ is torsion-free. Indeed; by Equation (16), we have for any $X, Y \in \Gamma\left(T M_{1} \times M_{2}\right)$

$$
d \pi_{i}(T(X, Y))={\stackrel{\pi_{i}}{\nabla}}_{X} d \pi_{i}(Y)-{\stackrel{\pi_{i}}{\nabla}}_{Y} d \pi_{i}(X)-d \pi_{i}([X, Y])
$$

Since for $i=1,2, \nabla^{i}$ is torsion-free, then

$$
{\stackrel{\pi_{i}}{\nabla_{X}}}_{X} d \pi_{i}(Y)-{\stackrel{\pi_{i}}{\nabla_{Y}}}_{Y} d \pi_{i}(X)=d \pi_{i}([X, Y])
$$

Therefore, from Remark 2.2, the connection ∇ is torsion-free.
Secondly, we show that $\nabla g_{f_{1}, f_{2}}$ is symmetric. In fact; for $i=1,2$,
$\left(\nabla g_{f_{1} f_{2}}\right)\left(X_{i}^{I}, Y_{i}^{I}, Z_{i}^{J}\right)=X_{i}^{I}\left(g_{f_{1} f_{2}}\left(Y_{i}^{I}, Z_{i}^{I}\right)\right)-g_{f_{1} f_{2}}\left(\nabla_{X_{i}^{I}} Y_{i}^{I}, Z_{i}^{I}\right)-g_{f_{1} f_{2}}\left(Y_{i}^{I}, \nabla_{X_{i}^{I}} Z_{i}^{I}\right)$
by Equations (12), (17) and since $\left(\stackrel{i}{\nabla} g_{i}\right), i=1,2$, is symmetric, we have

$$
\begin{aligned}
\left(\nabla g_{f_{1} f_{2}}\right)\left(X_{i}^{I}, Y_{I}^{I}, Z_{i}^{I}\right) & =\left(f_{3-i}^{J}\right)^{2}\left(\left(\stackrel{i}{i} g_{i}\right)\left(X_{i}, Y_{i}, Z_{i}\right)\right)^{I} \\
& =\left(f_{3-i}^{J}\right)^{2}\left(\left(\nabla g_{i}\right)\left(Y_{i}, X_{i}, Z_{i}\right)\right)^{h} \\
& =\left(\nabla g_{f_{1} f_{2}}\right)\left(Y_{i}^{I}, X_{I}^{I}, Z_{i}^{I}\right) .
\end{aligned}
$$

In the different lifts, we have

$$
\left(\nabla g_{f_{1} f_{2}}\right)\left(X_{i}^{I}, Y_{i}^{I}, Z_{3-i}^{J}\right)=\left(\nabla g_{f_{1} f_{2}}\right)\left(X_{3-i}^{J}, Y_{i}^{I}, Z_{i}^{I}\right)=\left(\nabla g_{f_{1} f_{2}}\right)\left(X_{i}^{I}, Y_{3-i}^{I}, Z_{i}^{I}\right)=0
$$

Therefore, $\left(\nabla g_{f_{1} f_{2}}\right)$ is symmetric. Thus $\left(M_{1} \times M_{2}, g_{f_{1} f_{2}}, \nabla\right)$ is a statistical manifold.

Conversely, if $\left(M_{1} \times M_{2}, g_{f_{1} f_{2}}, \nabla\right)$ is statistical manifold, then $\left(\nabla g_{f_{1} f_{2}}\right)$ is symmetric and ∇ is torsion-free, particularly, when $X_{i}, Y_{i}, Z_{i} \in \Gamma\left(T M_{i}\right)$, we have

$$
\left\{\begin{array}{l}
\left(\nabla g_{f_{1} f_{2}}\right)\left(X_{i}^{I}, Y_{I}^{I}, Z_{i}^{I}\right)=\left(\nabla g_{f_{1} f_{2}}\right)\left(Y_{i}^{I}, X_{I}^{I}, Z_{i}^{I}\right), \\
T\left(X_{i}^{I}, Y_{i}^{I}\right)=0
\end{array} \quad \forall i=1,2\right.
$$

Then, by Equations (12) and (17), we obtained, for $i=1,2, \stackrel{i}{\nabla} g_{i}$, is symmetric and ∇^{i}, is torsion-free. Therefore, $\left(M_{i}, \nabla^{i}, g_{i}\right),(i=1,2)$ is statistical manifold.

Acknowledgements: A big part of this work was done at The Raphael Salem Laboratory of mathematics, University of Rouen (France), Djelloul Djebbouri will like to thank Raynaud de Fitte Paul, Simon Raoult for very useful discussions and the Mathematic section for their hospitality.

References

[1] S. Amari, Differential-geometrical methods in statistics, Lecture Notes in statistics, Springer, Berlin, 28(1985), 55.
[2] S. Amari and H. Nagaoka, Methods of Information Geometry, Amer. Math. Soc., Providence, Oxford University Press, Oxford, (2000).
[3] H. Furuhata, Hypersurfaces in statistical manifolds, Diff. Geom. Appl., 27(55) (2009), 420-429.
[4] H. Shima, Comact locally Hessian manifolds, Osaka J. Math., 15(55) (1978), 509-513.
[5] K. Uohashi, On λ-conformal equivalence of statistical submanifolds, J. Geom., 75(55) (2002), 179-184.
[6] R. Ponge and H. Reckziegel, Twisted products in pseudo-Riemannian geometry, Geom. Dedic., 48(1993), 15-25.
[7] L. Todjihounde, Dualistic structures on warped product manifolds, Diff. Geom.-Dyn. Syst., 8(2006), 278-284.
[8] S.D. Abdoul, Dualistic structures on doubly warped product manifolds, International Electronic Journal of Geometry, 6(1) (2013), 41-45.
[9] Y.A. Amrane, R. Nasri and A. Zeglaoui, Warped Poisson brackets on warped products, Journal of Geometric Mechanics, American Institute of Mathematical Sciences, 6(3) (September) (2014), 279-296.
[10] R. Nasri and M. Djaa, Sur la courbure des variétés riemanniennes produits, Sciences et Technologie, A-24(2006), 15-20.
[11] J.K. Beem, P.E. Ehrlich and Th. G. Powell, Warped Product Manifolds in Relativity Selected Studies: Physics-Astrophysics, Mathematics, History of Science, North-Holland, Amesterdam-New York, (1982), 41-56.
[12] R.L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145(1969), 1-49.
[13] B. O'Neill, Semi-Riemannian Geometry, Academic Press, New-York, (1983).

