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Abstract
In this paper, we generalize the dualistic structures on warped product man-

ifolds to the dualistic structures on doubly warped product. We extend some
results related to the dualistic structure on doubly warped product studied in
[8]. We also demonstrate that a dualistic structure on a doubly warped product
manifold (M1×M1 , gf1f2

) induces dualistic structures on the manifolds M1 and

M2 and conversely, in this case doubly warped product manifold (M1×M1 , gf1f2
)

is a statistical manifold if and only if (M1 , g1) and (M1 , g1) are.
Keywords: Conjugate, doubly warped products, dual connection, product

manifold.

1 Introduction

The warped product provides a way to construct new pseudo-riemannian man-
ifolds from the given ones, see [13],[12] and [11]. This construction has useful
applications in general relativity, in the study of cosmological models and black
holes. It generalizes the direct product in the class of pseudo-Riemannian man-
ifolds and it is defined as follows:

Definition 1.1 Let (M1, g1) and (M2, g2) be two pseudo-Riemannian man-
ifolds and let f1 : M1 −→ R∗ be a positive smooth function on M1, the warped
product of (M1, g1) and (M2, g2) is the product manifold M1 × M2 equipped
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with the metric tensor gf1 := π∗1g1 + (f1 ◦ π1)2π∗2g2, where π1 and π2 are the
projections of M1 ×M2 onto M1 and M2 respectively.

The manifold M1 is called the base of (M1×M2, gf1) and M2 is called the fiber.
The function f1 is called the warping function.
The doubly warped product construction in the class of pseudo-Riemannian
manifolds generalized the warped product and the direct product. It is ob-
tained by homothetically distorting the geometry of each base M1 × {q} and
each fiber {p}×M2 to get a new ”doubly warped” metric tensor on the product
manifold and defined as follows:
For i ∈ {1, 2}, let Mi be a pseudo-Riemannian manifold equipped with metric
gi, and f

i
: Mi → R∗ be a positive smooth function on Mi. The well-know

notion of doubly warped product manifold M1 ×f1f2
M2 is defined as the prod-

uct manifold M = M1 ×M2 equipped with pseudo-Riemannian metric which
is denoted by g

f1f2
, given by

g
f1f2

= (f2 ◦ π2)2π∗1g1 + (f1 ◦ π1)2π∗2g2 .

In the cases f1 = 1 or f2 = 1 we obtain a warped product or a direct product.

Dualistic structures are closely related to statistical mathematics. They
consist of pairs of affine connections on statistical manifolds, compatible with
a pseudo-Riemannian metric [1]. Their importance in statistical physics was
underlined by many authors; see [3],[4],[5] etc.
Let M be a pseudo-Riemannian manifold equipped with a pseudo-Riemannian
metric g and let ∇, ∇∗ be the affine connections on M . We say that a pair of
affine connections ∇ and ∇∗ are compatible (or conjugate ) with respect to g
if

X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇∗XZ) for all X, Y, Z ∈ Γ(TM), (1)

where Γ(TM) is the set of all tangent vector fields on M . Then the triplet
(g,∇,∇∗) is called the dualistic structure on M .
We note that the notion of ”conjugate connection ” has been attributed to
A.P. Norden in affine differential geometry literature (Simon, 2000) and was
independently introduced by (Nagaoka and Amari, 1982) in information ge-
ometry, where it was called ” dual connection” (Lauritzen, 1987). The triplet
(M,∇, g) is called a statistical manifold if it admits another torsion-free con-
nection ∇∗ satisfying the equation (1). We call ∇ and ∇∗ dual of each other
with respect to g.

In the notions of terms on statistical manifolds, for a torsion-free affine
connection ∇ and a pseudo-Riemannian metric g on a manifold M , the triple
(M,∇, g) is called a statistical manifold if ∇g is symmetric. If the curvature
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tensor R of ∇ vanishes, (M,∇, g) is said to be flat.

This paper extends the study of dualistic structures on warped product
and double warped product manifolds in the papers [7] and [8].

The paper is organized as follows. In section 2, we collect the basic material
about Levi-Civita connection, the notion of conjugate, horizontal and vertical
lifts. In section 3, we define the co-metric g̃

f1f2
of g

f1f2
the metric of the doubly

warped products by using the musical isomorphisms, we calculate the gradient
of the lift of f1 (resp. f2), it has been shown that its gradient is horizontal (resp.
vertical) and π1 related to gradient of f1 on M1 (resp. π2 related to gradient
of f2 on M2 ), we show that dualistic structures on manifolds (M1 , g1) and
(M2 , g2) induce the dualistic structure on the doubly warped product manifold
(M1×M2 , gf1f2

) and conversely. Moreover (M1 , g1) and (M2 , g2) are statistical

manifolds if and only if (M1 ×M2 , gf1f2
) is a statistical manifold.

2 Preliminaries

2.1 Statistical Manifolds

We recall some standard facts about Levi-Civita connections and the dual
statistical manifold. Many fundamental definitions and results about dualistic
structure can be found in Amari’s monograph ([1],[2]).

Let (M, g) be a pseudo-Riemannian manifold. The metric g defines the
musical isomorphisms

]g : Γ(T ∗M) → Γ(TM)
α 7→ ]g(α)

such that g(]g(α), Y ) = α(Y ), and its inverse [g. We can thus define the
co-metric g̃ of the metric g by :

g̃(α, β) = g(]g(α), ]g(β)). (2)

A fundamental theorem of pseudo-Riemannian geometry states that given a
pseudo-Riemannian metric g on the tangent bundle TM , there is a unique
connection (among the class of torsion-free connection) that ”preserves” the
metric; as long as the following condition is satisfied:

X(g(Y, Z)) = g(∇̂XY, Z) + g(Y, ∇̂XZ) for X, Y, Z ∈ Γ(TM) (3)

Such a connection, denoted as ∇̂, is known as the Levi-Civita connection. Its
component forms, called Christoffel symbols, are determined by the compo-
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nents of pseudo-metric tensor as (”Christoffel symbols of the second Kink”)

Γ̂kij =
∑
l

1

2
gkl(

∂gil
∂xj

+
∂gjl
∂xi
− ∂gij
∂xl

)

and (”Christoffel symbols of the first Kink”)

Γ̂ij,k =
1

2
(
∂gik
∂xj

+
∂gjk
∂xi
− ∂gij
∂xk

).

The Levi-Civita connection is compatible with the pseudo metric, in the sense
that it treats tangent vectors of the shortest curves on a manifold as being
parallel.

It turns out that one can define a kind of ”Compatibility” relation more
generally than expressed by the (3), by introducing the notion of ”Conjugate”
(denoted by *) between two affine connections.

Let (M, g) be a pseudo-Riemannian manifold and let ∇, ∇∗ be affine con-
nections on M . A connection ∇∗ is said to be ”conjugate” to ∇ with respect
to g if

X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇∗XZ) for X, Y, Z ∈ Γ(TM). (4)

Clearly,
(∇∗)∗ = ∇.

Otherwise, ∇̂, which satisfies the (3), is special in the sense that it is self-
conjugate

(∇̂)∗ = ∇̂.

Because pseudo-metric tensor g provides a one-to-one mapping between vectors
in the tangent space and co-vectors in the cotangent space, the equation (1) can
also be seen as characterizing how co-vector fields are to be parallel-transported
in order to preserve their dual pairing < ·, · > with vector fields.
Writing out the equation (1) explicitly,

∂gij
∂xk

= Γki,j + Γ∗kj,i, (5)

where
∇∗∂i∂j =

∑
l

Γ∗lij∂l

so that
Γ∗kj,i = g(∇∗∂j∂k, ∂i) =

∑
l

gilΓ
∗l
kj.
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In the following, a manifold M with a pseudo-metric g and a pair of conjugate
connections ∇,∇∗ with respect to g is called a ” pseudo-Riemannian manifold
with dualistic structure ” and denoted by (M, g,∇,∇∗).
Obviously, ∇ and ∇∗ (or equivalently, Γ and Γ∗) satisfy the relation

∇̂ =
1

2
(∇+∇∗) (or equivalently, Γ̂ =

1

2
(Γ + Γ∗)).

Thus an affine connection ∇ on (M, g) is metric if and only if ∇∗ = ∇ ( that
it is self-conjugate).
For a torsion-free affine connection ∇ and a pseudo-Riemannian metric g on
a manifold M , the triplet (M,∇, g) is called a statistical manifold if ∇g is
symmetric. If the curvature tensor R of ∇ vanishes, (M,∇, g) is said to be
flat.
For a statistical manifold (M,∇, g), the conjugate connection ∇∗

with respect
to g is torsion-free and ∇∗

g symmetric. Then the triplet (M,∇∗
, g) is called

the dual statistical manifold of (M,∇, g) and (∇,∇∗
, g) the dualistic structure

on M . The curvature tensor of ∇ vanishes if and only if that of ∇∗
does and

in such a case, (∇,∇∗
, g) is called the dually flat structure [2].

It can be shown that for a pair of conjugate connections ∇,∇∗, their curvature
tensors R, R∗ satisfy

g(R(X, Y )Z,W ) + g(Z,R∗(X, Y )W ) = 0. (6)

If the curvature tensor R of ∇ vanishes, ∇ is said to be flat.
So, ∇ is flat if and only if ∇∗ is flat. In this case, (M, g,∇,∇∗) is said to be
dually flat.

2.2 Horizontal and Vertical Lifts

Throughout this paper M1 and M2 will be respectively m1 and m2 dimensional
manifolds, M1×M2 the product manifold with the natural product coordinate
system and

π1 : M1 ×M2 →M1 , π2 : M1 ×M2 →M2

the usual projection maps. We recall briefly how the calculus on the product
manifold M1 ×M2 derives from that of M1 and M2 separately. For details see
[13].

Let ϕ1 in C∞(M1). The horizontal lift of ϕ1 to M1 ×M2 is ϕh1 = ϕ1 ◦ π1.
One can define the horizontal lifts of tangent vectors as follows. Let p ∈ M1

and Xp ∈ TpM1. For any q ∈ M2 the horizontal lift of Xp to T(p,q)(M1 ×M2)
is the unique tangent vector Xh

(p,q) in T(p,q)(M1 × {q}) such that{
d(p,q)π1(X

h
(p,q)) = Xp,

d(p,q)π2(X
h
(p,q)) = 0.
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We can also define the horizontal lifts of vector fields as follows. Let X1 ∈
Γ(TM1). The horizontal lift of X1 to Γ(T (M1 ×M2)) is the vector field Xh

1 ∈
Γ(T (M1 ×M2)) whose value at each (p, q) is the horizontal lift of the tangent
vector (X1)p to T(p,q)(M1 ×M2). For (p, q) ∈M1 ×M2, we will denote the set
of the horizontal lifts to T(p,q)(M1 ×M2) of all the tangent vectors of M1 at p
by Lh(p,q)(M1). We will denote the set of the horizontal lifts of all vector fields

on M1 by Lh(M1).
The vertical lift ϕv2 of a function ϕ2 ∈ C∞(M2) to M1×M2 and the vertical

lift Xv
2 of a vector field X2 ∈ Γ(TM2) to Γ(T (M1×M2)) are defined in the same

way using the projection π2. Note that the spaces Lh(M1) of the horizontal
lifts and Lv(M2) of the vertical lifts are vector subspaces of Γ(T (M1×M2)) but
neither is invariant under multiplication by arbitrary functions ϕ ∈ C∞(M1 ×
M2).

We define the horizontal lift of a covariant tensor ω1 onM1 to be its pullback
ωh1 to M1 ×M2 by the means of the projection map π1, i.e. ωh1 := π∗1(ω1). In
particular, for a 1-form α1 on M1 and a vector field X on M1 ×M2, we have

(αh1)(X) = α1(dπ1(X)).

Explicitly, if u is a tangent vector to M1 ×M2 at (p, q), then

(αh1)(p,q)(u) = (α1)p(d(p,q)π1(u)).

Similarly, we define the vertical lift of a covariant tensor w2 on M2 to be its
pullback ωv2 to M1 ×M2 by the means of the projection map π2.

Observe that if { ∂
∂x1
, . . . , ∂

∂xm1
} is the local basis of the vector fields (resp.

{dx1, . . . , dxm1} is the local basis of 1-forms ) relative to a chart (U,Φ) of M1

and { ∂
∂y1
, . . . , ∂

∂ym2
} is the local basis of the vector fields (resp. {dy1, . . . , dym2}

the local basis of the 1-forms) relative to a chart (V,Ψ) ofM2, then {( ∂
∂x1

)h, . . . ,
( ∂
∂xm1

)h, ( ∂
∂y1

)v, . . . , ( ∂
∂ym2

)v} is the local basis of the vector fields (resp. {(dx1)h,
. . . , (dxm1)

h, (dy1)
v, . . . , (dym2)

v} is the local basis of the 1-forms) relative to
the chart (U × V,Φ×Ψ) of M1 ×M2.

The following lemma will be useful later for our computations.

Lemma 2.1 [10]

1. Let ϕi ∈ C∞(Mi), Xi, Yi ∈ Γ(TMi), αi ∈ Γ(T ∗Mi), i = 1, 2, let ϕ =
ϕh1 + ϕv2, X = Xh

1 +Xv
2 and α, β ∈ Γ(T ∗(M1 ×M2)). Then

i/ For all (i, I) ∈ {(1, h), (2, v)} we have

XI
i (ϕ) = Xi(ϕi)

I , [X, Y I
i ] = [Xi, Yi]

I and αIi (X) = αi(Xi)
I .
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ii/ If for all (i, I) ∈ {(1, h), (2, v)} we have α(XI
i ) = β(XI

i ), then α =
β.

2. Let ωi and ηi be r-forms on Mi, i = 1, 2, and set ω = ωh1 + ωv2 and
η = ηh1 + ηv2 . Then we have

dω = (dω1)
h + (dω2)

v and ω ∧ η = (ω1 ∧ η1)h + (ω2 ∧ η2)v.

Remark 2.2 Let X be a vector field on M1 × M2, such that dπ1(X) =
ϕ(X1 ◦ π1) and dπ2(X) = φ(X2 ◦ π2). Then X = ϕXh

1 + φXv
2 .

3 About Doubly Warped Products

3.1 The Doubly Warped Product

let ψ : M → N be a smooth map between smooth manifolds and g be a metric
on k-vector bundle (F, PF ) over N . The metric gψ : Γ(ψ−1F ) × Γ(ψ−1F ) →
C∞(M) on the pull-back (ψ−1F, Pψ−1F ) over M is defined by

gψ(U, V )(p) = gψ(p)(Up, Vp), ∀ U, V ∈ Γ(ψ−1F ), p ∈M.

Given a linear connection ∇N on k-vector bundle (F, PF ) over N , the pull-back

connection ∇
ψ

is the unique linear connection on the pull-back (ψ−1F, Pψ−1F )
over M such that, for each W ∈ Γ(F ), X ∈ Γ(TM)

∇
ψ

X(W ◦ ψ) = ∇N
dψ(X)W. (7)

Further, let U ∈ ψ−1F , p ∈M and X ∈ Γ(TM). Then

(∇
ψ

XU)(p) = (∇N
dpψ(Xp)Ũ)(ψ(p)), (8)

where Ũ ∈ Γ(F ) with Ũ ◦ ψ = U .
Now, let πi, i=1,2, be the usual projection of M1×M2 onto Mi, given a linear

connection ∇
i

on vector bundle Γ(TMi), the pull-back connection ∇
πi

is the
unique linear connection on the pull-back M1 ×M2 → π−1i (TMi), such that,
for each Yi ∈ Γ(TMi), X ∈ Γ(TM1 ×M2)

∇
πi

XYi ◦ πi = ∇
i

dπi(X)Yi. (9)

Further, let U ∈ Γ(π−1i (TMi)), (p, q) ∈ M1 ×M2 and X ∈ Γ(T (M1 ×M2)).
Then

(∇
πi

XU)(p, q) = (∇
i

d(p,q)πi(X(p,q))Ũ)πi(p, q), (10)
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Definition 3.1 Let (M1 , g1 ) and (M2 , g2 ) be pseudo-Riemannian manifolds
and let f1 : M1 → R∗ and f2 : M2 → R∗ be a positive smooth functions. The
Doubly warped product is the product manifold M1 × M2 furnished with the
metric tensor g

f1f2
defined by

g
f1f2

= (f v2 )2π∗1g1 + (fh1 )2π∗2g2. (11)

Explicitly, if X, Y ∈ Γ(TM1 ×M2), then

g
f1f2

(X, Y ) = (f v2 )2gπ11 (dπ1(X), dπ1(Y )) + (fh1 )2gπ22 (dπ2(X), dπ2(Y )).

By analogy with [6] we will denote this structure by M1 ×f1f2 M2 . The
function f

i
: Mi → R+ − {0} (i ∈ {1, 2}) is called the warping function.

If (M1 , g1 ) and (M2 , g2 ) are both Riemannian manifolds, then M1 ×f1f2 M2

is also a Riemannian manifold. We call M1 ×f1f2 M2 as a Lorentzian doubly
warped product if (M2 , g2 ) is Riemannian and either (M1 , g1 ) is Lorentzian
or else (M1 , g1 ) is a one-dimensional manifold with a negative definite metric
−dt2.

Proposition 3.2 With the notation above, let Xi, Yi ∈ Γ(TM
i
), i = 1, 2.

Then the equation (11) is equivalent to
g
f1f2

(Xh
1 , Y

h
1 ) = (f v2 )2g1(X1, Y1)

h;

g
f1f2

(Xh
1 , Y

v
2 ) = g

f1f2
(Xv

2 , Y
h
1 ) = 0;

g
f1f2

(Xv
2 , Y

v
2 ) = (fh1 )2g2(X2, Y2)

v.
(12)

Proof: By definition of the doubly warped metric,

g
f1f2

(Xh
1 , Y

h
1 )(p, q) = f 2

2 (q)g
1
(X1, Y1)(p) and g

f1f2
(Xh

1 , Y
v
2 )(p, q) = 0.

Writing fh1 for f1 ◦ π1 and f v2 for f2 ◦ π2. Then it is easily seen that Equation
(12) hold.

A direct computation using Proposition 3.2 and the definition of the musical
isomorphism gives the following proposition.

Proposition 3.3 ([9]) Let (M
i
, gi)be a pseudo-Riemannian manifold and

let fi : M
i
→ R∗+, be a positive smooth function, i = 1, 2. The co-metric g̃

f1,f2

of g
f1,f2

is characterized by the following identities
g̃
f1f2

(αh1 , β
h
1 ) = 1

(fv2 )
2 g̃1(α1, β1)

h;

g̃
f1f2

(αh1 , β
v
2) = g̃

f1f2
(αv2, β

h
1 ) = 0;

g̃
f1f2

(αv2, β
v
2) = 1

(fh1 )
2 g̃2(α2, β2)

v.
(13)

for any αi, βi ∈ Γ(T ∗Mi), i = 1, 2. Where g̃i is the co-metric of gi.
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Lemma 3.4 If fi ∈ C∞(M
i
), i = 1, 2. Then the gradient of the lifts fh1 of

f1 and f v2 of f2 to M1 ×f1f2 M2 w.r.t. g
f1f2

is

grad(fh1 ) =
1

(f v2 )2
(gradf1)

h , grad(f v2 ) =
1

(fh1 )2
(gradf2)

v (14)

Proof: Let Zi ∈ Γ(TM
i
), i = 1, 2. Then, for any (i, I), (3−i, J) ∈ {(1, h), (2, v)},

we have

g
f1f2

(grad(f Ii ), ZI
i ) = (Zi(fi))

I = gi(gradfi, Zi)
I = 1

(fJ3−i)
2 gf1f2 ((gradfi)

I , ZI
i ),

and
g
f1f2

(grad(f Ii ), ZJ
3−i) = 0.

Therefore, from Equation (12), we get

grad(f Ii ) =
1

(fJ3−i)
2
(gradfi)

I .

3.2 Dualistic Structure on Doubly Warped Products

Proposition 3.5 Let (g
f1f2

,∇,∇∗) be a dualistic structure on M1 × M2.

Then there exists an affine connections ∇
i

, ∇∗
i

on M
i
, such that (g

i
,∇

i

,∇∗
i

) is
a dualistic structure on M

i
, i = 1, 2.

Proof: Taking the affine connections on M
i
, i = 1, 2. (∇

i

XiYi) ◦ πi = dπi(∇XI
i
Y I
i ), ∀ Xi, Yi ∈ Γ(TM1)

(∇∗
i

XiYi) ◦ πi = dπi(∇∗XI
i
Y I
i ). ∀ (i, I) ∈ {(1, h), (2, v)}

Therefore, we have for all Xi, Yi, Zi ∈ Γ(TM
i
).

XI
i (g

f1f2
(Y I

i , Z
I
i )) = g

f1f2
(∇XI

i
Y I
i , Z

I
i ) + g

f1f2
(Y I

i ,∇∗XI
i
ZI
i ). (15)

Since, dπ
3−i
(ZI

i ) = 0, XI
i (fJ3−i) = 0 and gf1f2(X,Z

I
i ) = (fJ3−i)

2gπii (dπi(X), Zi◦πi),
for any X ∈ Γ(TM1 ×M2), then the equation (15) is equivalent to

(fJ3−i)
2(Xi(gi(Yi, Zi)))

I = (fJ3−i)
2{gi(∇

i

XiYi, Zi) + gi(Yi,∇∗
i

XiZi)}I .

Where (i, I), (3 − i, J) ∈ {(1, h), (2, v)}. Hence, the pair of affine connections

∇
i

and ∇∗
i

are conjugate with respect to gi.

Proposition 3.6 Let (gi,∇
i

,∇∗
i

) be a dualistic structure on Mi, i = 1, 2.
Then there exists a dualistic structure on M1 ×M2 with respect to gf1f2.
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Proof: Let ∇ and ∇∗ be the connections on M1 ×M2 given by

dπi(∇XY ) = ∇
πi

Xdπi(Y ) + Y (ln fJ3−i)dπi(X) +X(ln fJ3−i)dπi(Y )
−(fJ3−i)

−2f Ii g
π3−i
3−i (dπ3−i(X), dπ3−i(Y ))((gradfi) ◦ πi),

dπi(∇∗XY ) = ∇∗
πi

Xdπi(Y ) + Y (ln fJ3−i)dπi(X) +X(ln fJ3−i)dπi(Y )
−(fJ3−i)

−2f Ii g
π3−i
3−i (dπ3−i(X), dπ3−i(Y ))((gradfi) ◦ πi),

(16)

for any X, Y ∈ Γ(TM1 ×M2).
Or, for any Xi, Yi ∈ Γ(TMi) we have

∇XI
i
Y I
i = (∇

i

XiYi)
I − (

g
i
(Xi,Yi)

2f2i
)I(gradf 2

3−i)
J ;

∇∗
XI
i
Y I
i = (∇∗

i

XiYi)
I − (

g
i
(Xi,Yi)

2f2i
)I(gradf 2

3−i)
J ;

∇XI
i
Y J
3−i = ∇∗

XI
i
Y J
3−i = (Xi(ln fi))

IY J
3−i + (Y3−i(ln f3−i))

JXI
i ,

(17)

where (i, I), (3 − i, J) ∈ {(1, h), (2, v)}. Let us assume that (gi,∇
i

,∇∗
i

) is a
dualistic structure on M

i
, i = 1, 2. Let A be the tensor field of type (0, 3)

defined by

A(X, Y, Z) = X(gf1f2(Y, Z))− gf1f2(∇XY, Z)− gf1f2(Y,∇∗XZ),

for any X, Y, Z ∈ Γ(TM1×M2), if Xi, Yi, Zi ∈ Γ(TMi), i = 1, 2. Then we have

XI
i (g

f1f2
(Y I

i , Z
I
i )) = XI

i ((fJ3−i)
2gi(Xi, Yi)

I).

Since dπ3−i(X
I
i ) = 0, it follows that dπ3−i(X

I
i )(f3−i) = XI

i (fJ3−i) = 0, and
hence

XI
i (g

f1f2
(Y I

i , Z
I
i )) = (fJ3−i)

2(X(gi(Yi, Zi)))
I .

As (gi,∇
i

,∇∗
i

) is dualistic structure, we have thus

XI
i (g

f1f2
(Y I

i , Z
I
i )) = (fJ3−i)

2{gi(∇
i

XiYi, Zi)
I + gi(Yi,∇∗

i

XiZi)
I}.

From Proposition 3.2 and Equations (17), then it’s easily seen that the follow-
ing equation holds

A(XI
i , Y

I
i , Z

I
i ) = 0.

In the different lifts, we have

XJ
3−i(gf1f2 (Y I

i , Z
I
i )) = 2gi(Yi, Zi)

I(fJ3−iX3−i(f3−i))
J ,

g
f1f2

(∇XJ
3−i
Y I
i , Z

I
i ) = g

f1f2
((X3−i(ln f3−i))

JY I
i , Z

I
i ) = (f 2

3−iX3−i(f3−i))
Jgi(Yi, Zi)

I ,

and

g
f1f2

(∇∗XJ
3−i
ZI
i , Y

I
i ) = g

f1f2
(∇XJ

3−i
ZI
i , Y

I
i ) = (f 2

3−iX3−i(f3−i))
Jgi(Yi, Zi)

I .
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We add these equations and obtain

A(XJ
3−i, Y

I
i , Z

I
i ) = 0

Hence the same applies for A(XI
i , Y

I
i , Z

J
3−i) = A(XJ

3−i, Y
I
i , Z

I
i ) = 0.

This proves that ∇∗ is conjugate to ∇ with respect to g
f1f2

.

We recall that the connection ∇ on M1 ×M2 induced by ∇
1

and ∇
2

on M1

and M2 respectively, is given by the equations (17).

Proposition 3.7 (M1 ,∇
1

, g1) and (M2 ,∇
2

, g2) are statistical manifolds if
and only if (M1 ×M2 , gf1f2 ,∇) is a statistical manifold.

Proof: Let us assume that (M
i
,∇

i

, g
i
), (i = 1, 2) is a statistical manifold.

Firstly, we show that ∇ is torsion-free. Indeed; by Equation (16), we have for
any X, Y ∈ Γ(TM1 ×M2)

dπi(T (X, Y )) = ∇
πi

Xdπi(Y )−∇
πi

Y dπi(X)− dπi([X, Y ])

Since for i = 1, 2, ∇
i

is torsion-free, then

∇
πi

Xdπi(Y )−∇
πi

Y dπi(X) = dπi([X, Y ])

Therefore, from Remark 2.2, the connection ∇ is torsion-free.
Secondly, we show that ∇gf1,f2 is symmetric. In fact; for i = 1, 2,

(∇g
f1f2

)(XI
i , Y

I
i , Z

J
i ) = XI

i (g
f1f2

(Y I
i , Z

I
i ))−g

f1f2
(∇XI

i
Y I
i , Z

I
i )−g

f1f2
(Y I

i ,∇XI
i
ZI
i )

by Equations (12), (17) and since (∇
i

gi), i = 1, 2, is symmetric, we have

(∇g
f1f2

)(XI
i , Y

I
I , Z

I
i ) = (fJ3−i)

2((∇
i

gi)(Xi, Yi, Zi))
I

= (fJ3−i)
2((∇

i

gi)(Yi, Xi, Zi))
h

= (∇g
f1f2

)(Y I
i , X

I
I , Z

I
i ).

In the different lifts, we have

(∇g
f1f2

)(XI
i , Y

I
i , Z

J
3−i) = (∇g

f1f2
)(XJ

3−i, Y
I
i , Z

I
i ) = (∇g

f1f2
)(XI

i , Y
I
3−i, Z

I
i ) = 0,

Therefore, (∇g
f1f2

) is symmetric. Thus (M1×M2 , gf1f2 ,∇) is a statistical man-
ifold.

Conversely, if (M1 ×M2 , gf1f2 ,∇) is statistical manifold, then (∇g
f1f2

) is
symmetric and ∇ is torsion-free, particularly, when Xi, Yi, Zi ∈ Γ(TMi), we
have 

(∇g
f1f2

)(XI
i , Y

I
I , Z

I
i ) = (∇g

f1f2
)(Y I

i , X
I
I , Z

I
i ),

∀ i = 1, 2,
T (XI

i , Y
I
i ) = 0.
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Then, by Equations (12) and (17), we obtained, for i = 1, 2, ∇
i

gi, is symmetric

and ∇
i

, is torsion-free. Therefore, (Mi,∇
i

, gi), (i = 1, 2) is statistical manifold.
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