Gen. Math. Notes, Vol. 30, No. 2, October 2015, pp.10-15
ISSN 2219-7184; Copyright © ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

Univalence of Generalized an Integral Operators

Hesam Mahzoon ${ }^{1}$, Ali Ebadian ${ }^{2}$ and Rahim Kargar ${ }^{3}$
${ }^{1}$ Department of Mathematics, Islamic Azad University
Firoozkouh Branch, Firoozkouh, Iran
E-mail: mahzoon.hesam@gmail.com
${ }^{2}$ Department of Mathematics, Payame Noor University, I.R. of Iran E-mail: ebadian.ali@gmail.com
${ }^{3}$ Department of Mathematics, Payame Noor University, I.R. of Iran E-mail: rkargar1983@gmail.com

(Received: 23-7-15 / Accepted: 28-9-15)

Abstract

In this paper we define generalized differential operators from some wellknown operators on the class $\mathcal{A}(p)$ of analytic functions in the unit disk $\Delta=$ $\{z \in C:|z|<1\}$. New class containing these operators is investigated. Also univalence of integral operator is considered.

Keywords: Univalent, Starlike, Convex, Hadamard Product, Multiplier Transformations.

1 Introduction

Let $\mathcal{A}(p)$ be the class of analytic functions f of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \quad(p \in N:=\{1,2,3, \ldots\}) \tag{1}
\end{equation*}
$$

defined in the unit disc $\Delta=\{z \in C:|z|<1\}$ and the satisfying the normalization condition $f(0)=f^{\prime}(0)-1=0$. Put $\mathcal{A}(1)=\mathcal{A}$. A function $f \in \mathcal{A}$ is said to be starlike of order γ, if it satisfies the inequality

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\gamma, \quad z \in \Delta
$$

for some $0 \leq \gamma<1$ and it is defined by $\mathcal{S}^{*}(\gamma)$. Also, the class of convex functions of order γ, denote by $\mathcal{K}(\gamma)$ consists of function $f \in \mathcal{A}$ if and only if $z f^{\prime}(z) \in \mathcal{S}^{*}(\gamma)$. For any two functions f and g such that $f(z)=$ $z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k}$ and $g(z)=z^{p}+\sum_{k=1}^{\infty} b_{p+k} z^{p+k}$, the Hadamard product or Convolution of f and g denoted by

$$
(f * g)(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} b_{p+k} z^{p+k}
$$

Following [5], we recall the linear operator $\mathcal{I}(f(z)):=\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f(z)$ as follows:

$$
\begin{equation*}
\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f(z)=z^{p}+\sum_{k=1}^{\infty} \frac{(c)_{k}(p+1-\mu)_{k}(p+1-\lambda+\nu)_{k}(\alpha+p)_{k}}{(a)_{k}(p+1)_{k}(p+1-\mu+\nu)_{k} k!} a_{p+k} z^{p+k} \tag{2}
\end{equation*}
$$

where $a, \mu, \nu, \in R, c \in R \backslash Z_{0}^{-}:=\{\ldots,-2,-1,0\}, \alpha>-p, 0 \leq \lambda<1$, $\mu-\nu-p<1$ and $z \in \Delta$. It should be remarked that the linear operator $\mathcal{I}_{\mu, \nu}^{\lambda, p, \alpha}(a, c) f(z)$ is a generalization of many other linear operators considered earlier (see [5]).

Definition 1.1 Assume that f_{j} and g_{j} be in $\mathcal{A}(p)$ where $1 \leq j \leq r$. For $-1 \leq \delta \leq 1, \delta \in R, p_{j}>0, p_{j} \in C$ and $r \in N$, the generalized integral operator $\mathcal{J}_{g}(f)(z):=\mathcal{J}_{g}\left(f_{1}, \ldots, f_{r}\right)(z): \mathcal{A}(p) \rightarrow \mathcal{A}(p)$, is defined as

$$
\begin{equation*}
\mathcal{J}_{g}(f)(z)=\int_{0}^{z}\left[w^{\delta}\left(\mathcal{I}\left(f_{1}(w)\right) * g_{1}(w)\right)^{(n)}\right]^{p_{1}} \ldots\left[w^{\delta}\left(\mathcal{I}\left(f_{r}(w)\right) * g_{r}(w)\right)^{(n)}\right]^{p_{r}} d w \tag{3}
\end{equation*}
$$

where $n \in N_{0}:=N \cup\{0\}, z \in \Delta$.
Remark 1.2 i) For $\alpha=c=n=1, \delta=\lambda=\mu=0, a=p+1$ and $g_{j}(z)=\frac{z}{1-z}$ for all $1 \leq j \leq r$, the operator $F_{p_{1}, \ldots, p_{r}}$ was introduced and studied by Breaz et al. [2].
ii) If we take $\delta=\alpha=c=n=1, \lambda=\mu=0, a=p+1$ and $g_{j}(z)=\frac{z}{1-z}$ for all $1 \leq j \leq r$ in equation (3), it reduced to an integral operator $F_{p_{1} \ldots p_{r}}$ (see [7]). iii) Putting $\delta=-1, \alpha=c=n=1, \lambda=\mu=0, a=p+1$ and $g_{j}(z)=g(z)$ for all $1 \leq j \leq r$, in equation (3), we obtain an integral operator $I_{g}\left(f_{1}, \ldots, f_{r}\right)(z)$ defined by Dileep and Latha (see [4]).

Definition 1.3 A function $f \in \mathcal{A}(p)$ be in the class $\mathcal{S K}(\delta, \theta, \gamma)$, if it satisfies the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{e^{i \theta}\left(\delta+\frac{z[\mathcal{I}(f(z)) * g(z)]^{(n+1)}}{[\mathcal{I}(f(z)) * g(z)]^{(n)}}\right)\right\}>\gamma \cos \theta \quad z \in \Delta \tag{4}
\end{equation*}
$$

where $-\frac{\pi}{2}<\theta<\frac{\pi}{2}, 0 \leq \gamma<1, \delta \in N_{0},-1 \leq \delta \leq 1, g \in \mathcal{A}(p)$ and $\mathcal{I}(f(z))$ given by (2).

Remark 1.4 i) For $\theta=\delta=\lambda=\mu=n=0, \alpha=c=1, a=2$ and $g(z)=\frac{z}{1-z}$, the class $\mathcal{S K}(\delta, \theta, \gamma)$ reduced to the class of starlike functions of order γ.
ii) Taking $\theta=\lambda=\mu=0, \delta=\alpha=c=n=1, a=2$ and $g(z)=\frac{z}{1-z}$, the class $\mathcal{S K}(\delta, \theta, \gamma)$ reduced to the class of convex functions of order γ.
iii) If we take $\theta=\delta=\lambda=\mu=n=0, p=\alpha=c=1, a=2$ and $g(z)=z+\sum_{k=2}^{\infty}[1+(k-1) \zeta]^{n} z^{k}, \zeta \geq 0$, the class $\mathcal{S} \mathcal{K}(\delta, \theta, \gamma)$ reduced to the class $\mathcal{S}^{n}(\zeta, \gamma)$ introduced by S. Bulut [3].
iv) Putting $\theta=\delta=\lambda=\mu=n=0, \alpha=c=1, a=2$ and $f, g \in \mathcal{A}$, we get the class $\mathcal{S}_{g}(\gamma)$ introduced by Dileep and Latha [4].

To prove our main results we shall need the following lemmas.
Lemma 1.5 ([1]) If $f \in \mathcal{A}$, satisfies the inequality

$$
\left(1-|z|^{2}\right)\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1
$$

for all $z \in \Delta$, then f is univalent in Δ.

Lemma 1.6 ([6]) If f is regular in $|z|<1$ and

$$
\left|\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq M
$$

where M is the root of equation

$$
8 \sqrt{x(x-2)^{3}}-3(4-x)^{2}=12, \quad M \approx 3,05 \ldots
$$

then f is univalent in Δ.
In this paper, using Lemma 1.5 and Lemma 1.6, we show that $\mathcal{J}_{g}(f)(z)$ is univalent. We, also show that $\mathcal{J}_{g}(f)(z) \in \mathcal{S} \mathcal{K}(\delta, \theta, \gamma)$.

2 Main Results

Theorem 2.1 Let $f_{j}, g_{j} \in \mathcal{A}(p), p_{j} \in C, 1 \leq j \leq r,|\delta| \leq 1$ and $\sum_{j=1}^{r}\left|p_{j}\right| \leq$ 1. If

$$
\begin{equation*}
\left|\delta+\frac{z\left[\mathcal{I}\left(f_{j}(z)\right) * g_{j}(z)\right]^{(n+1)}}{\left[\mathcal{I}\left(f_{j}(z)\right) * g_{j}(z)\right]^{(n)}}\right| \leq 1, \quad z \in \Delta \tag{5}
\end{equation*}
$$

then $\mathcal{J}_{g}(f)(z)$ given by (3) is univalent.

Proof. From (3) we obtain

$$
\begin{equation*}
\left(\mathcal{J}_{g}(f)(z)\right)^{\prime}=\left[z^{\delta}\left(\mathcal{I}\left(f_{1}(z)\right) * g_{1}(z)\right)^{(n)}\right]^{p_{1}} \ldots\left[z^{\delta}\left(\mathcal{I}\left(f_{r}(z)\right) * g_{r}(z)\right)^{(n)}\right]^{p_{r}} \tag{6}
\end{equation*}
$$

which implies that

$$
\begin{gathered}
\ln \left(\mathcal{J}_{g}(f)(z)\right)^{\prime}=p_{1}\left[\delta \ln z+\ln \left(\mathcal{I}\left(f_{1}(z)\right) * g_{1}(z)\right)^{(n)}\right]+\cdots \\
+p_{r}\left[\delta \ln z+\ln \left(\mathcal{I}\left(f_{r}(z)\right) * g_{r}(z)\right)^{(n)}\right] .
\end{gathered}
$$

Taking the derivative for the above equality and by multiplying with z we have

$$
\begin{gather*}
\frac{z\left(\mathcal{J}_{g}(f)(z)\right)^{\prime \prime}}{\left(\mathcal{J}_{g}(f)(z)\right)^{\prime}}=p_{1}\left[\delta+\frac{z\left(\mathcal{I}\left(f_{1}(z)\right) * g_{1}(z)\right)^{(n+1)}}{\left(\mathcal{I}\left(f_{1}(z)\right) * g_{1}(z)\right)^{(n)}}\right]+\cdots \\
+p_{r}\left[\delta+\frac{z\left(\mathcal{I}\left(f_{r}(z)\right) * g_{r}(z)\right)^{(n+1)}}{\left(\mathcal{I}\left(f_{r}(z)\right) * g_{r}(z)\right)^{(n)}}\right] \tag{7}
\end{gather*}
$$

On multiplying the modulus of equation (7) by $\left(1-|z|^{2}\right)$, we obtain

$$
\begin{aligned}
\left(1-|z|^{2}\right)\left|\frac{z\left(\mathcal{J}_{g}(f)(z)\right)^{\prime \prime}}{\left(\mathcal{J}_{g}(f)(z)\right)^{\prime}}\right| & \leq\left(1-|z|^{2}\right)\left(\left|p_{1}\right|+\cdots+\left|p_{r}\right|\right) \\
& \leq 1
\end{aligned}
$$

From Lemma 1.5, we get that $\mathcal{J}_{g}(f)(z)$ is univalent.
Taking $\alpha=c=n=1, \delta=\lambda=\mu=0, a=p+1$ and $g_{j}(z)=\frac{z}{1-z}$ for all $1 \leq j \leq r$, we have:

Corollary 2.2 Assume that $p_{j} \in C$ and $\sum_{j=1}^{r}\left|p_{j}\right| \leq 1$ where $1 \leq j \leq r$. If $\operatorname{Re}\left\{\frac{z f_{j}^{\prime \prime}(z)}{f_{j}^{\prime}(z)}\right\} \leq 1$, then $F_{p_{1}, \ldots, p_{r}}(z)$ is defined in [2] is univalent.

Corollary 2.3 Putting $\delta=\alpha=c=n=1, \lambda=\mu=0, a=p+1$ and $g_{j}(z)=\frac{z}{1-z}$ for all $1 \leq j \leq r$, If $\operatorname{Re}\left\{\frac{z f_{j}^{\prime \prime}(z)}{f_{j}^{\prime}(z)}\right\} \leq 0$, then $F_{s_{1} \ldots s_{r}}(z)$ is defined in [7] is univalent, where $\left|p_{1}\right|+\cdots+\left|p_{r}\right| \leq 1$ and $z \in \Delta$.

Corollary 2.4 If

$$
\operatorname{Re}\left\{\frac{z\left(f_{j} * g\right)^{\prime \prime}(z)}{\left(f_{j} * g\right)^{\prime}(z)}\right\} \leq 2 \quad z \in \Delta
$$

then $I_{g}\left(f_{1}, \ldots f_{r}\right)(z)$ is defined in [4] is univalent, where $\sum_{j=1}^{r}\left|p_{j}\right| \leq 1$ and $1 \leq j \leq r$.

Theorem 2.5 Assume that $\sum_{j=1}^{r}\left|p_{j}\right| \leq 1$ and $f_{j}, g_{j} \in \mathcal{A}(p)$. If

$$
\begin{equation*}
\left|\frac{\left[\mathcal{I}\left(f_{j}(z)\right) * g_{j}(z)\right]^{(n+1)}}{\left[\mathcal{I}\left(f_{j}(z)\right) * g_{j}(z)\right]^{(n)}}\right| \leq M-1 / \rho, \quad|z|=\rho<1, M \approx 3,05 \ldots \tag{8}
\end{equation*}
$$

then $\mathcal{J}_{g}(f)(z)$ given by (3) is univalent where $p_{j} \in C, 1 \leq j \leq r$ and $|\delta| \leq 1$.
Proof. From equation (6) we have

$$
\begin{aligned}
\frac{\left(\mathcal{J}_{g}(f)(z)\right)^{\prime \prime}}{\left(\mathcal{J}_{g}(f)(z)\right)^{\prime}} & =p_{1}\left[\frac{\delta}{z}+\frac{\left(\mathcal{I}\left(f_{1}(z)\right) * g_{1}(z)\right)^{(n+1)}}{\left(\mathcal{I}\left(f_{1}(z)\right) * g_{1}(z)\right)^{(n)}}\right]+\cdots \\
+p_{r} & {\left[\frac{\delta}{z}+\frac{\left(\mathcal{I}\left(f_{r}(z)\right) * g_{r}(z)\right)^{(n+1)}}{\left(\mathcal{I}\left(f_{r}(z)\right) * g_{r}(z)\right)^{(n)}}\right] }
\end{aligned}
$$

which applying the inequality (8) implies that

$$
\left|\frac{\left(\mathcal{J}_{g}(f)(z)\right)^{\prime \prime}}{\left(\mathcal{J}_{g}(f)(z)\right)^{\prime}}\right| \leq M
$$

Using Lemma 1.6, the last inequality implies that the integral operator $\mathcal{J}_{g}(f)(z)$ is univalent.

Corollary 2.6 Let $\sum_{j=1}^{r}\left|p_{j}\right| \leq 1$ and $f_{j} \in \mathcal{A}(p)$ where $1 \leq j \leq r$. If

$$
\begin{equation*}
\left|\frac{f_{j}^{\prime \prime}(z)}{f_{j}^{\prime}(z)}\right| \leq M-1 / \rho \quad z \in \Delta, M \approx 3,05 \ldots \tag{9}
\end{equation*}
$$

then $F_{p_{1}, \ldots, p_{r}}(z)$ is defined in [2] is univalent.
Remark 2.7 The least upper bound which obtained by Breaz et al. (see [2]) for $\left|\frac{f_{j}^{\prime \prime}(z)}{f_{j}^{\prime}(z)}\right|$ is M until the operator $F_{p_{1}, \ldots, p_{r}}(z)$ be univalent. But in Corollary 2.6 we obtained the upper bound $M-1 / \rho$, therefore the $M-1 / \rho$ is best. In particular if $\rho \rightarrow 1^{-}$the $M-1 / \rho \rightarrow 2,05 \ldots$.

Theorem 2.8 Let $f_{j} \in \mathcal{S K}(\delta, \theta, \gamma), 1 \leq j \leq r, p_{1}, \ldots p_{r}$ be real number with the properties, $p_{j}>0$ and $0 \leq \sum_{j=1}^{r} p_{j} \gamma_{j}+\delta<1$, then the integral operator $\mathcal{J}_{g}(f)(z) \in \mathcal{S K}(\delta, \theta, \gamma)$, where $\gamma=\sum_{j=1}^{r} p_{j} \gamma_{j}+\delta$ and $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$.

Proof. Using equation (7), we obtain

$$
\begin{equation*}
\frac{z\left(\mathcal{J}_{g}(f)(z)\right)^{\prime \prime}}{\left(\mathcal{J}_{g}(f)(z)\right)^{\prime}}=\sum_{j=1}^{r} p_{j}\left[\delta+\frac{z\left(\mathcal{I}\left(f_{j}(z)\right) * g_{j}(z)\right)^{(n+1)}}{\left(\mathcal{I}\left(f_{j}(z)\right) * g_{j}(z)\right)^{(n)}}\right] \tag{10}
\end{equation*}
$$

The above relation is equivalent to

$$
\begin{equation*}
\delta+\frac{z\left(\mathcal{J}_{g}(f)(z)\right)^{\prime \prime}}{\left(\mathcal{J}_{g}(f)(z)\right)^{\prime}}=\sum_{j=1}^{r} p_{j}\left[\delta+\frac{z\left(\mathcal{I}\left(f_{j}(z)\right) * g_{j}(z)\right)^{(n+1)}}{\left(\mathcal{I}\left(f_{j}(z)\right) * g_{j}(z)\right)^{(n)}}\right]+\delta \tag{11}
\end{equation*}
$$

By multiplying the above relation by $e^{i \theta}$, we get

$$
\begin{gathered}
\operatorname{Re}\left\{e^{i \theta}\left(\delta+\frac{z\left(\mathcal{J}_{g}(f)(z)\right)^{\prime \prime}}{\left(\mathcal{J}_{g}(f)(z)\right)^{\prime}}\right)\right\} \\
=\sum_{j=1}^{r} p_{j} \operatorname{Re}\left\{e^{i \theta}\left(\delta+\frac{z\left(\mathcal{I}\left(f_{j}(z)\right) * g_{j}(z)\right)^{(n+1)}}{\left(\mathcal{I}\left(f_{j}(z)\right) * g_{j}(z)\right)^{(n)}}\right)\right\}+\delta \operatorname{Re}\left\{e^{i \theta}\right\} \\
>\sum_{j=1}^{r} p_{j} \gamma_{j} \cos \theta+\delta \cos \theta=\left(\sum_{j=1}^{r} p_{j} \gamma_{j}+\delta\right) \cos \theta .
\end{gathered}
$$

Sines by hypothesis $0 \leq \sum_{j=1}^{r} p_{j} \gamma_{j}+\delta<1$, we obtain $\left.\mathcal{J}_{g}(f)(z)\right) \in \mathcal{S K}(\delta, \theta, \gamma)$, where $\gamma=\sum_{j=1}^{r} p_{j} \gamma_{j}+\delta$ and $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$.

References

[1] J. Becker, Löewnersche differential gleichung und quasi-konform fortsetzbare-schlichte Funktionen, J. Reine Angew. Math., 255(1972), 2343.
[2] D. Breaz, S. Owa and N. Breaz, A new integral univalent operator, Acta Univ. Apulensis, 16(2008), 11-16.
[3] S. Bulut, Some properties for an integral operator defined by Al-Oboudi differential operator, J. Inequal. Pure and Appl. Math., 9(4) (Art. 115) (2008), 5.
[4] L. Dileep and S. Latha, A note on generalized integral operator, Acta Universitatis Apulensis, 25(2011), 113-117.
[5] R. Kargar, Some properties of an integral operators defined by a new linear operator, Acta Univ. Apulensis, 38(2014), 229-237.
[6] S.N. Kudryashov, On some criteria for the univalence of analytic functions, Mathematical Notes, 13(3) (March) (1973), 219-223.
[7] S. Ramadan and M. Darus, Univalence of an integral operator defined by generalized operators, International Journal of Computational and Mathematical Sciences, 48(2010), 392-394.

