

Gen. Math. Notes, Vol. 30, No. 2, October 2015, pp.10-15 ISSN 2219-7184; Copyright ©ICSRS Publication, 2015 www.i-csrs.org Available free online at http://www.geman.in

Univalence of Generalized an Integral Operators

Hesam Mahzoon¹, Ali Ebadian² and Rahim Kargar³

¹Department of Mathematics, Islamic Azad University Firoozkouh Branch, Firoozkouh, Iran E-mail: mahzoon.hesam@gmail.com
²Department of Mathematics, Payame Noor University, I.R. of Iran E-mail: ebadian.ali@gmail.com
³Department of Mathematics, Payame Noor University, I.R. of Iran E-mail: rkargar1983@gmail.com

(Received: 23-7-15 / Accepted: 28-9-15)

Abstract

In this paper we define generalized differential operators from some wellknown operators on the class $\mathcal{A}(p)$ of analytic functions in the unit disk $\Delta = \{z \in C : |z| < 1\}$. New class containing these operators is investigated. Also univalence of integral operator is considered.

Keywords: Univalent, Starlike, Convex, Hadamard Product, Multiplier Transformations.

1 Introduction

Let $\mathcal{A}(p)$ be the class of analytic functions f of the form

$$f(z) = z^{p} + \sum_{k=1}^{\infty} a_{p+k} z^{p+k} \quad (p \in N := \{1, 2, 3, ...\}),$$
(1)

defined in the unit disc $\Delta = \{z \in C : |z| < 1\}$ and the satisfying the normalization condition f(0) = f'(0) - 1 = 0. Put $\mathcal{A}(1) = \mathcal{A}$. A function $f \in \mathcal{A}$ is said to be starlike of order γ , if it satisfies the inequality

$$Re\left\{\frac{zf'(z)}{f(z)}\right\} > \gamma, \quad z \in \Delta,$$

for some $0 \leq \gamma < 1$ and it is defined by $\mathcal{S}^*(\gamma)$. Also, the class of convex functions of order γ , denote by $\mathcal{K}(\gamma)$ consists of function $f \in \mathcal{A}$ if and only if $zf'(z) \in \mathcal{S}^*(\gamma)$. For any two functions f and g such that $f(z) = z^p + \sum_{k=1}^{\infty} a_{p+k} z^{p+k}$ and $g(z) = z^p + \sum_{k=1}^{\infty} b_{p+k} z^{p+k}$, the Hadamard product or Convolution of f and g denoted by

$$(f * g)(z) = z^p + \sum_{k=1}^{\infty} a_{p+k} b_{p+k} z^{p+k}.$$

Following [5], we recall the linear operator $\mathcal{I}(f(z)) := \mathcal{I}_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)$ as follows:

$$\mathcal{I}_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z) = z^p + \sum_{k=1}^{\infty} \frac{(c)_k(p+1-\mu)_k(p+1-\lambda+\nu)_k(\alpha+p)_k}{(a)_k(p+1)_k(p+1-\mu+\nu)_kk!} a_{p+k} z^{p+k},$$
(2)

where $a, \mu, \nu, \in R$, $c \in R \setminus Z_0^- := \{..., -2, -1, 0\}$, $\alpha > -p$, $0 \leq \lambda < 1$, $\mu - \nu - p < 1$ and $z \in \Delta$. It should be remarked that the linear operator $\mathcal{I}_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)$ is a generalization of many other linear operators considered earlier (see [5]).

Definition 1.1 Assume that f_j and g_j be in $\mathcal{A}(p)$ where $1 \leq j \leq r$. For $-1 \leq \delta \leq 1, \ \delta \in R, \ p_j > 0, \ p_j \in C$ and $r \in N$, the generalized integral operator $\mathcal{J}_g(f)(z) := \mathcal{J}_g(f_1, ..., f_r)(z) : \mathcal{A}(p) \to \mathcal{A}(p)$, is defined as

$$\mathcal{J}_{g}(f)(z) = \int_{0}^{z} \left[w^{\delta} (\mathcal{I}(f_{1}(w)) * g_{1}(w))^{(n)} \right]^{p_{1}} \dots \left[w^{\delta} (\mathcal{I}(f_{r}(w)) * g_{r}(w))^{(n)} \right]^{p_{r}} dw$$
(3)

where $n \in N_0 := N \cup \{0\}, z \in \Delta$.

Remark 1.2 i) For $\alpha = c = n = 1$, $\delta = \lambda = \mu = 0$, a = p + 1 and $g_j(z) = \frac{z}{1-z}$ for all $1 \leq j \leq r$, the operator F_{p_1,\dots,p_r} was introduced and studied by Breaz et al. [2].

ii) If we take $\delta = \alpha = c = n = 1$, $\lambda = \mu = 0$, a = p + 1 and $g_j(z) = \frac{z}{1-z}$ for all $1 \leq j \leq r$ in equation (3), it reduced to an integral operator $F_{p_1...p_r}$ (see [7]). iii) Putting $\delta = -1$, $\alpha = c = n = 1$, $\lambda = \mu = 0$, a = p + 1 and $g_j(z) = g(z)$ for all $1 \leq j \leq r$, in equation (3), we obtain an integral operator $I_g(f_1, ..., f_r)(z)$ defined by Dileep and Latha (see [4]).

Definition 1.3 A function $f \in \mathcal{A}(p)$ be in the class $\mathcal{SK}(\delta, \theta, \gamma)$, if it satisfies the following inequality:

$$Re\left\{e^{i\theta}\left(\delta + \frac{z[\mathcal{I}(f(z)) * g(z)]^{(n+1)}}{[\mathcal{I}(f(z)) * g(z)]^{(n)}}\right)\right\} > \gamma\cos\theta \quad z \in \Delta,\tag{4}$$

where $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$, $0 \le \gamma < 1$, $\delta \in N_0$, $-1 \le \delta \le 1$, $g \in \mathcal{A}(p)$ and $\mathcal{I}(f(z))$ given by (2).

Remark 1.4 *i*) For $\theta = \delta = \lambda = \mu = n = 0$, $\alpha = c = 1$, a = 2 and $g(z) = \frac{z}{1-z}$, the class $\mathcal{SK}(\delta, \theta, \gamma)$ reduced to the class of starlike functions of order γ . *ii*) Taking $\theta = \lambda = \mu = 0$, $\delta = \alpha = c = n = 1$, a = 2 and $g(z) = \frac{z}{1-z}$, the class $\mathcal{SK}(\delta, \theta, \gamma)$ reduced to the class of convex functions of order γ .

iii) If we take $\theta = \delta = \lambda = \mu = n = 0$, $p = \alpha = c = 1$, a = 2 and $g(z) = z + \sum_{k=2}^{\infty} [1 + (k-1)\zeta]^n z^k$, $\zeta \ge 0$, the class $\mathcal{SK}(\delta, \theta, \gamma)$ reduced to the class $\mathcal{S}^n(\zeta, \gamma)$ introduced by S. Bulut [3].

iv) Putting $\theta = \delta = \lambda = \mu = n = 0$, $\alpha = c = 1$, a = 2 and $f, g \in \mathcal{A}$, we get the class $S_g(\gamma)$ introduced by Dileep and Latha [4].

To prove our main results we shall need the following lemmas.

Lemma 1.5 ([1]) If $f \in A$, satisfies the inequality

$$(1 - |z|^2) \left| \frac{zf''(z)}{f'(z)} \right| \le 1,$$

for all $z \in \Delta$, then f is univalent in Δ .

Lemma 1.6 ([6]) If f is regular in |z| < 1 and

$$\left|\frac{f''(z)}{f'(z)}\right| \le M,$$

where M is the root of equation

$$8\sqrt{x(x-2)^3} - 3(4-x)^2 = 12, \quad M \approx 3,05...,$$

then f is univalent in Δ .

In this paper, using Lemma 1.5 and Lemma 1.6, we show that $\mathcal{J}_g(f)(z)$ is univalent. We, also show that $\mathcal{J}_g(f)(z) \in \mathcal{SK}(\delta, \theta, \gamma)$.

2 Main Results

Theorem 2.1 Let $f_j, g_j \in \mathcal{A}(p), p_j \in C, 1 \le j \le r, |\delta| \le 1$ and $\sum_{j=1}^r |p_j| \le 1$. If

$$\left| \delta + \frac{z [\mathcal{I}(f_j(z)) * g_j(z)]^{(n+1)}}{[\mathcal{I}(f_j(z)) * g_j(z)]^{(n)}} \right| \le 1, \quad z \in \Delta,$$
(5)

then $\mathcal{J}_g(f)(z)$ given by (3) is univalent.

Proof. From (3) we obtain

$$(\mathcal{J}_g(f)(z))' = \left[z^{\delta} (\mathcal{I}(f_1(z)) * g_1(z))^{(n)} \right]^{p_1} \dots \left[z^{\delta} (\mathcal{I}(f_r(z)) * g_r(z))^{(n)} \right]^{p_r}, \quad (6)$$

which implies that

$$\ln(\mathcal{J}_{g}(f)(z))' = p_{1} \left[\delta \ln z + \ln(\mathcal{I}(f_{1}(z)) * g_{1}(z))^{(n)} \right] + \cdots$$
$$+ p_{r} \left[\delta \ln z + \ln(\mathcal{I}(f_{r}(z)) * g_{r}(z))^{(n)} \right].$$

Taking the derivative for the above equality and by multiplying with z we have

$$\frac{z(\mathcal{J}_g(f)(z))''}{(\mathcal{J}_g(f)(z))'} = p_1 \left[\delta + \frac{z(\mathcal{I}(f_1(z)) * g_1(z))^{(n+1)}}{(\mathcal{I}(f_1(z)) * g_1(z))^{(n)}} \right] + \cdots + p_r \left[\delta + \frac{z(\mathcal{I}(f_r(z)) * g_r(z))^{(n+1)}}{(\mathcal{I}(f_r(z)) * g_r(z))^{(n)}} \right].$$
(7)

On multiplying the modulus of equation (7) by $(1 - |z|^2)$, we obtain

$$\left(1 - |z|^2 \right) \left| \frac{z(\mathcal{J}_g(f)(z))''}{(\mathcal{J}_g(f)(z))'} \right| \leq \left(1 - |z|^2 \right) \left(|p_1| + \dots + |p_r| \right)$$

$$\leq 1.$$

From Lemma 1.5, we get that $\mathcal{J}_g(f)(z)$ is univalent. Taking $\alpha = c = n = 1$, $\delta = \lambda = \mu = 0$, a = p + 1 and $g_j(z) = \frac{z}{1-z}$ for all $1 \leq j \leq r$, we have:

Corollary 2.2 Assume that $p_j \in C$ and $\sum_{j=1}^r |p_j| \leq 1$ where $1 \leq j \leq r$. If $Re\left\{\frac{zf_{j}''(z)}{f_{j}'(z)}\right\} \leq 1$, then $F_{p_1,\dots,p_r}(z)$ is defined in [2] is univalent.

Corollary 2.3 Putting $\delta = \alpha = c = n = 1$, $\lambda = \mu = 0$, a = p + 1 and $g_j(z) = \frac{z}{1-z}$ for all $1 \leq j \leq r$, If $Re\left\{\frac{zf''_j(z)}{f'_j(z)}\right\} \leq 0$, then $F_{s_1...s_r}(z)$ is defined in [7] is univalent, where $|p_1| + \cdots + |p_r| \leq 1$ and $z \in \Delta$.

Corollary 2.4 If

$$Re\left\{\frac{z(f_j*g)''(z)}{(f_j*g)'(z)}\right\} \le 2 \quad z \in \Delta,$$

then $I_g(f_1, ... f_r)(z)$ is defined in [4] is univalent, where $\sum_{j=1}^r |p_j| \leq 1$ and $1 \leq j \leq r$.

Theorem 2.5 Assume that $\sum_{j=1}^{r} |p_j| \leq 1$ and $f_j, g_j \in \mathcal{A}(p)$. If

$$\left|\frac{[\mathcal{I}(f_j(z)) * g_j(z)]^{(n+1)}}{[\mathcal{I}(f_j(z)) * g_j(z)]^{(n)}}\right| \le M - 1/\rho, \quad |z| = \rho < 1, M \approx 3,05...,$$
(8)

then $\mathcal{J}_g(f)(z)$ given by (3) is univalent where $p_j \in C$, $1 \leq j \leq r$ and $|\delta| \leq 1$.

Proof. From equation (6) we have

$$\frac{(\mathcal{J}_g(f)(z))''}{(\mathcal{J}_g(f)(z))'} = p_1 \left[\frac{\delta}{z} + \frac{(\mathcal{I}(f_1(z)) * g_1(z))^{(n+1)}}{(\mathcal{I}(f_1(z)) * g_1(z))^{(n)}} \right] + \cdots + p_r \left[\frac{\delta}{z} + \frac{(\mathcal{I}(f_r(z)) * g_r(z))^{(n+1)}}{(\mathcal{I}(f_r(z)) * g_r(z))^{(n)}} \right],$$

which applying the inequality (8) implies that

$$\left|\frac{(\mathcal{J}_g(f)(z))''}{(\mathcal{J}_g(f)(z))'}\right| \le M.$$

Using Lemma 1.6, the last inequality implies that the integral operator $\mathcal{J}_g(f)(z)$ is univalent.

Corollary 2.6 Let $\sum_{j=1}^{r} |p_j| \leq 1$ and $f_j \in \mathcal{A}(p)$ where $1 \leq j \leq r$. If

$$\left|\frac{f_j''(z)}{f_j'(z)}\right| \le M - 1/\rho \quad z \in \Delta, M \approx 3,05...,\tag{9}$$

then $F_{p_1,\ldots,p_r}(z)$ is defined in [2] is univalent.

Remark 2.7 The least upper bound which obtained by Breaz et al. (see [2]) for $\left|\frac{f_j''(z)}{f_j'(z)}\right|$ is M until the operator $F_{p_1,\ldots,p_r}(z)$ be univalent. But in Corollary 2.6 we obtained the upper bound $M - 1/\rho$, therefore the $M - 1/\rho$ is best. In particular if $\rho \to 1^-$ the $M - 1/\rho \to 2,05...$.

Theorem 2.8 Let $f_j \in \mathcal{SK}(\delta, \theta, \gamma)$, $1 \leq j \leq r$, $p_1, ...p_r$ be real number with the properties, $p_j > 0$ and $0 \leq \sum_{j=1}^r p_j \gamma_j + \delta < 1$, then the integral operator $\mathcal{J}_g(f)(z) \in \mathcal{SK}(\delta, \theta, \gamma)$, where $\gamma = \sum_{j=1}^r p_j \gamma_j + \delta$ and $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

Proof. Using equation (7), we obtain

$$\frac{z(\mathcal{J}_g(f)(z))''}{(\mathcal{J}_g(f)(z))'} = \sum_{j=1}^r p_j \left[\delta + \frac{z(\mathcal{I}(f_j(z)) * g_j(z))^{(n+1)}}{(\mathcal{I}(f_j(z)) * g_j(z))^{(n)}} \right].$$
 (10)

The above relation is equivalent to

$$\delta + \frac{z(\mathcal{J}_g(f)(z))''}{(\mathcal{J}_g(f)(z))'} = \sum_{j=1}^r p_j \left[\delta + \frac{z(\mathcal{I}(f_j(z)) * g_j(z))^{(n+1)}}{(\mathcal{I}(f_j(z)) * g_j(z))^{(n)}} \right] + \delta.$$
(11)

By multiplying the above relation by $e^{i\theta}$, we get

$$Re\left\{e^{i\theta}\left(\delta + \frac{z(\mathcal{J}_g(f)(z))''}{(\mathcal{J}_g(f)(z))'}\right)\right\}$$
$$= \sum_{j=1}^r p_j Re\left\{e^{i\theta}\left(\delta + \frac{z(\mathcal{I}(f_j(z)) * g_j(z))^{(n+1)}}{(\mathcal{I}(f_j(z)) * g_j(z))^{(n)}}\right)\right\} + \delta Re\left\{e^{i\theta}\right\}$$
$$> \sum_{j=1}^r p_j \gamma_j \cos\theta + \delta \cos\theta = \left(\sum_{j=1}^r p_j \gamma_j + \delta\right) \cos\theta.$$

Since by hypothesis $0 \leq \sum_{j=1}^{r} p_j \gamma_j + \delta < 1$, we obtain $\mathcal{J}_g(f)(z) \in \mathcal{SK}(\delta, \theta, \gamma)$, where $\gamma = \sum_{j=1}^{r} p_j \gamma_j + \delta$ and $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$.

References

- J. Becker, Löewnersche differential gleichung und quasi-konform fortsetzbare-schlichte Funktionen, J. Reine Angew. Math., 255(1972), 23-43.
- [2] D. Breaz, S. Owa and N. Breaz, A new integral univalent operator, Acta Univ. Apulensis, 16(2008), 11-16.
- [3] S. Bulut, Some properties for an integral operator defined by Al-Oboudi differential operator, J. Inequal. Pure and Appl. Math., 9(4) (Art. 115) (2008), 5.
- [4] L. Dileep and S. Latha, A note on generalized integral operator, Acta Universitatis Apulensis, 25(2011), 113-117.
- [5] R. Kargar, Some properties of an integral operators defined by a new linear operator, *Acta Univ. Apulensis*, 38(2014), 229-237.
- [6] S.N. Kudryashov, On some criteria for the univalence of analytic functions, *Mathematical Notes*, 13(3) (March) (1973), 219-223.
- [7] S. Ramadan and M. Darus, Univalence of an integral operator defined by generalized operators, *International Journal of Computational and Mathematical Sciences*, 48(2010), 392-394.