[

Gen. Math. Notes, Vol. 31, No. 1, November 2015, pp.10-17
ISSN 2219-7184; Copyright ©ICSRS Publication, 2015
WWW.1-CSTS. 0Tq

Awailable free online at http://www.geman.in

Lower k-Hessenberg Matrices and k-Fibonacci,
Fibonacci-p and Pell (p,i) Numbers
Carlos M. da Fonseca!, Tomohiro Sogabe? and Fatih Yilmaz3

'Department of Mathematics
Kuwait University, Safat 13060, Kuwait
E-mail: carlos@sci.kuniv.edu.kw
2Department of Computational Science and Engineering
Nagoya University, Nagoya 464-8603, Japan
E-mail: sogabe@na.cse.nagoya-u.ac.jp
3Department of Mathematics
Gazi University, Polatli, Ankara 06900, Turkey
E-mail: fatihyilmaz@Qgazi.edu.tr

(Received: 30-7-15 / Accepted: 12-10-15)

Abstract

In this work, we define a family of sparse Hessenberg matrices whose perma-
nents lead us to k-Fibonacci, Fibonacci-p and Pell (p,i) numbers. Furthermore,
we show that it contains some well-known general number sequences in it. We
provide a Maple 13 source code describing the contraction steps.

Keywords: Determinant, Fibonacci-p and Pell (p,i) numbers, Hessenberg
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1 Introduction

Matrix theory combines linear algebra, graph theory, algebra, combina-
torics and statistics. Some special type of matrices are very important in these
areas. In this paper, we consider lower k-Hessenberg matrices which have the
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pattern

which will defined more precisely later.

Most of the well-known number sequences are defined as a result of a natu-
ral events or a mathematical modelling of an occurrence in nature. Fibonacci
numbers are one of the most famous number sequence defined on modelling
for proliferating of rabbits. In literature, there is a huge number of papers
on Fibonacci numbers and their generalizations. For example, Lee et al. [7]

investigated the k-generalized Fibonacci sequence (g,(f)) with initial conditions

k k k k
g = =gl =0, gP =g"=1,
and, forn > k > 2,
k k k
9P =g+ gy g (1)

Then, Lee [6] introduced k-Lucas numbers, which has similar recurrence
but for different initial conditions.

Kili¢ and Stakhov [3] considered certain generalizations of well-known Fi-
bonacci and Lucas numbers and the generalized Fibonacci and Lucas p-numbers
defined by the following recurrence relation for p =1,2,3,...,and n > p+1

Fp(n) = Fp(n_l)"f'Fp(n_p_l),
Lyn) = Ly(n—1)+Ly(n—p—1),

where Fp(O) 0,F,(1) = -+ = Fy(p) = Fo(p+1) =1 and L,(0) = p +
1,L,(1) = = L,(p) = L,(p+ 1) = 1, respectively. Furthermore they
defined n-square (0, 1)-matrix as below

L, for miy1; = mi; = My

M(n,p):{O’ forj:i7+1 ’ 7 (2)

for a fixed integer p, which corresponds to the adjacency matrix of the bipar-
tite graph G(M (n,p)). Then they showed that permanents of M (n,p) are the
number of 1-factors of G(M(n,p)) that is the (n + 1)th generalized Fibonacci
p-number. Moreover Yilmaz et al. [4, 9] considered Hessenberg matrices and
the Fibonacci, Lucas, Pell and Perrin numbers. Ocal et al. [8] gave some de-
terminantal and permanental representations for k-generalized Fibonacci and
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Lucas numbers. On the other hand, Kili¢ [2] studied the generalized Pell
(p,i)-numbers for p=1,2,3,...,n>p+1,and 0<i <p

PISZ)(n) = ZPISZ)(n —-1)+ Pgl)(n —p—1)

with initial conditions P\”(1) = P{"(2) = --- = P{”(i) = 0 and P (i + 1) =
PG +2) = = Bp+1) = 1. Moreover, the author defined n-square
integer matrix M (n,p) = (m;;) as below:

1, for Mit15 = Myitp
M(n,p) = 2, for my; (3)
0, for y=i+1

for a fixed integer p, then showed
per M (n,p) = Pzgp)(n +p+1).

The permanent of an n x n matrix A = (a;;) is given by

per (A) = Z Haia(i)>

oesS, i=1

where S,, represents the symmetric group of degree n.

Brualdi and Gibson [1] proposed a method to compute permanent of a
matrix. Let A = (a;;) be an m x n matrix with row vectors ry,ra, ..., ry,. We
call A is contractible on column k, if column k contains exactly two non zero
elements. Suppose that A is contractible on column k with a;; # 0, a;; # 0 and
i # j. Then the (m — 1) x (n — 1) matrix A, obtained from A replacing row
@ with ajzr; + a;pr; and deleting row j and column £ is called the contraction
of A on column k relative to rows 7 and j. If A is contractible on row k£ with
ari # 0,ar; # 0 and i # j, then the matrix Ap; = (A]},;)" is called the
contraction of A on row k relative to columns ¢ and j. We know that if A is a
integer matrix and B is a contraction of A [1], then

per A =per B. (4)

A matrix A is called convertible if there exists an n-square (1, —1)-matrix H
such that per A = det(A o H), here o denotes Hadamard product of A and H.
The matrix H is called as converter of A. Let H be a (1, —1)-matrix such that

(-1, it1=j
hi’j_{ 1, otherwise - (5)

Klein [5] established a generalization for Fibonacci numbers for a constant
integer m > 2

A = Af{ﬁ)l + A;"Z)m , forn>m+1,

A%m):n—l, forl<n<m+1.

(6)
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In particular, F,, = Agf) are the standard Fibonacci numbers. Taking into
account Klein’s generalization, let us consider the sequence {u,} given below:

ngk) = augf—)l + bkcugi)kfl. (7)

Here k£ > 1 and u(()k) =1, ugk) =d, ugk) = ad and u,({k) = a*'d. The first few
terms of the sequence given in following table:

Ko |1 2 3 4 5

ug) d da dd*+b’c daP+ab’c+ cdb®  da* + a?ch? + 2ch?da
WP |d da  da? da®+bc da* + ab®c + b3de
WP |d da  da? da® da* + cb*

uq({:’) d da da’® da® da*

2 Lower k-Hessenberg Matrices and the {u,}
Sequence

Let us define the n-square Hessenberg matrix H, (k) = (h;;) as follows:

a, fori=7=1,2,....,n—1
b, forj=1+1
hij=1< ¢, fori=j+k (8)
d, fortr=7=n
0, otherwise

where 2 <k <n—1and a,b,c,d € R.

Example 2.1 For k=3 andn=717;

5

—
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Theorem 2.2 Let H,(k) be as in 8, then

per H, (k) = u®

n

k)

for 2 < k < n, where u is the nth term of the sequence given by 7.
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Proof. By the definition of H,(k), it can be contracted on column n. Let
HY(LT)(k) be the rth contraction of the matrix H, (k). For r = 1,

a
0

o O

e}

0

b
b
a b
a b
0 0 a
0 0
c 0 0
0 dc be

b
0 a b
0 0 da

Using the consecutive contraction method on the last column, we get,

a b 0
0 b
: a b
0 --- 0 a b
0 0 0 a b
HO(k)=| 0 0o o0
c 0 a b
0 0 0 0 a b
: c 0 0 0 a b
0 0 cul bcuf,li)l b%uf@z bkilcuf@k 41 ufffl
Here 2 <r<n-—%k—1and
a b
0 a b
HTST)(]{;) — 0 . 0 a b
0 0 e 0 a b
0 0 0 0 a b
bcugc_) 1 bQCunk_ o b3cunk_ 3 bk_lcuﬁli)k " uffi)l

where n — k — 1 < r <n — 3. Then, continuing with this process, we get

H1"=2)

n

O

a

k=1 ., (K)
b" “eu,”, | u

(k)

n

b_1>'
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By applying (4), we have per H,, (k) = per H,(L"_2)(/<:) = ul¥, as desired. m

H Name

Fibonacci-p numbers

b d
1| —1] 1| k-Fibonacci numbers
1 1
1 2

Pell(p, ) numbers

As it can be seen from the previous table, the matrix H, (k) is a general
form of the matrices given by 2 and 3. Moreover, fora =2, b =1, c = —1 and
d = 1, the permanent of the sequence gives k-Fibonacci numbers.

Theorem 2.3 Let us consider the matriv H,(k) = (hi;) with h; ;41 = 1,
hii =2, and hiy; = —1, where 2 < k <n. Then

per H, (k) = g
=1

Proof. By the contraction method on column n, one can see that

2 1
0 2 1
0o 2 1
0
HYE) = o o0
—1
0 0 0 0 2 1
: -1 0 0 -~ 0 21
0O --- 0 -2 -1 0 --- 0 4

2 1
0o 2 1
0 2 1
0 0 2 1
HO (k) = 0O 0 O
-1 2 1
0 0 0 0 0 2 1
: -1 0 0 - 0 2 1
N D DY T DI A DA
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for2<r<n-k-—1and

9 1
0 9
{1 (k) = f o
0 0 9 1
0 0 0 9 1
Sl g TRk SR gk

forn —k—1<r <n—3. Going with this process, one gets

2 1
n—2
HT(L )(k) - ( _Zﬁ—}k g(k) D it Q(k) > ‘

By applying 4, we have per H, (k) = per H,(Ln_m(k) = Z ggk), which is the
i=1
sum of k-Fibonacci numbers given by 1. =

Theorem 2.4 Let us consider the n-square Hessenberq matriz M, (k) =
(mi;) as

a, fori=53=1,2,....n—1
—b, forj=1+1
mi; = c, fori=j5+k
d, fori=j=n
0, otherwise

where 2 < k<n-—1. Then

det M, (k) = ul®.

n

Proof. It can be seen by using the converter matrix given with 5. m

3 Appendix A

Using the following Maple 13 source code, it is possible to get the matrix
and the steps of the contraction method. Here n is the order of the matrix
and s is the shifting diagonal (i.e, s = k).

restart:

> ar=...b:=...c:=...d:=..;s:=...n:=..:with(LinearAlgebra):

> permanent:=proc(n)

> local i,j,k,p,C;

> p:=(i,j)->piecewise(i=j+s+1,c,j=i+1,b,j=n and i=n,d,i=j,a);
> C:=Matrix(n,n,p):
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> for k from 1 to n-1 do

> print(k,C):

> for j from 1 to n+1-k do

> C[n-k,j]:=C[n+1-k,n+1-k]*C[n-k,j]+C[n-k n+1-k]*C[n+1-k,j]:

> od:

> C:=DeleteRow(DeleteColumn(Matrix(n+1-k,n+1-k,C),n+1-k),n+1-k):
> od:

> print(k,eval(C)):

> end proc:with(LinearAlgebra):

> permanent(n);
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