Gen. Math. Notes, Vol. 31, No. 1, November 2015, pp.10-17
ISSN 2219-7184; Copyright © ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

Lower k-Hessenberg Matrices and k-Fibonacci, Fibonacci-p and Pell (p, i) Numbers

Carlos M. da Fonseca ${ }^{1}$, Tomohiro Sogabe ${ }^{2}$ and Fatih Yilmaz ${ }^{3}$
${ }^{1}$ Department of Mathematics
Kuwait University, Safat 13060, Kuwait
E-mail: carlos@sci.kuniv.edu.kw
${ }^{2}$ Department of Computational Science and Engineering
Nagoya University, Nagoya 464-8603, Japan
E-mail: sogabe@na.cse.nagoya-u.ac.jp
${ }^{3}$ Department of Mathematics
Gazi University, Polatli, Ankara 06900, Turkey
E-mail: fatihyilmaz@gazi.edu.tr

(Received: 30-7-15 / Accepted: 12-10-15)

Abstract

In this work, we define a family of sparse Hessenberg matrices whose permanents lead us to k-Fibonacci, Fibonacci-p and Pell (p, i) numbers. Furthermore, we show that it contains some well-known general number sequences in it. We provide a Maple 13 source code describing the contraction steps.

Keywords: Determinant, Fibonacci-p and Pell (p,i) numbers, Hessenberg matrix, k-Fibonacci numbers, Permanent.

1 Introduction

Matrix theory combines linear algebra, graph theory, algebra, combinatorics and statistics. Some special type of matrices are very important in these areas. In this paper, we consider lower k-Hessenberg matrices which have the
pattern

$$
H_{n}(k)=\left(\begin{array}{llllll}
\bullet & \bullet & & & & \\
& \bullet & \bullet & & & \\
& & \bullet & \bullet & & \\
\bullet & & & \bullet & \bullet & \\
& \bullet & & & \bullet & \bullet \\
& & \bullet & & & \bullet
\end{array}\right)
$$

which will defined more precisely later.
Most of the well-known number sequences are defined as a result of a natural events or a mathematical modelling of an occurrence in nature. Fibonacci numbers are one of the most famous number sequence defined on modelling for proliferating of rabbits. In literature, there is a huge number of papers on Fibonacci numbers and their generalizations. For example, Lee et al. [7] investigated the k-generalized Fibonacci sequence $\left(g_{n}^{(k)}\right)$ with initial conditions

$$
g_{1}^{(k)}=\cdots=g_{k-2}^{(k)}=0, \quad g_{k-1}^{(k)}=g_{k}^{(k)}=1
$$

and, for $n>k \geqslant 2$,

$$
\begin{equation*}
g_{n}^{(k)}=g_{n-1}^{(k)}+g_{n-2}^{(k)}+\cdots+g_{n-k}^{(k)} . \tag{1}
\end{equation*}
$$

Then, Lee [6] introduced k-Lucas numbers, which has similar recurrence but for different initial conditions.

Kılıç and Stakhov [3] considered certain generalizations of well-known Fibonacci and Lucas numbers and the generalized Fibonacci and Lucas p-numbers defined by the following recurrence relation for $p=1,2,3, \ldots$, and $n>p+1$

$$
\begin{aligned}
& F_{p}(n)=F_{p}(n-1)+F_{p}(n-p-1) \\
& L_{p}(n)=L_{p}(n-1)+L_{p}(n-p-1)
\end{aligned}
$$

where $F_{p}(0)=0, F_{p}(1)=\cdots=F_{p}(p)=F_{p}(p+1)=1$ and $L_{p}(0)=p+$ $1, L_{p}(1)=\cdots=L_{p}(p)=L_{p}(p+1)=1$, respectively. Furthermore they defined n-square $(0,1)$-matrix as below

$$
M(n, p)= \begin{cases}1, & \text { for } m_{i+1, i}=m_{i, i}=m_{i, i+p} \tag{2}\\ 0, & \text { for } j=i+1\end{cases}
$$

for a fixed integer p, which corresponds to the adjacency matrix of the bipartite graph $G(M(n, p))$. Then they showed that permanents of $M(n, p)$ are the number of 1-factors of $G(M(n, p))$ that is the $(n+1)$ th generalized Fibonacci p-number. Moreover Yilmaz et al. [4, 9] considered Hessenberg matrices and the Fibonacci, Lucas, Pell and Perrin numbers. Öcal et al. [8] gave some determinantal and permanental representations for k-generalized Fibonacci and

Lucas numbers. On the other hand, Kılıç [2] studied the generalized Pell (p, i)-numbers for $p=1,2,3, \ldots, n>p+1$, and $0 \leq i \leq p$

$$
P_{p}^{(i)}(n)=2 P_{p}^{(i)}(n-1)+P_{p}^{(i)}(n-p-1)
$$

with initial conditions $P_{p}^{(i)}(1)=P_{p}^{(i)}(2)=\cdots=P_{p}^{(i)}(i)=0$ and $P_{p}^{(i)}(i+1)=$ $P_{p}^{(i)}(i+2)=\cdots=P_{p}^{(i)}(p+1)=1$. Moreover, the author defined n-square integer matrix $M(n, p)=\left(m_{i j}\right)$ as below:

$$
M(n, p)= \begin{cases}1, & \text { for } m_{i+1, i}=m_{i, i+p} \tag{3}\\ 2, & \text { for } m_{i, i} \\ 0, & \text { for } j=i+1\end{cases}
$$

for a fixed integer p, then showed

$$
\operatorname{per} M(n, p)=P_{p}^{(p)}(n+p+1)
$$

The permanent of an $n \times n$ matrix $A=\left(a_{i j}\right)$ is given by

$$
\operatorname{per}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}
$$

where S_{n} represents the symmetric group of degree n.
Brualdi and Gibson [1] proposed a method to compute permanent of a matrix. Let $A=\left(a_{i j}\right)$ be an $m \times n$ matrix with row vectors $r_{1}, r_{2}, \ldots, r_{m}$. We call A is contractible on column k, if column k contains exactly two non zero elements. Suppose that A is contractible on column k with $a_{i k} \neq 0, a_{j k} \neq 0$ and $i \neq j$. Then the $(m-1) \times(n-1)$ matrix $A_{i j: k}$ obtained from A replacing row i with $a_{j k} r_{i}+a_{i k} r_{j}$ and deleting row j and column k is called the contraction of A on column k relative to rows i and j. If A is contractible on row k with $a_{k i} \neq 0, a_{k j} \neq 0$ and $i \neq j$, then the matrix $A_{k: i j}=\left(A_{i j: k}^{T}\right)^{T}$ is called the contraction of A on row k relative to columns i and j. We know that if A is a integer matrix and B is a contraction of $A[1]$, then

$$
\begin{equation*}
\operatorname{per} A=\operatorname{per} B \tag{4}
\end{equation*}
$$

A matrix A is called convertible if there exists an n-square $(1,-1)$-matrix H such that per $A=\operatorname{det}(A \circ H)$, here \circ denotes Hadamard product of A and H. The matrix H is called as converter of A. Let H be a $(1,-1)$-matrix such that

$$
h_{i, j}=\left\{\begin{array}{cl}
-1, & i+1=j \tag{5}\\
1, & \text { otherwise }
\end{array} .\right.
$$

Klein [5] established a generalization for Fibonacci numbers for a constant integer $m \geq 2$

$$
\begin{array}{ll}
A_{n}^{(m)}=A_{n-1}^{(m)}+A_{n-m}^{(m)}, & \text { for } n>m+1 \\
A_{n}^{(m)}=n-1, & \text { for } 1<n \leq m+1 \tag{6}
\end{array}
$$

In particular, $F_{n}=A_{n}^{(2)}$ are the standard Fibonacci numbers. Taking into account Klein's generalization, let us consider the sequence $\left\{u_{n}\right\}$ given below:

$$
\begin{equation*}
u_{n}^{(k)}=a u_{n-1}^{(k)}+b^{k} c u_{n-k-1}^{(k)} \tag{7}
\end{equation*}
$$

Here $k>1$ and $u_{0}^{(k)}=1, u_{1}^{(k)}=d, u_{2}^{(k)}=a d$ and $u_{k}^{(k)}=a^{k-1} d$. The first few terms of the sequence given in following table:

$k \backslash \mathrm{n}$	1	2	3	4	5
$u_{n}^{(2)}$	d	$d a$	$d a^{2}+b^{2} c$	$d a^{3}+a b^{2} c+c d b^{2}$	$d a^{4}+a^{2} c b^{2}+2 c b^{2} d a$
$u_{n}^{(3)}$	d	$d a$	$d a^{2}$	$d a^{3}+b^{3} c$	$d a^{4}+a b^{3} c+b^{3} d c$
$u_{n}^{(4)}$	d	$d a$	$d a^{2}$	$d a^{3}$	$d a^{4}+c b^{4}$
$u_{n}^{(5)}$	d	$d a$	$d a^{2}$	$d a^{3}$	$d a^{4}$

2 Lower k-Hessenberg Matrices and the $\left\{u_{n}\right\}$ Sequence

Let us define the n-square Hessenberg matrix $H_{n}(k)=\left(h_{i j}\right)$ as follows:

$$
h_{i j}= \begin{cases}a, & \text { for } i=j=1,2, \ldots, n-1 \tag{8}\\ b, & \text { for } j=i+1 \\ c, & \text { for } i=j+k \\ d, & \text { for } i=j=n \\ 0, & \text { otherwise }\end{cases}
$$

where $2 \leq k \leq n-1$ and $a, b, c, d \in \mathbb{R}$.
Example 2.1 For $k=3$ and $n=7$;

$$
H_{7}(3)=\left(\begin{array}{ccccccc}
a & b & 0 & 0 & 0 & 0 & 0 \\
0 & a & b & 0 & 0 & 0 & 0 \\
0 & 0 & a & b & 0 & 0 & 0 \\
c & 0 & 0 & a & b & 0 & 0 \\
0 & c & 0 & 0 & a & b & 0 \\
0 & 0 & c & 0 & 0 & a & b \\
0 & 0 & 0 & c & 0 & 0 & d
\end{array}\right)
$$

Theorem 2.2 Let $H_{n}(k)$ be as in 8, then

$$
\text { per } H_{n}(k)=u_{n}^{(k)},
$$

for $2 \leq k<n$, where $u_{n}^{(k)}$ is the nth term of the sequence given by 7 .

Proof. By the definition of $H_{n}(k)$, it can be contracted on column n. Let $H_{n}^{(r)}(k)$ be the r th contraction of the matrix $H_{n}(k)$. For $r=1$,

$$
H_{n}^{(1)}(k)=\left(\begin{array}{ccccccccc}
a & b & & & & & & & \\
0 & a & b & & & & & & \\
\vdots & 0 & a & b & & & & & \\
0 & \ddots & 0 & a & b & & & & \\
0 & 0 & \cdots & 0 & a & b & & & \\
c & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & & \\
0 & \ddots & 0 & 0 & \cdots & 0 & a & b & \\
\vdots & & c & 0 & 0 & \cdots & 0 & a & b \\
0 & \cdots & 0 & d c & b c & 0 & \cdots & 0 & d a
\end{array}\right) .
$$

Using the consecutive contraction method on the last column, we get,
$H_{n}^{(r)}(k)=\left(\begin{array}{cccccccccc}a & b & & & & & & & & 0 \\ 0 & a & b & & & & & & & \\ \vdots & 0 & a & b & & & & & & \\ 0 & \cdots & 0 & a & b & & & & & \\ 0 & 0 & \cdots & 0 & a & b & & & & \\ 0 & 0 & 0 & \cdots & \ddots & \ddots & \ddots & & & \\ c & \ddots & \ddots & \ddots & \cdots & 0 & a & b & & \\ 0 & \ddots & 0 & 0 & 0 & \cdots & 0 & a & b & \\ \vdots & & c & 0 & 0 & 0 & \cdots & 0 & a & b \\ 0 & \cdots & 0 & c u_{r}^{(k)} & b c u_{r-1}^{(k)} & b^{2} c u_{r-2}^{(k)} & \cdots & \cdots & b^{k-1} c u_{r-k+1}^{(k)} & u_{r+1}^{(k)}\end{array}\right)$
Here $2 \leq r \leq n-k-1$ and
$H_{n}^{(r)}(k)=\left(\begin{array}{ccccccc}a & b & & & & \\ 0 & a & b & & & \\ \vdots & \ddots & \ddots & \ddots & & \\ 0 & \cdots & 0 & a & b & \\ 0 & 0 & \cdots & 0 & a & b & \\ 0 & 0 & 0 & \cdots & 0 & a & b \\ b c u_{n-k-1}^{(k)} & b^{2} c u_{n-k-2}^{(k)} & b^{3} c u_{n-k-3}^{(k)} & \cdots & \cdots & b^{k-1} c u_{r-k+1}^{(k)} & u_{r+1}^{(k)}\end{array}\right)$,
where $n-k-1<r \leq n-3$. Then, continuing with this process, we get

$$
H_{n}^{(n-2)}(k)=\left(\begin{array}{cc}
a & b \\
b^{k-1} c u_{n-k-1}^{(k)} & u_{n-1}^{(k)}
\end{array}\right) .
$$

By applying (4), we have per $H_{n}(k)=$ per $H_{n}^{(n-2)}(k)=u_{n}^{(k)}$, as desired.

a	b	c	d	Name
2	1	-1	1	k-Fibonacci numbers
1	1	1	1	Fibonacci- p numbers
2	1	1	2	Pell (p, i) numbers

As it can be seen from the previous table, the matrix $H_{n}(k)$ is a general form of the matrices given by 2 and 3 . Moreover, for $a=2, b=1, c=-1$ and $d=1$, the permanent of the sequence gives k-Fibonacci numbers.

Theorem 2.3 Let us consider the matrix $H_{n}(k)=\left(h_{i j}\right)$ with $h_{i, i+1}=1$, $h_{i, i}=2$, and $h_{i+k, i}=-1$, where $2 \leq k \leq n$. Then

$$
\operatorname{per} H_{n}(k)=\sum_{i=1}^{n} g_{i}^{(k)}
$$

Proof. By the contraction method on column n, one can see that

$$
H_{n}^{(1)}(k)=\left(\begin{array}{ccccccccc}
2 & 1 & & & & & & & \\
0 & 2 & 1 & & & & & & \\
\vdots & 0 & 2 & 1 & & & & & \\
0 & & \ddots & \ddots & \ddots & & & & \\
0 & 0 & & \ddots & \ddots & \ddots & & & \\
-1 & \ddots & \ddots & & \ddots & \ddots & \ddots & & \\
0 & \ddots & 0 & 0 & \cdots & 0 & 2 & 1 & \\
\vdots & & -1 & 0 & 0 & \cdots & 0 & 2 & 1 \\
0 & \cdots & 0 & -2 & -1 & 0 & \cdots & 0 & 4
\end{array}\right)
$$

By the recursive contraction method on the last column, we get

$$
H_{n}^{(r)}(k)=\left(\begin{array}{ccccccccc}
2 & 1 & & & & & & & \\
0 & 2 & 1 & & & & & & \\
\vdots & 0 & 2 & 1 & & & & & \\
0 & \cdots & 0 & 2 & 1 & & & & \\
0 & 0 & 0 & \cdots & \ddots & \ddots & & & \\
-1 & \ddots & \ddots & \ddots & \cdots & 2 & 1 & & \\
0 & \ddots & 0 & 0 & 0 & 0 & 2 & 1 & \\
\vdots & & -1 & 0 & 0 & \cdots & 0 & 2 & 1 \\
0 & \cdots & 0 & -\sum_{i=1}^{r+1} g_{i}^{k} & -\sum_{i=1}^{r} g_{i}^{k} & \cdots & \cdots & -\sum_{i=1}^{r-k+2} g_{i}^{k} & \sum_{i=1}^{r+2} g_{i}^{k}
\end{array}\right)
$$

for $2 \leq r \leq n-k-1$ and

$$
H_{n}^{(r)}(k)=\left(\begin{array}{cccccc}
2 & 1 & & & & \\
0 & 2 & \ddots & & & \\
\vdots & \ddots & \ddots & 1 & & \\
0 & \cdots & 0 & 2 & 1 & \\
0 & 0 & \cdots & 0 & 2 & 1 \\
-\sum_{i=1}^{n-k} g_{i}^{k} & -\sum_{i=1}^{n-k-1} g_{i}^{k} & \cdots & \cdots & -\sum_{i=1}^{r-k+2} g_{i}^{k} & \sum_{i=1}^{r+2} g_{i}^{k}
\end{array}\right)
$$

for $n-k-1<r \leq n-3$. Going with this process, one gets

$$
H_{n}^{(n-2)}(k)=\left(\begin{array}{cc}
2 & 1 \\
-\sum_{i=1}^{n-k} g_{i}^{(k)} & \sum_{i=1}^{n} g_{i}^{(k)}
\end{array}\right) .
$$

By applying 4, we have per $H_{n}(k)=\operatorname{per} H_{n}^{(n-2)}(k)=\sum_{i=1}^{n} g_{i}^{(k)}$, which is the sum of k-Fibonacci numbers given by 1.

Theorem 2.4 Let us consider the n-square Hessenberg matrix $M_{n}(k)=$ $\left(m_{i j}\right)$ as

$$
m_{i j}=\left\{\begin{aligned}
a, & \text { for } i=j=1,2, \ldots, n-1 \\
-b, & \text { for } j=i+1 \\
c, & \text { for } i=j+k \\
d, & \text { for } i=j=n \\
0, & \text { otherwise }
\end{aligned}\right.
$$

where $2 \leq k \leq n-1$. Then

$$
\operatorname{det} M_{n}(k)=u_{n}^{(k)}
$$

Proof. It can be seen by using the converter matrix given with 5 .

3 Appendix A

Using the following Maple 13 source code, it is possible to get the matrix and the steps of the contraction method. Here n is the order of the matrix and s is the shifting diagonal (i.e, $s=k$).
restart:
$>\mathrm{a}:=. . \mathrm{b}:=. . \mathrm{c}:=. . \mathrm{d}:=. . \mathrm{s}:=. . \mathrm{n}:=. . \mathrm{with}($ LinearAlgebra $):$
$>$ permanent: $=\operatorname{proc}(\mathrm{n})$
$>$ local i,j,k,p,C;
$>\mathrm{p}:=(\mathrm{i}, \mathrm{j})->$ piecewise $(\mathrm{i}=\mathrm{j}+\mathrm{s}+1, \mathrm{c}, \mathrm{j}=\mathrm{i}+1, \mathrm{~b}, \mathrm{j}=\mathrm{n}$ and $\mathrm{i}=\mathrm{n}, \mathrm{d}, \mathrm{i}=\mathrm{j}, \mathrm{a})$;
$>\mathrm{C}:=\operatorname{Matrix}(\mathrm{n}, \mathrm{n}, \mathrm{p})$:

```
for k from 1 to n-1 do
> print(k,C):
> for j from 1 to n+1-k do
>C[n-k,j]:=C[n+1-k,n+1-k]*C[n-k,j]+C[n-k,n+1-k]*C[n+1-k,j]:
> od:
> C:=DeleteRow(DeleteColumn(Matrix(n+1-k,n+1-k,C),n+1-k),n+1-k):
> od:
> print(k,eval(C)):
> end proc:with(LinearAlgebra):
> permanent(n);
```


References

[1] R.A. Brualdi and P.M. Gibson, Convex polyhedra of doubly stochastic matrices I: Applications of the permanent function, J. Combin. Theory Ser., A 22(1977), 194-230.
[2] E. Kılıç, The generalized Pell (p, i) numbers and their Binet formulas, combinatorial representations, sums, Chaos Solitons Fractals, 40(4) (2009), 2047-2063.
[3] E. Kıliç and A.P. Stakhov, On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices, Chaos Solitons Fractals, 40(5) (2009), 2210-2221.
[4] F. Yilmaz and D. Bozkurt, Hessenberg matrices and the Pell and Perrin numbers, J. Number Theory, 131(2011), 1390-1396.
[5] S.T. Klein, Combinatorial representation of generalized Fibonacci numbers, Fibonacci Quart., 29(2) (1991), 124-131.
[6] G.Y. Lee, k-Lucas numbers and associated bipartite graphs, Linear Algebra Appl., 320(1-3) (2000), 51-61.
[7] G.Y. Lee, S.G. Lee, J.S. Kim and H.K. Shin, The Binet formula and representations of k-generalized Fibonacci numbers, Fibonacci Quart., 39(2) (2001), 158-164.
[8] A.A. Öcal, N. Tuğlu and E. Altımışık, On the representation of k generalized Fibonacci and Lucas numbers, Appl. Math. Comput., 170(1) (2005), 584-596.
[9] F. Yilmaz and D. Bozkurt, On the Fibonacci and Lucas numbers, their sums and permanents of one type of Hessenberg matrices, Hacet. J. Math. Stat., 43(6) (2014), 1001-1007.

