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Abstract

In this work, we define a family of sparse Hessenberg matrices whose perma-
nents lead us to k-Fibonacci, Fibonacci-p and Pell (p,i) numbers. Furthermore,
we show that it contains some well-known general number sequences in it. We
provide a Maple 13 source code describing the contraction steps.
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matrix, k-Fibonacci numbers, Permanent.

1 Introduction

Matrix theory combines linear algebra, graph theory, algebra, combina-
torics and statistics. Some special type of matrices are very important in these
areas. In this paper, we consider lower k-Hessenberg matrices which have the
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pattern

Hn(k) =


• •
• •
• •

• • •
• • •
• •


which will defined more precisely later.

Most of the well-known number sequences are defined as a result of a natu-
ral events or a mathematical modelling of an occurrence in nature. Fibonacci
numbers are one of the most famous number sequence defined on modelling
for proliferating of rabbits. In literature, there is a huge number of papers
on Fibonacci numbers and their generalizations. For example, Lee et al. [7]

investigated the k-generalized Fibonacci sequence (g
(k)
n ) with initial conditions

g
(k)
1 = · · · = g

(k)
k−2 = 0 , g

(k)
k−1 = g

(k)
k = 1 ,

and, for n > k > 2,

g(k)n = g
(k)
n−1 + g

(k)
n−2 + · · ·+ g

(k)
n−k . (1)

Then, Lee [6] introduced k-Lucas numbers, which has similar recurrence
but for different initial conditions.

Kılıç and Stakhov [3] considered certain generalizations of well-known Fi-
bonacci and Lucas numbers and the generalized Fibonacci and Lucas p-numbers
defined by the following recurrence relation for p = 1, 2, 3, . . ., and n > p + 1

Fp(n) = Fp(n− 1) + Fp(n− p− 1),

Lp(n) = Lp(n− 1) + Lp(n− p− 1),

where Fp(0) = 0, Fp(1) = · · · = Fp(p) = Fp(p + 1) = 1 and Lp(0) = p +
1, Lp(1) = · · · = Lp(p) = Lp(p + 1) = 1, respectively. Furthermore they
defined n-square (0, 1)-matrix as below

M(n, p) =

{
1, for mi+1,i = mi,i = mi,i+p

0, for j = i + 1
(2)

for a fixed integer p, which corresponds to the adjacency matrix of the bipar-
tite graph G(M(n, p)). Then they showed that permanents of M(n, p) are the
number of 1-factors of G(M(n, p)) that is the (n + 1)th generalized Fibonacci
p-number. Moreover Yilmaz et al. [4, 9] considered Hessenberg matrices and
the Fibonacci, Lucas, Pell and Perrin numbers. Öcal et al. [8] gave some de-
terminantal and permanental representations for k-generalized Fibonacci and
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Lucas numbers. On the other hand, Kılıç [2] studied the generalized Pell
(p, i)-numbers for p = 1, 2, 3, . . ., n > p + 1, and 0 ≤ i ≤ p

P (i)
p (n) = 2P (i)

p (n− 1) + P (i)
p (n− p− 1)

with initial conditions P
(i)
p (1) = P

(i)
p (2) = · · · = P

(i)
p (i) = 0 and P

(i)
p (i + 1) =

P
(i)
p (i + 2) = · · · = P

(i)
p (p + 1) = 1. Moreover, the author defined n-square

integer matrix M(n, p) = (mij) as below:

M(n, p) =


1, for mi+1,i = mi,i+p

2, for mi,i

0, for j = i + 1
(3)

for a fixed integer p, then showed

perM(n, p) = P (p)
p (n + p + 1).

The permanent of an n× n matrix A = (aij) is given by

per (A) =
∑
σ∈Sn

n∏
i=1

aiσ(i),

where Sn represents the symmetric group of degree n.
Brualdi and Gibson [1] proposed a method to compute permanent of a

matrix. Let A = (aij) be an m× n matrix with row vectors r1, r2, . . . , rm. We
call A is contractible on column k, if column k contains exactly two non zero
elements. Suppose that A is contractible on column k with aik 6= 0, ajk 6= 0 and
i 6= j. Then the (m− 1)× (n− 1) matrix Aij:k obtained from A replacing row
i with ajkri + aikrj and deleting row j and column k is called the contraction
of A on column k relative to rows i and j. If A is contractible on row k with
aki 6= 0, akj 6= 0 and i 6= j, then the matrix Ak:ij = (AT

ij:k)
T is called the

contraction of A on row k relative to columns i and j. We know that if A is a
integer matrix and B is a contraction of A [1], then

perA = perB . (4)

A matrix A is called convertible if there exists an n-square (1,−1)-matrix H
such that perA = det(A ◦H), here ◦ denotes Hadamard product of A and H.
The matrix H is called as converter of A. Let H be a (1,−1)-matrix such that

hi,j =

{
−1 , i + 1 = j
1 , otherwise

. (5)

Klein [5] established a generalization for Fibonacci numbers for a constant
integer m ≥ 2

A
(m)
n = A

(m)
n−1 + A

(m)
n−m , for n > m + 1,

A
(m)
n = n− 1 , for 1 < n ≤ m + 1.

(6)
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In particular, Fn = A
(2)
n are the standard Fibonacci numbers. Taking into

account Klein’s generalization, let us consider the sequence {un} given below:

u(k)
n = au

(k)
n−1 + bkcu

(k)
n−k−1. (7)

Here k > 1 and u
(k)
0 = 1, u

(k)
1 = d, u

(k)
2 = ad and u

(k)
k = ak−1d. The first few

terms of the sequence given in following table:

k\n 1 2 3 4 5

u
(2)
n d da da2+b2c da3+ab2c + cdb2 da4 + a2cb2 + 2cb2da

u
(3)
n d da da2 da3+b3c da4 + ab3c + b3dc

u
(4)
n d da da2 da3 da4 + cb4

u
(5)
n d da da2 da3 da4

2 Lower k-Hessenberg Matrices and the {un}
Sequence

Let us define the n-square Hessenberg matrix Hn(k) = (hij) as follows:

hij =


a, for i = j = 1, 2, . . . , n− 1
b, for j = i + 1
c, for i = j + k
d, for i = j = n
0, otherwise

(8)

where 2 ≤ k ≤ n− 1 and a, b, c, d ∈ R.

Example 2.1 For k = 3 and n = 7;

H7(3) =



a b 0 0 0 0 0
0 a b 0 0 0 0
0 0 a b 0 0 0
c 0 0 a b 0 0
0 c 0 0 a b 0
0 0 c 0 0 a b
0 0 0 c 0 0 d


.

Theorem 2.2 Let Hn(k) be as in 8, then

perHn(k) = u(k)
n ,

for 2 ≤ k < n, where u
(k)
n is the nth term of the sequence given by 7.
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Proof. By the definition of Hn(k), it can be contracted on column n. Let

H
(r)
n (k) be the rth contraction of the matrix Hn(k). For r = 1,

H(1)
n (k) =



a b
0 a b
... 0 a b

0
. . . 0 a b

0 0 · · · 0 a b

c
. . . . . . . . . . . . . . . . . .

0
. . . 0 0 · · · 0 a b

... c 0 0 · · · 0 a b
0 · · · 0 dc bc 0 · · · 0 da


.

Using the consecutive contraction method on the last column, we get,

H(r)
n (k) =



a b 0
0 a b
... 0 a b
0 · · · 0 a b
0 0 · · · 0 a b

0 0 0 · · · . . .
. . .

. . .

c
. . .

. . .
. . . · · · 0 a b

0
. . . 0 0 0 · · · 0 a b

... c 0 0 0 · · · 0 a b

0 · · · 0 cu
(k)
r bcu

(k)
r−1 b2cu

(k)
r−2 · · · · · · bk−1cu

(k)
r−k+1 u

(k)
r+1



.

Here 2 ≤ r ≤ n− k − 1 and

H(r)
n (k) =



a b
0 a b
...

. . .
. . .

. . .

0 · · · 0 a b
0 0 · · · 0 a b
0 0 0 · · · 0 a b

bcu
(k)
n−k−1 b2cu

(k)
n−k−2 b3cu

(k)
n−k−3 · · · · · · bk−1cu

(k)
r−k+1 u

(k)
r+1


,

where n− k − 1 < r ≤ n− 3. Then, continuing with this process, we get

H(n−2)
n (k) =

(
a b

bk−1cu
(k)
n−k−1 u

(k)
n−1

)
.
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By applying (4), we have perHn(k) = perH
(n−2)
n (k) = u

(k)
n , as desired.

a b c d Name

2 1 −1 1 k-Fibonacci numbers

1 1 1 1 Fibonacci-p numbers

2 1 1 2 Pell(p, i) numbers

As it can be seen from the previous table, the matrix Hn(k) is a general
form of the matrices given by 2 and 3. Moreover, for a = 2, b = 1, c = −1 and
d = 1, the permanent of the sequence gives k-Fibonacci numbers.

Theorem 2.3 Let us consider the matrix Hn(k) = (hij) with hi,i+1 = 1,
hi,i = 2, and hi+k,i = −1, where 2 ≤ k ≤ n. Then

perHn(k) =
n∑
i=1

g
(k)
i .

Proof. By the contraction method on column n, one can see that

H(1)
n (k) =



2 1
0 2 1
... 0 2 1

0
. . . . . . . . .

0 0
. . . . . . . . .

−1
. . . . . . . . . . . . . . .

0
. . . 0 0 · · · 0 2 1

... −1 0 0 · · · 0 2 1
0 · · · 0 −2 −1 0 · · · 0 4


.

By the recursive contraction method on the last column, we get

H(r)
n (k) =



2 1
0 2 1
... 0 2 1
0 · · · 0 2 1

0 0 0 · · · . . .
. . .

−1
. . .

. . .
. . . · · · 2 1

0
. . . 0 0 0 0 2 1

... −1 0 0 · · · 0 2 1

0 · · · 0 −
∑r+1

i=1g
k
i −

∑r
i=1g

k
i · · · · · · −

∑r−k+2
i=1 gki

∑r+2
i=1g

k
i





16 Carlos M. da Fonseca et al.

for 2 ≤ r ≤ n− k − 1 and

H(r)
n (k) =



2 1

0 2
. . .

...
. . .

. . . 1
0 · · · 0 2 1
0 0 · · · 0 2 1

−
∑n−k

i=1 g
k
i −

∑n−k−1
i=1 gki · · · · · · −

∑r−k+2
i=1 gki

∑r+2
i=1g

k
i


for n− k − 1 < r ≤ n− 3. Going with this process, one gets

H(n−2)
n (k) =

(
2 1

−
∑n−k

i=1 g
(k)
i

∑n
i=1 g

(k)
i

)
.

By applying 4, we have perHn(k) = perH
(n−2)
n (k) =

n∑
i=1

g
(k)
i , which is the

sum of k-Fibonacci numbers given by 1.

Theorem 2.4 Let us consider the n-square Hessenberg matrix Mn(k) =
(mij) as

mij =


a , for i = j = 1, 2, . . . , n− 1
−b , for j = i + 1
c , for i = j + k
d , for i = j = n
0 , otherwise

where 2 ≤ k ≤ n− 1. Then

detMn(k) = u(k)
n .

Proof. It can be seen by using the converter matrix given with 5.

3 Appendix A

Using the following Maple 13 source code, it is possible to get the matrix
and the steps of the contraction method. Here n is the order of the matrix
and s is the shifting diagonal (i.e, s = k).

restart:
> a:=..:b:=..:c:=..:d:=..:s:=..:n:=..:with(LinearAlgebra):
> permanent:=proc(n)
> local i,j,k,p,C;
> p:=(i,j)->piecewise(i=j+s+1,c,j=i+1,b,j=n and i=n,d,i=j,a);
> C:=Matrix(n,n,p):



Lower k-Hessenberg Matrices and k-Fibonacci... 17

> for k from 1 to n-1 do
> print(k,C):
> for j from 1 to n+1-k do
> C[n-k,j]:=C[n+1-k,n+1-k]*C[n-k,j]+C[n-k,n+1-k]*C[n+1-k,j]:
> od:
> C:=DeleteRow(DeleteColumn(Matrix(n+1-k,n+1-k,C),n+1-k),n+1-k):
> od:
> print(k,eval(C)):
> end proc:with(LinearAlgebra):
> permanent(n);
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