Gen. Math. Notes, Vol. 28, No. 2, June 2015, pp.9-20
ISSN 2219-7184; Copyright © ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

Generalization of Titchmarsh's Theorem for the Jacobi-Dunkl Transform

A. Belkhadir ${ }^{1}$ and A. Abouelaz ${ }^{2}$
1,2 Department of Mathematics and Informatics Faculty of Sciences Aïn Chock
University of Hassan II, Casablanca, Morocco
${ }^{1}$ E-mail: ak.belkhadir@gmail.com
${ }^{2}$ E-mail: ah.abouelaz@gmail.com

(Received: 23-4-15 / Accepted: 29-5-15)

Abstract

In this paper, using a generalized Jacobi-Dunkl translation operator, we prove a generalization of Titchmarsh's theorem for functions in the k-Jacobi-Dunkl-Lipschitz class defined by the finite differences of order $k \in \mathbb{N}^{*}$ and Sobolev spaces associated with the Jacobi-Dunkl operator.

Keywords: Generalized Jacobi-Dunkl translation, Jacobi-Dunkl Lipschitz class, Jacobi-Dunkl transform, Titchmarsh's theorem.

1 Introduction

Titchmarsh's theorem characterizes the set of functions satisfying the CauchyLipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transform, namely we have:

Theorem 1.1. [12] Let $\alpha \in(0,1)$ and $f \in L^{2}(\mathbb{R})$. Then the following are equivalents:

1. $\quad\|f(t+h)-f(t)\|=O\left(h^{\alpha}\right) \quad$, as $h \rightarrow 0$;
2. $\int_{|\lambda| \geq r}|\hat{f}(\lambda)|^{2} d \lambda=O\left(r^{-2 \alpha}\right) \quad$, as $r \rightarrow+\infty$.
where \hat{f} is the Fourier transform of f.
A similar result of theorem 1.1 has been established for the Jacobi transform (see [8], theorem 2.2). Furthermore, a generalization of this result was proved in the Sobolev spaces associated with Jacobi transform (see [1], theorem 2.1).

In this paper, we prove a similar result for Jacobi-Dunkl transform, we consider functions in Sobolev spaces $W_{\alpha, \beta}^{2, k}$ (associated with Jacobi-Dunkl operator (see [5])) belonging to the k-Jacobi-Dunkl-Lipschitz class defined by the finite difference of order $k \in \mathbb{N}^{*}$. For this purpose we use the generalized translation and Jacobi-Dunkl operators.

The paper is organized as follows: in section 2 we recapitulate some results related to the harmonic analysis associated with the Jacobi-Dunkl operator $\Lambda_{\alpha, \beta}$ (see $[2,3,4,5,7]$). Section 3 is devoted to the main result (theorem 3.3). Before, we define the class $\operatorname{Lip}(\delta, 2, \alpha, \beta)$ of functions in $W_{\alpha, \beta}^{2, k}$ satisfying a certain condition correspondent to the generalized Jacobi-Dunkl translation. Titchmarsh's theorem for Jacobi-Dunkl transform is given as a corollary of theorem 3.3.

2 Notations and Preliminaries

In the following, α, β and ρ denote 3 reals such that $\alpha \geq \beta \geq-\frac{1}{2}$, $\alpha \neq-\frac{1}{2}$ and $\rho=\alpha+\beta+1$.

Notations:

- $A_{\alpha, \beta}(x)=2^{\rho}(\sinh |x|)^{2 \alpha+1}(\cosh |x|)^{2 \beta+1}$.
- $d \sigma_{\alpha, \beta}(\lambda)=\frac{|\lambda|}{8 \pi \sqrt{\lambda^{2}-\rho^{2}}\left|C_{\alpha, \beta}\left(\sqrt{\lambda^{2}-\rho^{2}}\right)\right|} \mathbb{I}_{\mathbb{R} \backslash]-\rho, \rho[}(\lambda) d \lambda$
where, $\quad C_{\alpha, \beta}(\mu)=\frac{2^{\rho-i \mu} \Gamma(\alpha+1) \Gamma(i \mu)}{\Gamma\left(\frac{1}{2}(\rho+i \mu)\right) \Gamma\left(\frac{1}{2}(\alpha-\beta+1+i \mu)\right)}, \mu \in \mathbb{C} \backslash(i \mathbb{N})$.
and $\quad \mathbb{I}_{\Omega}$ is the characteristic function of Ω.
- $L^{p}\left(A_{\alpha, \beta}\right)$ (resp. $\left.L^{p}\left(\sigma_{\alpha, \beta}\right), p \in\right] 0,+\infty[$, the space of measurable functions g on \mathbb{R} such that

$$
\begin{gathered}
\|g\|_{L^{p}\left(A_{\alpha, \beta}\right)}=\left(\int_{\mathbb{R}}|g(t)|^{p} A_{\alpha, \beta}(t) d t\right)^{1 / p}<+\infty \\
\left(\text { resp. }\|g\|_{L^{p}\left(\sigma_{\alpha, \beta}\right)}=\left(\int_{\mathbb{R}}|g(\lambda)|^{p} d \sigma_{\alpha, \beta}(\lambda)\right)^{1 / p}<+\infty\right) .
\end{gathered}
$$

- $\mathcal{D}(\mathbb{R})$ the space of C^{∞}-functions on \mathbb{R} with compact support.
- $\mathcal{S}(\mathbb{R})$ the usual Schwartz space of C^{∞}-functions on \mathbb{R} rapidly decreasing together with their derivatives, equipped with the topology of semi-norms $L_{m, n},(m, n) \in \mathbb{N}^{2}$, where

$$
L_{m, n}(f)=\sup _{x \in \mathbb{R}, 0 \leq k \leq n}\left[\left(1+x^{2}\right)^{m}\left|\frac{d^{k}}{d x^{k}} f(x)\right|\right]<+\infty
$$

- $\mathcal{S}^{1}(\mathbb{R})=\left\{(\cosh t)^{-2 \rho} f ; f \in \mathcal{S}(\mathbb{R})\right\}$.

The topology of this space is given by the semi-norms $L_{m, n}^{1},(m, n) \in \mathbb{N}^{2}$, where

$$
L_{m, n}^{1}(f)=\sup _{x \in \mathbb{R}, 0 \leq k \leq n}\left[(\cosh t)^{-2 \rho}\left(1+x^{2}\right)^{m}\left|\frac{d^{k}}{d x^{k}} f(x)\right|\right]<+\infty
$$

- $\left(\mathcal{S}^{1}(\mathbb{R})\right)^{\prime}$ the topological dual of $\mathcal{S}^{1}(\mathbb{R})$.

Now, we introduce the Jacobi-Dunkl Transform and its basic properties:
The Jacobi-Dunkl function with parameters $(\alpha, \beta), \alpha \geq \beta \geq-\frac{1}{2}, \alpha \neq-\frac{1}{2}$, is defined by :

$$
\forall x \in \mathbb{R}, \quad \psi_{\lambda}^{(\alpha, \beta)}(x)= \begin{cases}\varphi_{\mu}^{(\alpha, \beta)}(x)-\frac{i}{\lambda} \frac{d}{d x} \varphi_{\mu}^{(\alpha, \beta)}(x) & , \text { if } \lambda \in \mathbb{C} \backslash\{0\} \tag{1}\\ 1 & , \text { if } \lambda=0\end{cases}
$$

with $\lambda^{2}=\mu^{2}+\rho^{2}, \rho=\alpha+\beta+1$ and $\varphi_{\mu}^{(\alpha, \beta)}$ is the Jacobi function given by:

$$
\begin{equation*}
\varphi_{\mu}^{(\alpha, \beta)}(x)=F\left(\frac{\rho+i \mu}{2}, \frac{\rho-i \mu}{2} ; \alpha+1,-(\sinh x)^{2}\right) \tag{2}
\end{equation*}
$$

where F is the Gaussian hypergeometric function given by

$$
F(a, b, c, z)=\sum_{m=0}^{\infty} \frac{(a)_{m}(b)_{m}}{(c)_{m} m!} z^{m},|z|<1
$$

$a, b, z \in \mathbb{C}$ and $c \notin-\mathbb{N} ;$ $(a)_{0}=1,(a)_{m}=a(a+1) \ldots(a+m-1) .($ see $[2,9,10])$. $\psi_{\lambda}^{(\alpha, \beta)}$ is the unique C^{∞}-solution on \mathbb{R} of the differentiel-difference equation

$$
\left\{\begin{array}{l}
\Lambda_{\alpha, \beta} u=i \lambda u \quad, \lambda \in \mathbb{C} \tag{3}\\
u(0)=1
\end{array}\right.
$$

where $\Lambda_{\alpha, \beta}$ is the Jacobi-Dunkl operator given by:

$$
\begin{gathered}
\Lambda_{\alpha, \beta} u(x)=\frac{d u}{d x}(x)+\frac{A_{\alpha, \beta}^{\prime}(x)}{A_{\alpha, \beta}(x)} \times \frac{u(x)-u(-x)}{2} ; \text { i.e. } \\
\Lambda_{\alpha, \beta} u(x)=\frac{d u}{d x}(x)+[(2 \alpha+1) \operatorname{coth} x+(2 \beta+1) \tanh x] \times \frac{u(x)-u(-x)}{2} .
\end{gathered}
$$

The function $\psi_{\lambda}^{(\alpha, \beta)}$ can be written in the form below (See [3]),

$$
\begin{equation*}
\psi_{\lambda}^{(\alpha, \beta)}(x)=\varphi_{\mu}^{(\alpha, \beta)}(x)+i \frac{\lambda}{4(\alpha+1)} \sinh (2 x) \varphi_{\mu}^{(\alpha+1, \beta+1)}(x), \forall x \in \mathbb{R} \tag{4}
\end{equation*}
$$

where $\lambda^{2}=\mu^{2}+\rho^{2}, \quad \rho=\alpha+\beta+1$.
The Jacobi-Dunkl transform of a function $f \in L^{1}\left(A_{\alpha, \beta}\right)$ is defined by :

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta}(f)(\lambda)=\int_{\mathbb{R}} f(x) \psi_{-\lambda}^{(\alpha, \beta)}(x) A_{\alpha, \beta}(x) d x, \forall \lambda \in \mathbb{R} \tag{5}
\end{equation*}
$$

The inverse Jacobi-Dunkl transform of a function $h \in L^{1}\left(\sigma_{\alpha, \beta}\right)$ is:

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta}^{-1}(h)(t)=\int_{\mathbb{R}} h(\lambda) \psi_{\lambda}^{(\alpha, \beta)}(t) d \sigma_{\alpha, \beta}(\lambda) \tag{6}
\end{equation*}
$$

$\mathcal{F}_{\alpha, \beta}$ is a topological isomorphism from $\mathcal{S}^{1}(\mathbb{R})$ onto $\mathcal{S}(\mathbb{R})$, and extends uniquely to a unitary isomorphism from $L^{2}\left(A_{\alpha, \beta}\right)$ onto $L^{2}\left(\sigma_{\alpha, \beta}\right)$. The Plancherel formula is given by

$$
\begin{equation*}
\|f\|_{L^{2}\left(A_{\alpha, \beta}\right)}=\left\|\mathcal{F}_{\alpha, \beta}(f)\right\|_{L^{2}\left(\sigma_{\alpha, \beta}\right)} \tag{7}
\end{equation*}
$$

For $f \in \mathcal{S}^{1}(\mathbb{R})$ we have the following inversion formula

$$
\begin{equation*}
f(x)=\int_{\mathbb{R}} \mathcal{F}_{\alpha, \beta}(f)(\lambda) \psi_{\lambda}^{(\alpha, \beta)}(x) d \sigma_{\alpha, \beta}(\lambda), \forall x \in \mathbb{R} \tag{8}
\end{equation*}
$$

and the relation

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta}\left(\Lambda_{\alpha, \beta} f\right)(\lambda)=i \lambda \mathcal{F}_{\alpha, \beta}(f)(\lambda) \tag{9}
\end{equation*}
$$

Let $f \in L^{2}\left(A_{\alpha, \beta}\right)$. For all $x \in \mathbb{R}$ the operator of Jacobi-Dunkl translation τ_{x} is defined by:

$$
\begin{equation*}
\tau_{x} f(y)=\int_{\mathbb{R}} f(z) d \nu_{x, y}^{\alpha, \beta}(z), \forall y \in \mathbb{R} \tag{10}
\end{equation*}
$$

where $\nu_{x, y}^{\alpha, \beta}, x, y \in \mathbb{R}$ are the signed measures given by

$$
d \nu_{x, y}^{\alpha, \beta}(z)= \begin{cases}K_{\alpha, \beta}(x, y, z) A_{\alpha, \beta}(z) d z & , \text { if } x, y \in \mathbb{R}^{*} \tag{11}\\ \delta_{x} & , \text { if } y=0 \\ \delta_{y} & , \text { if } x=0\end{cases}
$$

Here, δ_{x} is the Dirac measure at x. And

$$
\left.\begin{array}{rl}
K_{\alpha, \beta}(x, y, z)= & M_{\alpha, \beta}(\sinh (|x|) \sinh (|y|) \sinh (|z|))^{-2 \alpha} \mathbb{I}_{I_{x, y}} \times \int_{0}^{\pi} \rho_{\theta}(x, y, z) \\
& \times\left(g_{\theta}(x, y, z)\right)_{+}^{\alpha-\beta-1} \sin ^{2 \beta} \theta d \theta . \\
I_{x, y}= & {[-|x|-|y|,-||x|-|y||] \cup[||x|+|y||,|x|+|y|]} \\
\rho_{\theta}(x, y, z)=1-\sigma_{x, y, z}^{\theta}+\sigma_{z, x, y}^{\theta}+\sigma_{z, y, x}^{\theta}
\end{array}\right] \begin{array}{ll}
\frac{\cosh (x)+\cosh (y)-\cosh (z) \cos (\theta)}{\sinh (x) \sinh (y)}, & \text { if } x y \neq 0 \\
\sigma_{x, y, z}^{\theta}=\{ & , \text { if } x y=0
\end{array} .
$$

for all $x, y, z \in \mathbb{R}, \theta \in[0, \pi]$.

$$
\begin{gathered}
g_{\theta}(x, y, z)=1-\cosh ^{2} x-\cosh ^{2} y-\cosh ^{2} z+2 \cosh x \cosh y \cosh z \cos \theta \\
\qquad t_{+}= \begin{cases}t & , \text { if } t>0 \\
0 & , \text { if } t \leq 0\end{cases}
\end{gathered}
$$

and

$$
M_{\alpha, \beta}= \begin{cases}\frac{2^{-2 \rho} \Gamma(\alpha+1)}{\sqrt{\pi} \Gamma(\alpha-\beta) \Gamma\left(\beta+\frac{1}{2}\right)} & , \text { if } \alpha>\beta \\ 0 & , \text { if } \alpha=\beta\end{cases}
$$

We have

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta}\left(\tau_{h} f\right)(\lambda)=\psi_{\lambda}^{\alpha, \beta}(h) \cdot \mathcal{F}_{\alpha, \beta}(f)(\lambda) \quad ; \quad h, \lambda \in \mathbb{R} . \tag{12}
\end{equation*}
$$

Let $g \in L^{2}\left(\sigma_{\alpha, \beta}\right)$. Then the distribution $T_{g \sigma_{\alpha, \beta}}$ defined by

$$
\begin{equation*}
\left\langle T_{g \sigma_{\alpha, \beta}}, \varphi\right\rangle=\int_{\mathbb{R}} g(\lambda) \varphi(\lambda) d \sigma_{\alpha, \beta}(\lambda), \quad \varphi \in \mathcal{D}(\mathbb{R}) \tag{13}
\end{equation*}
$$

belongs to $\mathcal{S}^{\prime}(\mathbb{R})$.
Let $f \in L^{2}\left(A_{\alpha, \beta}\right)$. Then the distribution $T_{f A_{\alpha, \beta}}$ defined by

$$
\begin{equation*}
\left\langle T_{f A_{\alpha, \beta}}, \varphi\right\rangle=\int_{\mathbb{R}} f(x) \varphi(x) A_{\alpha, \beta}(x) d x, \quad \varphi \in \mathcal{S}^{1}(\mathbb{R}) \tag{14}
\end{equation*}
$$

belongs to $\left(\mathcal{S}^{1}(\mathbb{R})\right)^{\prime}$.
Via the correspondance $f \mapsto T_{f A_{\alpha, \beta}}$, we identify $L^{2}\left(A_{\alpha, \beta}\right)$ as a subspace of $\left(\mathcal{S}^{1}(\mathbb{R})\right)^{\prime}$.

The jacobi-dunkl transform of a distribution $T \in\left(\mathcal{S}^{1}(\mathbb{R})\right)^{\prime}$ is defined by:

$$
\begin{equation*}
\left\langle\mathcal{F}_{\alpha, \beta}(T), \varphi\right\rangle=\left\langle T, \mathcal{F}_{\alpha, \beta}^{-1}(\check{\varphi})\right\rangle, \varphi \in \mathcal{S}(\mathbb{R}) \tag{15}
\end{equation*}
$$

where $\check{\varphi}$ is given by $\check{\varphi}(x)=\varphi(-x)$.

It is clear that $\mathcal{F}_{\alpha, \beta}(T) \in \mathcal{S}^{\prime}(\mathbb{R})$.
The jacobi-dunkl transform of a distribution defined by $f \in L^{2}\left(A_{\alpha, \beta}\right)$ is given by the distribution $T_{\mathcal{F}_{\alpha, \beta}(f) \sigma_{\alpha, \beta}}$; i.e.

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta}\left(T_{f A_{\alpha, \beta}}\right)=T_{\mathcal{F}_{\alpha, \beta}(f) \sigma_{\alpha, \beta}} . \tag{16}
\end{equation*}
$$

We identify the tempered distribution given by $\mathcal{F}_{\alpha, \beta}(f)$ and the function $\mathcal{F}_{\alpha, \beta}(f)$. Let $T \in\left(\mathcal{S}^{1}(\mathbb{R})\right)^{\prime}$ and consider the distribution $\Lambda_{\alpha, \beta} T$ defined by

$$
\begin{equation*}
\left\langle\Lambda_{\alpha, \beta}(T), \varphi\right\rangle=-\left\langle T, \Lambda_{\alpha, \beta}(\varphi)\right\rangle, \text { for all } \varphi \in \mathcal{S}^{1}(\mathbb{R}) \tag{17}
\end{equation*}
$$

(Note that $\mathcal{S}^{1}(\mathbb{R})$ is unvariant under $\Lambda_{\alpha, \beta}$). By using (9) it is easy to see that

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta}\left(\Lambda_{\alpha, \beta}(T)\right)=i \lambda \mathcal{F}_{\alpha, \beta}(T) . \tag{18}
\end{equation*}
$$

For $f \in L^{2}\left(A_{\alpha, \beta}\right)$, we define the finite differences of first and higher order as follows:

$$
\begin{aligned}
\Delta_{h}^{1} f & =\Delta_{h} f=\tau_{h} f+\tau_{-h} f-2 f=\left(\tau_{h}+\tau_{-h}-2 E\right) f \\
\Delta_{h}^{k} f & =\Delta_{h}\left(\Delta_{h}^{k-1}\right) f=\left(\tau_{h}+\tau_{-h}-2 E\right)^{k} f, \quad k=2,3, \ldots
\end{aligned}
$$

where E is the unit operator in $L^{2}\left(A_{\alpha, \beta}\right)$.
Lemma 2.1. The following inequalities are valids for Jacobi functions $\varphi_{\mu}^{\alpha, \beta}(h)$

1. $\left|\varphi_{\mu}^{(\alpha, \beta)}(h)\right| \leq 1$;
2. $\left|1-\varphi_{\mu}^{(\alpha, \beta)}(h)\right| \leq h^{2} \lambda^{2} ; \quad$ where $\lambda^{2}=\mu^{2}+\rho^{2}$.

Proof. (See [11], Lemmas 3.1-3.2)
For $\alpha \geq \frac{-1}{2}$, we introduce the Bessel normalized function of the first kind defined by

$$
j_{\alpha}(z)=\Gamma(\alpha+1) \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(\frac{z}{2}\right)^{2 n}}{n!\Gamma(n+\alpha+1)} \quad, z \in \mathbb{C}
$$

We see that $\lim _{z \rightarrow 0} \frac{j_{\alpha}(z)-1}{z^{2}} \neq 0$, by consequence, there exists $c_{1}>0$ and $\eta>0$ satisfying

$$
\begin{equation*}
|z| \leq \eta \Rightarrow \quad\left|j_{\alpha}(z)-1\right| \geq c_{1}|z|^{2} \tag{19}
\end{equation*}
$$

Lemma 2.2. Let $\alpha \geq \beta \geq \frac{-1}{2}, \alpha \neq \frac{-1}{2}$. Then for $|v| \leq \rho$, there exists a positive constant c_{2} such that

$$
\left|1-\varphi_{\mu+i v}^{(\alpha, \beta)}(t)\right| \geq c_{2}\left|1-j_{\alpha}(\mu t)\right|
$$

Proof. (See [6], Lemma 9)

3 Main Results

We denote by $W_{\alpha, \beta}^{2, k}, k \in \mathbb{N}$, the Sobolev space constructed by the operator $\Lambda_{\alpha, \beta}$; i.e.

$$
\begin{equation*}
W_{\alpha, \beta}^{2, k}=\left\{f \in L^{2}\left(A_{\alpha, \beta}\right) ; \Lambda_{\alpha, \beta}^{j} f \in L^{2}\left(A_{\alpha, \beta}\right), j=0,1,2, \ldots, k\right\} \tag{20}
\end{equation*}
$$

where, $\Lambda_{\alpha, \beta}^{0} f=f, \Lambda_{\alpha, \beta}^{1} f=\Lambda_{\alpha, \beta} f, \Lambda_{\alpha, \beta}^{r} f=\Lambda_{\alpha, \beta}\left(\Lambda_{\alpha, \beta}^{r-1} f\right), r=2,3, \ldots$
Definition 3.1. Let $\delta \in(0,1)$ and $k \in \mathbb{N}$. A function $f \in W_{\alpha, \beta}^{2, k}$ is said to be in the k-Jacobi-Dunkl-Lipschitz class, denoted by $\operatorname{Lip}(\delta, 2, k, r)$, if

$$
\left\|\Delta_{h}^{k+1} \Lambda_{\alpha, \beta}^{r} f\right\|_{L^{2}\left(A_{\alpha, \beta}\right)}=O\left(h^{\delta}\right), \quad \text { as } h \longrightarrow 0
$$

where $r=0,1, \ldots, k$.
Lemma 3.2. Let $f \in W_{\alpha, \beta}^{2, k}, k \in \mathbb{N}$. Then

$$
\left\|\Delta_{h}^{k+1} \Lambda_{\alpha, \beta}^{r} f\right\|_{L^{2}\left(A_{\alpha, \beta}\right)}^{2}=2^{2 k+2} \int_{\mathbb{R}} \lambda^{2 r}\left|1-\varphi_{\mu}(h)\right|^{2 k+2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda),
$$

where $r=0,1, \ldots, k$.
Proof. We have

$$
\mathcal{F}_{\alpha, \beta}\left(\tau_{h} f+\tau_{-h} f-2 f\right)(\lambda)=\left(\psi_{\lambda}^{(\alpha, \beta)}(h)+\psi_{\lambda}^{(\alpha, \beta)}(-h)-2\right) . \mathcal{F}_{\alpha, \beta}(f)(\lambda) .
$$

Since $\quad \psi_{\lambda}^{(\alpha, \beta)}(h)=\varphi_{\mu}^{(\alpha, \beta)}(h)+i \frac{\lambda}{4(\alpha+1)} \sinh (2 h) \varphi_{\mu}^{(\alpha+1, \beta+1)}(h)$, $\psi_{\lambda}^{(\alpha, \beta)}(-h)=\varphi_{\mu}^{(\alpha, \beta)}(-h)-i \frac{\lambda}{4(\alpha+1)} \sinh (2 h) \varphi_{\mu}^{(\alpha+1, \beta+1)}(-h)$,
and $\varphi_{\mu}^{(\alpha, \beta)}$ is even $[\operatorname{See}(2)]$; then:

$$
\mathcal{F}_{\alpha, \beta}\left(\tau_{h} f+\tau_{-h} f-2 f\right)(\lambda)=2\left(\varphi_{\mu}^{(\alpha, \beta)}(h)-1\right) . \mathcal{F}_{\alpha, \beta}(f)(\lambda) .
$$

and

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta}\left(\Delta_{h}^{k+1} f\right)(\lambda)=2^{k+1}\left(\varphi_{\mu}^{(\alpha, \beta)}(h)-1\right)^{k+1} \cdot \mathcal{F}_{\alpha, \beta}(f)(\lambda) . \tag{21}
\end{equation*}
$$

From formula (18), we obtain

$$
\begin{equation*}
\mathcal{F}_{\alpha, \beta}\left(\Lambda_{\alpha, \beta}^{r} f\right)(\lambda)=(i \lambda)^{r} \mathcal{F}_{\alpha, \beta}(f)(\lambda) \tag{22}
\end{equation*}
$$

Using the formulas (21) and (22) we get

$$
\mathcal{F}_{\alpha, \beta}\left(\Delta_{h}^{k+1} \Lambda_{\alpha, \beta}^{r} f\right)(\lambda)=2^{k+1}(i \lambda)^{r} \cdot\left(\varphi_{\mu}^{(\alpha, \beta)}(h)-1\right)^{k+1} \cdot \mathcal{F}_{\alpha, \beta}(f)(\lambda) .
$$

By the Plancherel formula (7), we have the result.

Theorem 3.3. Let $f \in W_{\alpha, \beta}^{2, k}, k \in \mathbb{N}$. Then the following are equivalents:

1. $f \in \operatorname{Lip}(\delta, 2, k, r)$;
2. $\quad \int_{s}^{\infty} \lambda^{2 r}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda)=O\left(s^{-2 \delta}\right) \quad$, as $s \rightarrow+\infty$.

Proof. (1) $\Rightarrow(2)$: Assume that $f \in \operatorname{Lip}(\delta, 2, k, r)$; then

$$
\left\|\Delta_{h}^{k+1} \Lambda_{\alpha, \beta}^{r} f\right\|_{L^{2}\left(A_{\alpha, \beta}\right)}=O\left(h^{\delta}\right) \quad \text { as } h \longrightarrow 0 .
$$

by lemma 3.2, we have

$$
\begin{aligned}
\int_{\mathbb{R}} \lambda^{2 r}\left|1-\varphi_{\mu}(h)\right|^{2 k+2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda) & =\frac{1}{4^{k+1}}\left\|\Delta_{h}^{k+1} \Lambda_{\alpha, \beta}^{r} f\right\|^{2} \\
& =O\left(h^{2 \delta}\right)
\end{aligned}
$$

If $|\lambda| \in\left[\frac{\eta}{2 h}, \frac{\eta}{h}\right]$ then $|\mu h| \leq \eta \quad$ (recall that $\lambda^{2}=\mu^{2}+\rho^{2}$).
We get by (19):

$$
\left|j_{\alpha}(\mu h)-1\right| \geq c_{1} \mu^{2} h^{2}
$$

From $\quad|\lambda| \geq \frac{\eta}{2 h}$ we have,

$$
\mu^{2} h^{2} \geq \frac{\eta^{2}}{4}-\rho^{2} h^{2}
$$

then we can find an absolute constant $c_{3}=c_{3}(\eta, \alpha, \beta)$ such that $\mu^{2} h^{2} \geq c_{3}$ (take $h<1$) ; thus,

$$
\left|j_{\alpha}(\mu h)-1\right| \geq c_{1} c_{3} .
$$

this inequality and lemma 2.2 implys that:

$$
\left|1-\varphi_{\mu}^{(\alpha, \beta)}(h)\right| \geq c_{1} c_{2} c_{3}=C
$$

Hence,

$$
1 \leq \frac{1}{C^{2 k+2}}\left|1-\varphi_{\mu}^{(\alpha, \beta)}(h)\right|^{2 k+2}
$$

So,

$$
\begin{aligned}
& \int_{\frac{\eta}{2 h} \leq|\lambda| \leq \frac{\eta}{h}} \lambda^{2 r}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda) \leq \frac{1}{C^{2 k+2}} \int_{\frac{\eta}{2 h} \leq|\lambda| \leq \frac{\eta}{h}} \lambda^{2 r}\left|1-\varphi_{\mu}^{(\alpha, \beta)}(h)\right|^{2 k+2} \\
& \quad \times\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda) \\
& \leq \frac{1}{C^{2 k+2}} \int_{\mathbb{R}} \lambda^{2 r}\left|1-\varphi_{\mu}^{(\alpha, \beta)}(h)\right|^{2 k+2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda) \\
&=O\left(h^{2 \delta}\right)
\end{aligned}
$$

Then we have,

$$
\int_{s \leq|\lambda| \leq 2 s} \lambda^{2 r}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda)=O\left(s^{-2 \delta}\right), \quad \text { as } s \rightarrow+\infty
$$

Or equivalently

$$
\int_{s \leq|\lambda| \leq 2 s} \lambda^{2 r}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda) \leq K_{1} s^{-2 \delta}, \quad \text { as } s \rightarrow+\infty
$$

where K_{1} is some absolute constant. It follows that,

$$
\begin{aligned}
\int_{|\lambda| \geq s} \lambda^{2 r}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda) & =\sum_{i=0}^{\infty} \int_{2^{i} s \leq|\lambda| \leq 2^{i+1} s} \lambda^{2 r}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda) \\
& \leq K_{1} \sum_{i=0}^{\infty}\left(2^{i} s\right)^{-2 \delta} \\
& \leq K s^{-2 \delta}
\end{aligned}
$$

which proves that:

$$
\begin{aligned}
& \int_{|\lambda| \geq s} \lambda^{2 r}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda)=O\left(s^{-2 \delta}\right) \quad \text {, as } s \rightarrow+\infty . \\
(2) \Rightarrow & (1): \text { Suppose now that } \\
& \int_{|\lambda| \geq s} \lambda^{2 r}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda)=O\left(s^{-2 \delta}\right) \quad \text {, as } s \rightarrow+\infty .
\end{aligned}
$$

we have to show that:

$$
\int_{\mathbb{R}} \lambda^{2 r}\left|1-\varphi_{\mu}^{(\alpha, \beta)}(h)\right|^{2 k+2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda)=O\left(h^{2 \delta}\right) \quad, \text { as } h \rightarrow 0 .
$$

Write:

$$
\int_{\mathbb{R}} \lambda^{2 r}\left|1-\varphi_{\mu}^{(\alpha, \beta)}(h)\right|^{2 k+2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda)=I_{1}+I_{2}
$$

where:

$$
\begin{aligned}
I_{1} & =\int_{|\lambda| \leq \frac{1}{h}} \lambda^{2 r}\left|1-\varphi_{\mu}^{(\alpha, \beta)}(h)\right|^{2 k+2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda) ; \\
I_{2} & =\int_{|\lambda|>\frac{1}{h}} \lambda^{2 r}\left|1-\varphi_{\mu}^{(\alpha, \beta)}(h)\right|^{2 k+2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda) .
\end{aligned}
$$

Estimate I_{1} and I_{2}. From (1) of lemma 2.1 we can write,

$$
\begin{aligned}
I_{2} & \leq 4^{k+1} \int_{|\lambda|>\frac{1}{h}} \lambda^{2 r}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda), \quad\left(s=\frac{1}{h}\right) \\
& =O\left(h^{2 \delta}\right)
\end{aligned}
$$

Using the inequalities (1) and (2) of lemma 2.1 we get

$$
\begin{aligned}
I_{1} & =\int_{|\lambda| \leq \frac{1}{h}} \lambda^{2 r}\left|1-\varphi_{\mu}^{(\alpha, \beta)}(h)\right|^{2 k+2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda) \\
& \leq 2^{2 k+1} \int_{|\lambda| \leq \frac{1}{h}} \lambda^{2 r}\left|1-\varphi_{\mu}^{(\alpha, \beta)}(h)\right| \cdot\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda) \\
& \leq 2^{2 k+1} h^{2} \int_{|\lambda| \leq \frac{1}{h}} \lambda^{2 r} \cdot \lambda^{2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda) .
\end{aligned}
$$

Consider the function

$$
\psi(s)=\int_{s}^{\infty} \lambda^{2 r}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda)
$$

An integration by parts gives:

$$
\begin{aligned}
2^{2 k+1} h^{2} \int_{0}^{\frac{1}{h}} \lambda^{2 r} \cdot \lambda^{2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda) & =2^{2 k+1} h^{2} \int_{0}^{\frac{1}{h}}\left(-s^{2} \psi^{\prime}(s)\right) d s \\
& =2^{2 k+1} h^{2}\left(-\frac{1}{h^{2}} \psi\left(\frac{1}{h}\right)+2 \int_{0}^{\frac{1}{h}} s \psi(s) d s\right) \\
& \leq 2^{2 k+2} h^{2} \int_{0}^{\frac{1}{h}} s \psi(s) d s
\end{aligned}
$$

Since $\psi(s)=O\left(s^{-2 \delta}\right)$, we get

$$
\begin{aligned}
\int_{0}^{\frac{1}{h}} s \psi(s) d s & =O\left(\int_{0}^{\frac{1}{h}} s^{1-2 \delta} d s\right) \\
& =O\left(h^{2 \delta-2}\right)
\end{aligned}
$$

Hence,

$$
\begin{aligned}
2^{2 k+1} h^{2} \int_{0}^{\frac{1}{h}} \lambda^{2 r} \cdot \lambda^{2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda) & \leq 2^{2 k+2} h^{2} O\left(h^{2 \delta-2}\right) \\
& =O\left(h^{2 \delta}\right)
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\int_{\mathbb{R}} \lambda^{2 r}\left|1-\varphi_{\mu}^{(\alpha, \beta)}(h)\right|^{2 k+2}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda) & =I_{1}+I_{2} \\
& =O\left(h^{2 \delta}\right)+O\left(h^{2 \delta}\right) \\
& =O\left(h^{2 \delta}\right)
\end{aligned}
$$

Which completes the proof of the theorem.

Corollary 3.4. Let $f \in W_{\alpha, \beta}^{2, k}$ such that $f \in \operatorname{Lip}(\delta, 2, k, r)$. Then:

$$
\int_{|\lambda| \geq s}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda)=O\left(s^{-2 \delta-2 r}\right) \quad \text {, as } s \rightarrow+\infty
$$

If we take $k=0$ in theorem 3.3, we deduce an analog of Titchmarsh's theorem (theorem 1.1) for the Jacobi-Dunkl transform:

Corollary 3.5. Let $\delta \in(0,1)$ and $f \in L^{2}\left(A_{\alpha, \beta}\right)$. Then the following are equivalents:

1. $\left\|\tau_{h} f+\tau_{-h} f-2 f\right\|_{L^{2}\left(A_{\alpha, \beta}\right)}=O\left(h^{\delta}\right) \quad$, as $h \rightarrow 0$.
2. $\int_{|\lambda| \geq s}\left|\mathcal{F}_{\alpha, \beta}(f)(\lambda)\right|^{2} d \sigma_{\alpha, \beta}(\lambda)=O\left(s^{-2 \delta}\right) \quad$, as $s \rightarrow+\infty$.

References

[1] A. Abouelaz, R. Daher and M. El Hamma, Generalization of Titchmarsh's theorem for the Jacobi transform, Ser. Math. Inform., 28(1) (2013), 43-51.
[2] H.B. Mohamed and H. Mejjaoli, Distributional Jacobi-Dunkl transform and application, Afr. Diaspora J. Math, (2004), 24-46.
[3] H.B. Mohamed, The Jacobi-Dunkl transform on \mathbb{R} and the convolution product on new spaces of distributions, Ramanujan J., 21(2010), 145-175.
[4] N.B. Salem and A.O.A. Salem, Convolution structure associated with the Jacobi-Dunkl operator on \mathbb{R}, Ramanujan J., 12(3) (2006), 359-378.
[5] N.B. Salem and A.O.A. Salem, Sobolev types spaces associated with the Jacobi-Dunkl operator, Fractional Calculus and Applied Analysis, 7(1) (2004), 37-60.
[6] W.O. Bray and M.A. Pinsky, Growth properties of Fourier transforms via moduli of continuity, Journal of Functional Analysis, 255(2008), 22562285.
[7] F. Chouchane, M. Mili and K. Trimèche, Positivity of the intertwining opertor and harmonic analysis associated with the Jacobi-Dunkl operator on \mathbb{R}, J. Anal. Appl., 1(4) (2003), 387-412.
[8] R. Daher and M. El Hamma, An analog of Titchmarsh's theorem of Jacobi transform, Int. Journal of Math. Analysis, 6(20) (2012), 975-981.
[9] T.H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, In: R.A. Askey, T.H. Koornwinder and W. Schempp (eds.), Special Functions: Group Theoritical Aspects and Applications, D. Reidel, Dordrecht, (1984).
[10] T.H. Koornwinder, A new proof of a Paley-Wiener type theorems for the Jacobi transform, Ark. Math., 13(1975), 145-159.
[11] S.S. Platonov, Approximation of functions in L_{2}-metric on noncompact rank 1 symetric spaces, Algebra Analiz., 11(1) (1999), 244-270.
[12] E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Claredon, Oxford, (1948), Komkniga, Moscow, (2005).

