Gen. Math. Notes, Vol. 25, No. 1, November 2014, pp.8-18
ISSN 2219-7184; Copyright (C)ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

Cesàro Summability of Double Sequences of Sets

Fatih Nuray ${ }^{1}$, Uğur Ulusu ${ }^{2}$ and Erdinç Dündar ${ }^{3}$
${ }^{1,2,3}$ Department of Mathematics, Faculty of Science and Literature Afyon Kocatepe University, Afyonkarahisar, Turkey
${ }^{1}$ E-mail: fnuray@aku.edu.tr
${ }^{2}$ E-mail: ulusu@aku.edu.tr
${ }^{3}$ E-mail: edundar@aku.edu.tr

(Received: 1-6-14 / Accepted: 21-7-14)

Abstract

In this paper, we study the concepts of Wijsman Cesàro summability and Wijsman lacunary convergence of double sequences of sets and investigate the relationship between them.

Keywords: Lacunary sequence, Cesàro summability, double sequence of sets, Wijsman convergence.

1 Introduction

The concept of convergence of sequences of numbers has been extended by several authors to convergence of sequences of sets (see, $[3,4,5,11,16,17,18]$). Nuray and Rhoades [11] extended the notion of convergence of set sequences to statistical convergence and gave some basic theorems. Ulusu and Nuray [15] defined the Wijsman lacunary statistical convergence of sequence of sets and considered its relation with Wijsman statistical convergence, which was defined by Nuray and Rhoades. Ulusu and Nuray [16] introduced the concept of Wijsman strongly lacunary summability for set sequences and discused its relation with Wijsman strongly Cesàro summability.

Hill [8] was the first who applied methods of functional analysis to double sequences. Also, Kull [9] applied methods of functional analysis of matrix maps of double sequences. A lot of usefull developments of double sequences in summability methods, the reader may refer to $[1,10,14,19]$.

In this paper, we study the concepts of Wijsman Cesàro summability and Wijsman lacunary convergence of double sequences of sets and investigate the relationship between them.

2 Definitions and Notations

Now, we recall the basic definitions and concepts (See $[1,2,3,4,5,11,12,14$, 16, 17, 18]).

For any point $x \in X$ and any non-empty subset A of X, we define the distance from x to A by

$$
d(x, A)=\inf _{a \in A} \rho(x, a) .
$$

Throughout the paper, we let (X, ρ) be a metric space and A, A_{k} be any non-empty closed subsets of X.

We say that the sequence $\left\{A_{k}\right\}$ is Wijsman convergent to A if

$$
\lim _{k \rightarrow \infty} d\left(x, A_{k}\right)=d(x, A)
$$

for each $x \in X$. In this case we write $W-\lim A_{k}=A$.
The sequence $\left\{A_{k}\right\}$ is said to be Wijsman Cesàro summable to A if $\left\{d\left(x, A_{k}\right)\right\}$ Cesàro summable to $\{d(x, A)\}$; that is, for each $x \in X$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} d\left(x, A_{k}\right)=d(x, A)
$$

The sequence $\left\{A_{k}\right\}$ is said to be Wijsman strongly Cesàro summable to A if $\left\{d\left(x, A_{k}\right)\right\}$ strongly Cesàro summable to $\{d(x, A)\}$; that is, for each $x \in X$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|d\left(x, A_{k}\right)-d(x, A)\right|=0
$$

The sequence $\left\{A_{k}\right\}$ is said to be Wijsman strongly p-Cesàro summable to A if $\left\{d\left(x, A_{k}\right)\right\}$ strongly p-Cesàro summable to $\{d(x, A)\}$; that is, for each p positive real number and for each $x \in X$,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|d\left(x, A_{k}\right)-d(x, A)\right|^{p}=0 .
$$

By a lacunary sequence we mean an increasing integer sequence $\theta=\left\{k_{r}\right\}$ such that $k_{0}=0$ and $h_{r}=k_{r}-k_{r-1} \rightarrow \infty$ as $r \rightarrow \infty$. Throughout this paper the intervals determined by θ will be denoted by $I_{r}=\left(k_{r-1}, k_{r}\right]$, and ratio $\frac{k_{r}}{k_{r-1}}$
will be abbreviated by q_{r}.
Let $\theta=\left\{k_{r}\right\}$ be a lacunary sequence. We say that the sequence $\left\{A_{k}\right\}$ is Wijsman lacunary convergent to A for each $x \in X$,

$$
\lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}} d\left(x, A_{k}\right)=d(x, A)
$$

In this case we write $A_{k} \rightarrow A\left(W N_{\theta}\right)$.
Let $\theta=\left\{k_{r}\right\}$ be a lacunary sequence. We say that the sequence $\left\{A_{k}\right\}$ is Wijsman strongly lacunary convergent to A for each $x \in X$,

$$
\lim _{r} \frac{1}{h_{r}} \sum_{k \in I_{r}}\left|d\left(x, A_{k}\right)-d(x, A)\right|=0
$$

In this case we write $A_{k} \rightarrow A\left(\left[W N_{\theta}\right]\right)$.
A double sequence $x=\left(x_{k j}\right)_{k, j \in \mathbb{N}}$ of real numbers is said to be convergent to $L \in \mathbb{R}$ in Pringsheim's sense if for any $\varepsilon>0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $\left|x_{k j}-L\right|<\varepsilon$ whenever $k, j>N_{\varepsilon}$. In this case we write

$$
P-\lim _{k, j \rightarrow \infty} x_{k j}=L \quad \text { or } \quad \lim _{k, j \rightarrow \infty} x_{k j}=L
$$

A double sequence $x=\left(x_{k j}\right)$ of real numbers is said to be bounded if there exists a positive real number M such that $\left|x_{k j}\right|<M$ for all $k, j \in \mathbb{N}$. That is

$$
\|x\|_{\infty}=\sup _{k, j}\left|x_{k j}\right|<\infty
$$

The double sequence $\theta=\left\{\left(k_{r}, j_{s}\right)\right\}$ is called double lacunary sequence if there exist two increasing sequence of integers such that

$$
k_{0}=0, \quad h_{r}=k_{r}-k_{r-1} \rightarrow \infty \quad \text { as } \quad r \rightarrow \infty
$$

and

$$
j_{0}=0, \quad \bar{h}_{u}=j_{u}-j_{u-1} \rightarrow \infty \quad \text { as } \quad u \rightarrow \infty
$$

We use the following notations in the sequel:

$$
\begin{gathered}
k_{r u}=k_{r} j_{u}, \quad h_{r u}=h_{r} \bar{h}_{u}, \quad I_{r u}=\left\{(k, j): k_{r-1}<k \leq k_{r} \text { and } j_{u-1}<j \leq j_{u}\right\}, \\
q_{r}=\frac{k_{r}}{k_{r-1}} \text { and } q_{u}=\frac{j_{u}}{j_{u-1}} .
\end{gathered}
$$

Lemma 2.1 [7, Lemma 3.2] If $b_{1}, b_{2}, \ldots, b_{n}$ are positive real numbers, and if $a_{1}, a_{2}, \ldots, a_{n}$ are real numbers satisfying

$$
\frac{\left|a_{1}+a_{2}+\ldots+a_{n}\right|}{b_{1}+b_{2}+\ldots+b_{n}}>\varepsilon>0
$$

then $\left|a_{i}\right| / b_{i}>\varepsilon$ for some i, where $1 \leq i \leq n$.

3 Main Results

Throughout the paper, $A, A_{k j}$ denote any non-empty closed subsets of X.
Definition 3.1 The double sequence $\left\{A_{k j}\right\}$ is Wijsman convergent to A if

$$
P-\lim _{k, j \rightarrow \infty} d\left(x, A_{k j}\right)=d(x, A) \quad \text { or } \quad \lim _{k, j \rightarrow \infty} d\left(x, A_{k j}\right)=d(x, A)
$$

for each $x \in X$. In this case we write $W_{2}-\lim A_{k j}=A$.
Example 3.2 Let $X=\mathbb{R}^{2}$ and $\left\{A_{k j}\right\}$ be the following double sequence:

$$
A_{k j}=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+(y-1)^{2}=\frac{1}{k j}\right\} .
$$

This double sequence of sets is Wijsman convergent to the set $A=\{(0,1)\}$.
Definition 3.3 The double sequence $\left\{A_{k j}\right\}$ is said to be Wijsman Cesàro summable to A if $\left\{d\left(x, A_{k j}\right)\right\}$ Cesàro summable to $\{d(x, A)\}$; that is, for each $x \in X$,

$$
\lim _{m, n \rightarrow \infty} \frac{1}{m n} \sum_{k, j=1,1}^{m, n} d\left(x, A_{k j}\right)=d(x, A)
$$

In this case we write $A_{k j} \xrightarrow{\left(W_{2} \sigma_{1}\right)} A$.
Definition 3.4 The double sequence $\left\{A_{k j}\right\}$ is said to be Wijsman strongly Cesàro summable to A if $\left\{d\left(x, A_{k j}\right)\right\}$ strongly Cesàro summable to $\{d(x, A)\}$; that is, for each $x \in X$,

$$
\lim _{m, n \rightarrow \infty} \frac{1}{m n} \sum_{k, j=1,1}^{m, n}\left|d\left(x, A_{k j}\right)-d(x, A)\right|=0 .
$$

In this case we write $A_{k j} \xrightarrow{\left[W_{2} \sigma_{1}\right]} A$.
Example 3.5 Let $X=\mathbb{R}^{2}$ and define the double sequence $\left\{A_{k j}\right\}$ by

$$
A_{k j}=\left\{\begin{array}{cl}
\left\{(x, y) \in \mathbb{R}^{2}:(x-1)^{2}+(y-1)^{2}=k\right\} & , j=1, \text { for all } k \\
\left\{(x, y) \in \mathbb{R}^{2}:(x-1)^{2}+(y-1)^{2}=j\right\} & , k=1, \text { for all } j \\
\{(0,0)\} & , \text { otherwise }
\end{array}\right.
$$

Then $\left\{A_{k j}\right\}$ is Wijsman convergent to the set $A=\{(0,0)\}$ but

$$
\lim _{m, n \rightarrow \infty} \frac{1}{m n} \sum_{k, j=1,1}^{m, n} d\left(x, A_{k j}\right)
$$

does not tend to a finite limit. Hence, $\left\{A_{k j}\right\}$ is not Wijsman Cesàro summable. Also, $\left\{A_{k j}\right\}$ is not Wijsman strongly Cesàro summable.

Definition 3.6 The double sequence $\left\{A_{k j}\right\}$ is said to be Wijsman strongly p-Cesàro summable to A if $\left\{d\left(x, A_{k j}\right)\right\}$ strongly p-Cesàro summable to $\{d(x, A)\}$; that is, for each p positive real number and for each $x \in X$,

$$
\lim _{m, n \rightarrow \infty} \frac{1}{m n} \sum_{k, j=1,1}^{m, n}\left|d\left(x, A_{k j}\right)-d(x, A)\right|^{p}=0
$$

In this case we write $A_{k j} \xrightarrow{\left[W_{2} \sigma_{p}\right]} A$.
Definition 3.7 Let $\theta=\left\{\left(k_{r}, j_{s}\right)\right\}$ be a double lacunary sequence. The double sequence $\left\{A_{k j}\right\}$ is Wijsman lacunary convergent to A if for each $x \in X$,

$$
\lim _{r, u \rightarrow \infty} \frac{1}{h_{r} \bar{h}_{u}} \sum_{k=k_{r-1}+1}^{k_{r}} \sum_{j=j_{u-1}+1}^{j_{u}} d\left(x, A_{k j}\right)=d(x, A)
$$

In this case we write $A_{k j} \xrightarrow{\left(W_{2} N_{\theta}\right)} A$.
Definition 3.8 Let $\theta=\left\{\left(k_{r}, j_{s}\right)\right\}$ be a double lacunary sequence. The double sequence $\left\{A_{k j}\right\}$ is Wijsman strongly lacunary convergent to A if for each $x \in X$,

$$
\lim _{r, u \rightarrow \infty} \frac{1}{h_{r} \bar{h}_{u}} \sum_{k=k_{r-1}+1}^{k_{r}} \sum_{j=j_{u-1}+1}^{j_{u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|=0
$$

In this case we write $A_{k j} \xrightarrow{\left[W_{2} N_{\theta}\right]} A$.
Definition 3.9 Let $\theta=\left\{\left(k_{r}, j_{s}\right)\right\}$ be a double lacunary sequence. The double sequence $\left\{A_{k j}\right\}$ is Wijsman strongly p-lacunary convergent to A if for each p positive real number and for each $x \in X$,

$$
\lim _{r, u \rightarrow \infty} \frac{1}{h_{r} \bar{h}_{u}} \sum_{k=k_{r-1}+1}^{k_{r}} \sum_{j=j_{u-1}+1}^{j_{u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|^{p}=0 .
$$

In this case we write $A_{k j} \xrightarrow{\left[W_{2}^{p} N_{\theta}\right]} A$.
Theorem 3.10 For any double lacunary sequence θ, if $\lim _{\inf } q_{r}>1$ and $\liminf _{u} q_{u}>1$, then $\left[W_{2} \sigma_{1}\right] \subseteq\left[W_{2} N_{\theta}\right]$.

Proof: Assume that $\liminf _{r} q_{r}>1$ and $\liminf _{u} q_{u}>1$. Then there exist $\lambda, \mu>0$ such that $q_{r} \geq 1+\lambda$ and $q_{u} \geq 1+\mu$ for all $r, u \geq 1$, which implies that

$$
\frac{k_{r} j_{u}}{h_{r} \bar{h}_{u}} \leq \frac{(1+\lambda)(1+\mu)}{\lambda \mu}
$$

Let $A_{k j} \xrightarrow{\left[W_{2} \sigma_{1}\right]} A$. We can write

$$
\begin{aligned}
\frac{1}{h_{r} \bar{h}_{u}} \sum_{k, j \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|= & \frac{1}{h_{r} \bar{h}_{u}} \sum_{i, s=1,1}^{k_{r}, j_{u}}\left|d\left(x, A_{i s}\right)-d(x, A)\right| \\
& -\frac{1}{h_{r} \bar{h}_{u}} \sum_{i, s=1,1}^{k_{r-1}, j_{u-1}}\left|d\left(x, A_{i s}\right)-d(x, A)\right| \\
= & \frac{k_{r} j_{u}}{h_{r} \bar{h}_{u}}\left(\frac{1}{k_{r} j_{u}} \sum_{i, s=1,1}^{k_{r}, j_{u}}\left|d\left(x, A_{i s}\right)-d(x, A)\right|\right) \\
& -\frac{k_{r-1} j_{u-1}}{h_{r} \bar{h}_{u}}\left(\frac{1}{k_{r-1} j_{u-1}} \sum_{i, s=1,1}^{k_{r-1}, j_{u-1}}\left|d\left(x, A_{i s}\right)-d(x, A)\right|\right) .
\end{aligned}
$$

Since $A_{k j} \xrightarrow{\left[W_{2} \sigma_{1}\right]} A$, the terms
$\frac{1}{k_{r} j_{u}} \sum_{i, s=1,1}^{k_{r}, j_{u}}\left|d\left(x, A_{i s}\right)-d(x, A)\right| \quad$ and $\quad \frac{1}{k_{r-1} j_{u-1}} \sum_{i, s=1,1}^{k_{r-1}, j_{u-1}}\left|d\left(x, A_{i s}\right)-d(x, A)\right|$
both tend to 0 , and it follows that

$$
\frac{1}{h_{r} \bar{h}_{u}} \sum_{k, j \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right| \rightarrow 0
$$

that is, $A_{k j} \xrightarrow{\left[W_{2} N_{\theta}\right]}$
A. Hence, $\left[W_{2} \sigma_{1}\right] \subseteq\left[W_{2} N_{\theta}\right]$.

Theorem 3.11 For any double lacunary sequence θ, if $\limsup _{r} q_{r}<\infty$ and $\limsup \sin _{u} q_{u}<\infty$ then $\left[W_{2} N_{\theta}\right] \subseteq\left[W_{2} \sigma_{1}\right]$.

Proof: Assume that $\lim \sup _{r} q_{r}<\infty$ and $\limsup _{u} q_{u}<\infty$, then there exists $M, N>0$ such that $q_{r}<M$ and $q_{u}<N$, for all r, u. Let $\left\{A_{k j}\right\} \in\left[W_{2} N_{\theta}\right]$ and $\varepsilon>0$. Then we can find $R, U>0$ and $K>0$ such that

$$
\sup _{i \geq R, s \geq U} \tau_{i s}<\varepsilon \quad \text { and } \quad \tau_{i s}<K \quad \text { for all } i, s=1,2, \cdots,
$$

where

$$
\tau_{r u}=\frac{1}{h_{r} \bar{h}_{u}} \sum_{I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right| .
$$

If t, v are any integers with $k_{r-1}<t \leq k_{r}$ and $j_{u-1}<v \leq j_{u}$, where $r>R$ and $u>U$, then we can write

$$
\begin{aligned}
& \frac{1}{t v} \sum_{i, s=1,1}^{t, v}\left|d\left(x, A_{i s}\right)-d(x, A)\right| \leq \frac{1}{k_{r-1} j_{u-1}} \sum_{i, s=1,1}^{k_{r}, j_{u}}\left|d\left(x, A_{i s}\right)-d(x, A)\right| \\
& =\frac{1}{k_{r-1} j_{u-1}}\left(\sum_{I_{11}}\left|d\left(x, A_{i s}\right)-d(x, A)\right|\right. \\
& +\sum_{I_{12}}\left|d\left(x, A_{i s}\right)-d(x, A)\right| \\
& +\sum_{I_{21}}\left|d\left(x, A_{i s}\right)-d(x, A)\right| \\
& +\sum_{I_{22}}\left|d\left(x, A_{i s}\right)-d(x, A)\right| \\
& \left.+\cdots+\sum_{I_{r u}}\left|d\left(x, A_{i s}\right)-d(x, A)\right|\right) \\
& \leq \frac{k_{1} j_{1}}{k_{r-1} j_{u-1}} . \tau_{11}+\frac{k_{1}\left(j_{2}-j_{1}\right)}{k_{r-1} j_{u-1}} . \tau_{12} \\
& +\frac{\left(k_{2}-k_{1}\right) j_{1}}{k_{r-1} j_{u-1}} . \tau_{21} \\
& +\frac{\left(k_{2}-k_{1}\right)\left(j_{2}-j_{1}\right)}{k_{r-1} j_{u-1}} \cdot \tau_{22} \\
& +\cdots+\frac{\left(k_{R}-k_{R-1}\right)\left(j_{U}-j_{U-1}\right)}{k_{r-1} j_{u-1}} \tau_{R U} \\
& +\cdots+\frac{\left(k_{r}-k_{r-1}\right)\left(j_{u}-j_{u-1}\right)}{k_{r-1} j_{u-1}} \tau_{r u} \\
& \leq\left(\sup _{i, s \geq 1,1} \tau_{i s}\right) \frac{k_{R} j_{U}}{k_{r-1} j_{u-1}} \\
& +\left(\sup _{i \geq R, s \geq U} \tau_{i s}\right) \frac{\left(k_{r}-k_{R}\right)\left(j_{u}-j_{U}\right)}{k_{r-1} j_{u-1}} \\
& \leq K \frac{k_{R} j_{U}}{k_{r-1} j_{u-1}}+\varepsilon M N \text {. }
\end{aligned}
$$

Since $k_{r-1}, j_{u-1} \rightarrow \infty$ as $t, v \rightarrow \infty$, it follows that

$$
\frac{1}{t v} \sum_{i, s=1,1}^{t, v}\left|d\left(x, A_{i s}\right)-d(x, A)\right| \rightarrow 0
$$

and consequently $\left\{A_{k j}\right\} \in\left[W_{2} \sigma_{1}\right]$. Hence, $\left[W_{2} N_{\theta}\right] \subseteq\left[W_{2} \sigma_{1}\right]$.
Theorem 3.12 For any double lacunary sequence θ, if $1<\liminf _{r} q_{r} \leq$ $\limsup q_{r} q_{r}<\infty$ and $1<\liminf _{u} q_{u} \leq \limsup \sin _{u} q_{u}<\infty$, then $\left[W_{2} N_{\theta}\right]=\left[W_{2} \sigma_{1}\right]$.
Proof: This follows from Theorem 3.10 and Theorem 3.11.
Theorem 3.13 For any double lacunary sequence θ, let $\left\{A_{k j}\right\} \in\left[W_{2} N_{\theta}\right] \cap$ $\left[W_{2} \sigma_{1}\right]$. If $A_{k j} \xrightarrow{\left[W_{2} N_{\theta}\right]} A$ and $A_{k j} \xrightarrow{\left[W_{2} \sigma_{1}\right]} B$ then $A=B$.
Proof: Let $A_{k j} \xrightarrow{\left[W_{2} \sigma_{1}\right]} A, A_{k j} \xrightarrow{\left[W_{2} N_{\theta}\right]} B$ and suppose that $A \neq B$. We can write

$$
\begin{aligned}
v_{r u}+\tau_{r u} & =\frac{1}{h_{r} \bar{h}_{u}} \sum_{k, j \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|+\frac{1}{h_{r} \bar{h}_{u}} \sum_{k, j \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, B)\right| \\
& \geq \frac{1}{h_{r} \bar{h}_{u}} \sum_{k, j \in I_{r u}}|d(x, A)-d(x, B)| \\
& =|d(x, A)-d(x, B)|
\end{aligned}
$$

where
$v_{r u}=\frac{1}{h_{r} \bar{h}_{u}} \sum_{k, j \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|$ and $\tau_{r u}=\frac{1}{h_{r} \bar{h}_{u}} \sum_{k, j \in I_{r u}}\left|d\left(x, A_{k j}\right)-d(x, B)\right|$.
Since $\left\{A_{k j}\right\} \in\left[W_{2} N_{\theta}\right], \tau_{r u} \rightarrow 0$. Thus for sufficiently large r, u we must have

$$
v_{r u}>\frac{1}{2}|d(x, A)-d(x, B)| .
$$

Observe that

$$
\begin{aligned}
\frac{1}{k_{r} j_{u}} \sum_{i, s=1,1}^{k_{r}, j_{u}}\left|d\left(x, A_{i s}\right)-d(x, A)\right| & \geq \frac{1}{k_{r} j_{u}} \sum_{I_{r u}}\left|d\left(x, A_{i s}\right)-d(x, A)\right| \\
& =\frac{\left(k_{r}-k_{r-1}\right)\left(j_{u}-j_{u-1}\right)}{k_{r} j_{u}} \cdot v_{r u} \\
& =\left(1-\frac{1}{q_{r}}\right)\left(1-\frac{1}{q_{u}}\right) \cdot v_{r u} \\
& >\frac{1}{2}\left(1-\frac{1}{q_{r}}\right)\left(1-\frac{1}{q_{u}}\right) \cdot|d(x, A)-d(x, B)|
\end{aligned}
$$

for sufficiently large r, u. Since $\left\{A_{k j}\right\} \in\left[W_{2} \sigma_{1}\right]$, the left hand side of the inequality above convergent to 0 , so we must have $q_{r} \rightarrow 1$ and $q_{u} \rightarrow 1$. But this implies, by proof of Theorem 3.11, that

$$
\left[W_{2} N_{\theta}\right] \subset\left[W_{2} \sigma_{1}\right] .
$$

That is, we have

$$
A_{k j} \xrightarrow{\left[W_{2} N_{\theta}\right]} B \Rightarrow A_{k j} \xrightarrow{\left[W_{2} \sigma_{1}\right]} B
$$

and therefore

$$
\frac{1}{t v} \sum_{i, s=1,1}^{t, v}\left|d\left(x, A_{i s}\right)-d(x, B)\right| \rightarrow 0
$$

Then, we have

$$
\begin{aligned}
\frac{1}{t v} \sum_{i, s=1,1}^{t, v}\left|d\left(x, A_{i s}\right)-d(x, B)\right|+ & \frac{1}{t v} \sum_{i, s=1,1}^{t, v}\left|d\left(x, A_{i s}\right)-d(x, A)\right| \\
& \geq|d(x, A)-d(x, B)|>0
\end{aligned}
$$

which yields a contradiction to our assumption, since both terms on the left hand side tend to 0 . That is, for each $x \in X$,

$$
|d(x, A)-d(x, B)|=0
$$

and therefore $A=B$.
Definition 3.14 The double sequence $\theta^{\prime}=\left\{\left(k_{r}^{\prime}, j_{u}^{\prime}\right)\right\}$ is called double lacunary refinement of the double lacunary sequence $\theta=\left\{\left(k_{r}, j_{u}\right)\right\}$ if $\left\{k_{r}\right\} \subseteq\left\{k_{r}^{\prime}\right\}$ and $\left\{j_{u}\right\} \subseteq\left\{j_{u}^{\prime}\right\}$.

Theorem 3.15 If θ^{\prime} is a double lacunary refinement of double lacunary sequence θ and if $\left\{A_{k j}\right\} \notin\left[W_{2} N_{\theta}\right]$, then $\left\{A_{k j}\right\} \notin\left[W_{2} N_{\theta^{\prime}}\right]$.

Proof: Let $\left\{A_{k j}\right\} \notin\left[W_{2} N_{\theta}\right]$. Then, for any non-empty closed subset $A \subseteq X$ there exists $\varepsilon>0$ and a subsequence $\left(k_{r_{n}}\right)$ of $\left(k_{r}\right)$ and $\left(j_{u_{n}}\right)$ of $\left(j_{u}\right)$ such that

$$
\tau_{r_{n} u_{n}}=\frac{1}{h_{r_{n}} \bar{h}_{u_{n}}} \sum_{k, j=1,1}^{k_{r_{n}}, j_{u_{n}}}\left|d\left(x, A_{k j}\right)-d(x, A)\right| \geq \varepsilon
$$

Writing

$$
I_{r_{n} u_{n}}=I_{s+1, t+1}^{\prime} \cup I_{s+1, t+2}^{\prime} \cup I_{s+2, t+1}^{\prime} \cup I_{s+2, t+2}^{\prime} \cup \ldots \cup I_{s+p, t+p}^{\prime}
$$

where

$$
k_{r_{n}-1}=k_{s}^{\prime}<k_{s+1}^{\prime}<\ldots<k_{s+p}^{\prime}=k_{r_{n}} \text { and } j_{u_{n-1}}=j_{t}^{\prime}<j_{t+1}^{\prime}<\ldots<j_{t+p}^{\prime}=j_{u_{n}} .
$$

Then we have

$$
\tau_{r_{n} u_{n}}=\frac{\sum_{I_{s+1, t+1}^{\prime}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|+\ldots+\sum_{I_{s+p, t+p}^{\prime}}\left|d\left(x, A_{k j}\right)-d(x, A)\right|}{h_{s+1}^{\prime} \bar{h}_{t+1}^{\prime}+\ldots+h_{s+p}^{\prime} \bar{h}_{t+p}^{\prime}} .
$$

It follows from Lemma 2.1 that

$$
\frac{1}{h_{s+p}^{\prime} \bar{h}_{t+p}^{\prime}} \sum_{I_{s+p, t+p}^{\prime}}\left|d\left(x, A_{k j}\right)-d(x, A)\right| \geq \varepsilon
$$

for some j and consequently, $\left\{A_{k j}\right\} \notin\left[W_{2} N_{\theta^{\prime}}\right]$.

References

[1] B. Altay and F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(1) (2005), 70-90.
[2] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, (1990).
[3] M. Baronti and P. Papini, Convergence of sequences of sets, In: Methods of Functional Analysis in Approximation Theory, ISNM 76, BirkhauserVerlag, Basel, (1986), 133-155.
[4] G. Beer, On convergence of closed sets in a metric space and distance functions, Bull. Aust. Math. Soc., 31(1985), 421-432.
[5] G. Beer, Wijsman convergence: A survey, Set-Valued Var. Anal., 2(1994), 77-94.
[6] J.S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis, 8(1988), 46-63.
[7] A.R. Freedman, J.J. Sember and M. Raphael, Some Cesaro type summability spaces, Proc. London Math. Soc., 37(1978), 508-520.
[8] J.D. Hill, On perfect summability of double sequences, Bull. Amer. Math. Soc., 46(1940), 327-331.
[9] I.G. Kull, Multiplication of summable double series, Uch. zap. Tartusskogo un-ta, 62(1958), 3-59 (in Russian).
[10] B.V. Limayea and M. Zeltser, On the pringsheim convergence of double series, Proc. Est. Acad. Sci., 58(2009), 108-121.
[11] F. Nuray and B.E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math., 49(2012), 87-99.
[12] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(1900), 289-321.
[13] R.T. Rockafellar and R.J.B. Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften 317, Springer-Verlag, (2009).
[14] E. Savaş, On some double lacunary sequence spaces of fuzzy numbers, Math. Comput. Appl., 15(3) (2010), 439-448.
[15] U. Ulusu and F. Nuray, Lacunary statistical convergence of sequence of sets, Prog. Appl. Math., 4(2) (2012), 99-109.
[16] U. Ulusu and F. Nuray, On strongly lacunary summability of sequences of sets, J. Appl. Math. Bioinform, 3(3) (2013), 75-88.
[17] R.A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc., 70(1964), 186-188.
[18] R.A. Wijsman, Convergence of sequences of convex sets, cones and functions II, Trans. Amer. Math. Soc., 123(1) (1966), 32-45.
[19] M. Zeltser, M. Mursaleen and S.A. Mohiuddine, On almost conservative matrix methods for double sequence spaces, Publ. Math. Debrecen, 75(2009), 1-13.

