

Gen. Math. Notes, Vol. 25, No. 1, November 2014, pp.8-18 ISSN 2219-7184; Copyright ©ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

Cesàro Summability of Double Sequences of Sets

Fatih Nuray¹, Uğur Ulusu² and Erdinç Dündar³

^{1,2,3}Department of Mathematics, Faculty of Science and Literature Afyon Kocatepe University, Afyonkarahisar, Turkey ¹E-mail: fnuray@aku.edu.tr ²E-mail: ulusu@aku.edu.tr ³E-mail: edundar@aku.edu.tr

(Received: 1-6-14 / Accepted: 21-7-14)

Abstract

In this paper, we study the concepts of Wijsman Cesàro summability and Wijsman lacunary convergence of double sequences of sets and investigate the relationship between them.

Keywords: Lacunary sequence, Cesàro summability, double sequence of sets, Wijsman convergence.

1 Introduction

The concept of convergence of sequences of numbers has been extended by several authors to convergence of sequences of sets (see, [3, 4, 5, 11, 16, 17, 18]). Nuray and Rhoades [11] extended the notion of convergence of set sequences to statistical convergence and gave some basic theorems. Ulusu and Nuray [15] defined the Wijsman lacunary statistical convergence of sequence of sets and considered its relation with Wijsman statistical convergence, which was defined by Nuray and Rhoades. Ulusu and Nuray [16] introduced the concept of Wijsman strongly lacunary summability for set sequences and discused its relation with Wijsman strongly Cesàro summability.

Hill [8] was the first who applied methods of functional analysis to double sequences. Also, Kull [9] applied methods of functional analysis of matrix maps of double sequences. A lot of usefull developments of double sequences in summability methods, the reader may refer to [1, 10, 14, 19].

In this paper, we study the concepts of Wijsman Cesàro summability and Wijsman lacunary convergence of double sequences of sets and investigate the relationship between them.

2 Definitions and Notations

Now, we recall the basic definitions and concepts (See [1, 2, 3, 4, 5, 11, 12, 14, 16, 17, 18]).

For any point $x \in X$ and any non-empty subset A of X, we define the distance from x to A by

$$d(x,A) = \inf_{a \in A} \rho(x,a).$$

Throughout the paper, we let (X, ρ) be a metric space and A, A_k be any non-empty closed subsets of X.

We say that the sequence $\{A_k\}$ is Wijsman convergent to A if

$$\lim_{k \to \infty} d(x, A_k) = d(x, A)$$

for each $x \in X$. In this case we write $W - \lim A_k = A$.

The sequence $\{A_k\}$ is said to be Wijsman Cesàro summable to A if $\{d(x, A_k)\}$ Cesàro summable to $\{d(x, A)\}$; that is, for each $x \in X$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} d(x, A_k) = d(x, A).$$

The sequence $\{A_k\}$ is said to be Wijsman strongly Cesàro summable to A if $\{d(x, A_k)\}$ strongly Cesàro summable to $\{d(x, A)\}$; that is, for each $x \in X$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} |d(x, A_k) - d(x, A)| = 0.$$

The sequence $\{A_k\}$ is said to be Wijsman strongly *p*-Cesàro summable to A if $\{d(x, A_k)\}$ strongly *p*-Cesàro summable to $\{d(x, A)\}$; that is, for each *p* positive real number and for each $x \in X$,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} |d(x, A_k) - d(x, A)|^p = 0.$$

By a lacunary sequence we mean an increasing integer sequence $\theta = \{k_r\}$ such that $k_0 = 0$ and $h_r = k_r - k_{r-1} \to \infty$ as $r \to \infty$. Throughout this paper the intervals determined by θ will be denoted by $I_r = (k_{r-1}, k_r]$, and ratio $\frac{k_r}{k_{r-1}}$ will be abbreviated by q_r .

Let $\theta = \{k_r\}$ be a lacunary sequence. We say that the sequence $\{A_k\}$ is Wijsman lacunary convergent to A for each $x \in X$,

$$\lim_{r} \frac{1}{h_r} \sum_{k \in I_r} d(x, A_k) = d(x, A).$$

In this case we write $A_k \to A(WN_\theta)$.

Let $\theta = \{k_r\}$ be a lacunary sequence. We say that the sequence $\{A_k\}$ is Wijsman strongly lacunary convergent to A for each $x \in X$,

$$\lim_{r} \frac{1}{h_r} \sum_{k \in I_r} |d(x, A_k) - d(x, A)| = 0.$$

In this case we write $A_k \to A([WN_\theta])$.

A double sequence $x = (x_{kj})_{k,j \in \mathbb{N}}$ of real numbers is said to be convergent to $L \in \mathbb{R}$ in Pringsheim's sense if for any $\varepsilon > 0$, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $|x_{kj} - L| < \varepsilon$ whenever $k, j > N_{\varepsilon}$. In this case we write

$$P - \lim_{k,j \to \infty} x_{kj} = L \quad or \quad \lim_{k,j \to \infty} x_{kj} = L.$$

A double sequence $x = (x_{kj})$ of real numbers is said to be bounded if there exists a positive real number M such that $|x_{kj}| < M$ for all $k, j \in \mathbb{N}$. That is

$$||x||_{\infty} = \sup_{k,j} |x_{kj}| < \infty.$$

The double sequence $\theta = \{(k_r, j_s)\}$ is called double lacunary sequence if there exist two increasing sequence of integers such that

$$k_0 = 0, \quad h_r = k_r - k_{r-1} \to \infty \quad as \quad r \to \infty$$

and

$$j_0 = 0$$
, $\bar{h}_u = j_u - j_{u-1} \to \infty$ as $u \to \infty$.

We use the following notations in the sequel:

$$k_{ru} = k_r j_u, \quad h_{ru} = h_r \bar{h}_u, \quad I_{ru} = \{(k, j) : k_{r-1} < k \le k_r \text{ and } j_{u-1} < j \le j_u\},$$

 $q_r = \frac{k_r}{k_{r-1}} \quad and \quad q_u = \frac{j_u}{j_{u-1}}.$

Lemma 2.1 [7, Lemma 3.2] If $b_1, b_2, ..., b_n$ are positive real numbers, and if $a_1, a_2, ..., a_n$ are real numbers satisfying

$$\frac{|a_1 + a_2 + \dots + a_n|}{b_1 + b_2 + \dots + b_n} > \varepsilon > 0,$$

then $|a_i|/b_i > \varepsilon$ for some i, where $1 \le i \le n$.

3 Main Results

Throughout the paper, A, A_{kj} denote any non-empty closed subsets of X.

Definition 3.1 The double sequence $\{A_{kj}\}$ is Wijsman convergent to A if

$$P - \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A) \quad or \quad \lim_{k,j \to \infty} d(x, A_{kj}) = d(x, A)$$

for each $x \in X$. In this case we write $W_2 - \lim A_{kj} = A$.

Example 3.2 Let $X = \mathbb{R}^2$ and $\{A_{kj}\}$ be the following double sequence:

$$A_{kj} = \left\{ (x, y) \in \mathbb{R}^2 : x^2 + (y - 1)^2 = \frac{1}{kj} \right\}.$$

This double sequence of sets is Wijsman convergent to the set $A = \{(0,1)\}$.

Definition 3.3 The double sequence $\{A_{kj}\}$ is said to be Wijsman Cesàro summable to A if $\{d(x, A_{kj})\}$ Cesàro summable to $\{d(x, A)\}$; that is, for each $x \in X$,

$$\lim_{m,n \to \infty} \frac{1}{mn} \sum_{k,j=1,1}^{m,n} d(x, A_{kj}) = d(x, A).$$

In this case we write $A_{kj} \stackrel{(W_2\sigma_1)}{\longrightarrow} A$.

Definition 3.4 The double sequence $\{A_{kj}\}$ is said to be Wijsman strongly Cesàro summable to A if $\{d(x, A_{kj})\}$ strongly Cesàro summable to $\{d(x, A)\}$; that is, for each $x \in X$,

$$\lim_{m,n\to\infty} \frac{1}{mn} \sum_{k,j=1,1}^{m,n} |d(x,A_{kj}) - d(x,A)| = 0.$$

In this case we write $A_{kj} \stackrel{[W_2\sigma_1]}{\longrightarrow} A$.

Example 3.5 Let $X = \mathbb{R}^2$ and define the double sequence $\{A_{kj}\}$ by

$$A_{kj} = \begin{cases} \{(x,y) \in \mathbb{R}^2 : (x-1)^2 + (y-1)^2 = k\} &, j = 1, \text{ for all } k \\ \{(x,y) \in \mathbb{R}^2 : (x-1)^2 + (y-1)^2 = j\} &, k = 1, \text{ for all } j \\ \{(0,0)\} &, \text{ otherwise.} \end{cases}$$

Then $\{A_{kj}\}$ is Wijsman convergent to the set $A = \{(0,0)\}$ but

$$\lim_{m,n\to\infty}\frac{1}{mn}\sum_{k,j=1,1}^{m,n}d(x,A_{kj})$$

does not tend to a finite limit. Hence, $\{A_{kj}\}$ is not Wijsman Cesàro summable. Also, $\{A_{kj}\}$ is not Wijsman strongly Cesàro summable. **Definition 3.6** The double sequence $\{A_{kj}\}$ is said to be Wijsman strongly p-Cesàro summable to A if $\{d(x, A_{kj})\}$ strongly p-Cesàro summable to $\{d(x, A)\}$; that is, for each p positive real number and for each $x \in X$,

$$\lim_{m,n\to\infty} \frac{1}{mn} \sum_{k,j=1,1}^{m,n} |d(x,A_{kj}) - d(x,A)|^p = 0.$$

In this case we write $A_{kj} \xrightarrow{[W_2\sigma_p]} A$.

Definition 3.7 Let $\theta = \{(k_r, j_s)\}$ be a double lacunary sequence. The double sequence $\{A_{kj}\}$ is Wijsman lacunary convergent to A if for each $x \in X$,

$$\lim_{r,u\to\infty}\frac{1}{h_r\bar{h}_u}\sum_{k=k_{r-1}+1}^{k_r}\sum_{j=j_{u-1}+1}^{j_u}d(x,A_{kj})=d(x,A).$$

In this case we write $A_{kj} \stackrel{(W_2N_{\theta})}{\longrightarrow} A$.

Definition 3.8 Let $\theta = \{(k_r, j_s)\}$ be a double lacunary sequence. The double sequence $\{A_{kj}\}$ is Wijsman strongly lacunary convergent to A if for each $x \in X$,

$$\lim_{r,u\to\infty}\frac{1}{h_r\bar{h}_u}\sum_{k=k_{r-1}+1}^{k_r}\sum_{j=j_{u-1}+1}^{j_u}|d(x,A_{kj})-d(x,A)|=0.$$

In this case we write $A_{kj} \xrightarrow{[W_2N_{\theta}]} A$.

Definition 3.9 Let $\theta = \{(k_r, j_s)\}$ be a double lacunary sequence. The double sequence $\{A_{kj}\}$ is Wijsman strongly p-lacunary convergent to A if for each p positive real number and for each $x \in X$,

$$\lim_{r,u\to\infty}\frac{1}{h_r\bar{h}_u}\sum_{k=k_{r-1}+1}^{k_r}\sum_{j=j_{u-1}+1}^{j_u}|d(x,A_{kj})-d(x,A)|^p=0.$$

In this case we write $A_{kj} \xrightarrow{[W_2^p N_{\theta}]} A$.

Theorem 3.10 For any double lacunary sequence θ , if $\liminf_r q_r > 1$ and $\liminf_u q_u > 1$, then $[W_2\sigma_1] \subseteq [W_2N_{\theta}]$.

Proof: Assume that $\liminf_r q_r > 1$ and $\liminf_u q_u > 1$. Then there exist $\lambda, \mu > 0$ such that $q_r \ge 1 + \lambda$ and $q_u \ge 1 + \mu$ for all $r, u \ge 1$, which implies that

$$\frac{k_r j_u}{h_r \overline{h}_u} \leq \frac{(1+\lambda)(1+\mu)}{\lambda \mu}$$

Let $A_{kj} \xrightarrow{[W_2\sigma_1]} A$. We can write

$$\begin{aligned} \frac{1}{h_r \bar{h}_u} \sum_{k,j \in I_{ru}} |d(x, A_{kj}) - d(x, A)| &= \frac{1}{h_r \bar{h}_u} \sum_{i,s=1,1}^{k_r, j_u} |d(x, A_{is}) - d(x, A)| \\ &- \frac{1}{h_r \bar{h}_u} \sum_{i,s=1,1}^{k_{r-1}, j_{u-1}} |d(x, A_{is}) - d(x, A)| \\ &= \frac{k_r j_u}{h_r \bar{h}_u} \Big(\frac{1}{k_r j_u} \sum_{i,s=1,1}^{k_r, j_u} |d(x, A_{is}) - d(x, A)| \Big) \\ &- \frac{k_{r-1} j_{u-1}}{h_r \bar{h}_u} \Big(\frac{1}{k_{r-1} j_{u-1}} \sum_{i,s=1,1}^{k_{r-1}, j_{u-1}} |d(x, A_{is}) - d(x, A)| \Big). \end{aligned}$$

Since $A_{kj} \xrightarrow{[W_2\sigma_1]} A$, the terms

$$\frac{1}{k_r j_u} \sum_{i,s=1,1}^{k_r, j_u} |d(x, A_{is}) - d(x, A)| \quad \text{and} \quad \frac{1}{k_{r-1} j_{u-1}} \sum_{i,s=1,1}^{k_{r-1}, j_{u-1}} |d(x, A_{is}) - d(x, A)|$$

both tend to 0, and it follows that

$$\frac{1}{h_r \bar{h}_u} \sum_{k,j \in I_{ru}} |d(x, A_{kj}) - d(x, A)| \to 0,$$

that is, $A_{kj} \stackrel{[W_2N_{\theta}]}{\longrightarrow} A$. Hence, $[W_2\sigma_1] \subseteq [W_2N_{\theta}]$.

Theorem 3.11 For any double lacunary sequence θ , if $\limsup_r q_r < \infty$ and $\limsup_u q_u < \infty$ then $[W_2N_{\theta}] \subseteq [W_2\sigma_1]$.

Proof: Assume that $\limsup_{r} q_r < \infty$ and $\limsup_{u} q_u < \infty$, then there exists M, N > 0 such that $q_r < M$ and $q_u < N$, for all r, u. Let $\{A_{kj}\} \in [W_2N_\theta]$ and $\varepsilon > 0$. Then we can find R, U > 0 and K > 0 such that

$$\sup_{i \ge R, s \ge U} \tau_{is} < \varepsilon \quad \text{and} \quad \tau_{is} < K \quad \text{for all } i, s = 1, 2, \cdots,$$

where

$$\tau_{ru} = \frac{1}{h_r \bar{h}_u} \sum_{I_{ru}} |d(x, A_{kj}) - d(x, A)|.$$

If t, v are any integers with $k_{r-1} < t \le k_r$ and $j_{u-1} < v \le j_u$, where r > R and u > U, then we can write

$$\begin{split} \frac{1}{tv} \sum_{i,s=1,1}^{kv} |d(x,A_{is}) - d(x,A)| &\leq \frac{1}{k_{r-1}j_{u-1}} \sum_{i,s=1,1}^{k_{r,ju}} |d(x,A_{is}) - d(x,A)| \\ &= \frac{1}{k_{r-1}j_{u-1}} \left(\sum_{l_{11}} |d(x,A_{is}) - d(x,A)| \right. \\ &+ \sum_{l_{12}} |d(x,A_{is}) - d(x,A)| \\ &+ \sum_{l_{12}} |d(x,A_{is}) - d(x,A)| \\ &+ \sum_{l_{22}} |d(x,A_{is}) - d(x,A)| \\ &+ \sum_{l_{22}} |d(x,A_{is}) - d(x,A)| \\ &+ \cdots + \sum_{l_{ru}} |d(x,A_{is}) - d(x,A)| \\ &+ \sum_{l_{ru}} |d(x,A_{is}) -$$

Since $k_{r-1}, j_{u-1} \to \infty$ as $t, v \to \infty$, it follows that

$$\frac{1}{tv} \sum_{i,s=1,1}^{t,v} |d(x, A_{is}) - d(x, A)| \to 0$$

and consequently $\{A_{kj}\} \in [W_2\sigma_1]$. Hence, $[W_2N_\theta] \subseteq [W_2\sigma_1]$.

Theorem 3.12 For any double lacunary sequence θ , if $1 < \liminf_r q_r \leq \limsup_r q_r < \infty$ and $1 < \liminf_u q_u \leq \limsup_u q_u < \infty$, then $[W_2N_{\theta}] = [W_2\sigma_1]$. **Proof:** This follows from Theorem 3.10 and Theorem 3.11.

Theorem 3.13 For any double lacunary sequence θ , let $\{A_{kj}\} \in [W_2 N_\theta] \cap [W_2 \sigma_1]$. If $A_{kj} \xrightarrow{[W_2 N_\theta]} A$ and $A_{kj} \xrightarrow{[W_2 \sigma_1]} B$ then A = B. **Proof:** Let $A_{kj} \xrightarrow{[W_2 \sigma_1]} A$, $A_{kj} \xrightarrow{[W_2 N_\theta]} B$ and suppose that $A \neq B$. We can write $v_{ru} + \tau_{ru} = \frac{1}{h_r \overline{h}_u} \sum_{k,j \in I_{ru}} |d(x, A_{kj}) - d(x, A)| + \frac{1}{h_r \overline{h}_u} \sum_{k,j \in I_{ru}} |d(x, A_{kj}) - d(x, B)|$ $\geq \frac{1}{h_r \overline{h}_u} \sum_{k,j \in I_{ru}} |d(x, A) - d(x, B)|$ = |d(x, A) - d(x, B)|,

where

$$\upsilon_{ru} = \frac{1}{h_r \overline{h}_u} \sum_{k,j \in I_{ru}} |d(x, A_{kj}) - d(x, A)| \text{ and } \tau_{ru} = \frac{1}{h_r \overline{h}_u} \sum_{k,j \in I_{ru}} |d(x, A_{kj}) - d(x, B)|.$$

Since $\{A_{kj}\} \in [W_2N_\theta], \tau_{ru} \to 0$. Thus for sufficiently large r, u we must have

$$v_{ru} > \frac{1}{2} |d(x, A) - d(x, B)|.$$

Observe that

$$\frac{1}{k_r j_u} \sum_{i,s=1,1}^{k_r, j_u} |d(x, A_{is}) - d(x, A)| \ge \frac{1}{k_r j_u} \sum_{I_{ru}} |d(x, A_{is}) - d(x, A)|$$

$$=\frac{(k_r - k_{r-1})(j_u - j_{u-1})}{k_r j_u}.v_{ru}$$

$$= \left(1 - \frac{1}{q_r}\right) \left(1 - \frac{1}{q_u}\right) . \upsilon_{ru}$$
$$> \frac{1}{2} \left(1 - \frac{1}{q_r}\right) \left(1 - \frac{1}{q_u}\right) . \left|d(x, A) - d(x, B)\right|$$

for sufficiently large r, u. Since $\{A_{kj}\} \in [W_2\sigma_1]$, the left hand side of the inequality above convergent to 0, so we must have $q_r \to 1$ and $q_u \to 1$. But this implies, by proof of Theorem 3.11, that

$$[W_2 N_\theta] \subset [W_2 \sigma_1].$$

That is, we have

$$A_{kj} \stackrel{[W_2N_{\theta}]}{\longrightarrow} B \Rightarrow A_{kj} \stackrel{[W_2\sigma_1]}{\longrightarrow} B,$$

and therefore

$$\frac{1}{tv} \sum_{i,s=1,1}^{t,v} |d(x, A_{is}) - d(x, B)| \to 0.$$

Then, we have

$$\frac{1}{tv} \sum_{i,s=1,1}^{t,v} |d(x,A_{is}) - d(x,B)| + \frac{1}{tv} \sum_{i,s=1,1}^{t,v} |d(x,A_{is}) - d(x,A)| \\ \ge |d(x,A) - d(x,B)| > 0,$$

which yields a contradiction to our assumption, since both terms on the left hand side tend to 0. That is, for each $x \in X$,

$$|d(x, A) - d(x, B)| = 0,$$

and therefore A = B.

Definition 3.14 The double sequence $\theta' = \{(k'_r, j'_u)\}$ is called double lacunary refinement of the double lacunary sequence $\theta = \{(k_r, j_u)\}$ if $\{k_r\} \subseteq \{k'_r\}$ and $\{j_u\} \subseteq \{j'_u\}$.

Theorem 3.15 If θ' is a double lacunary refinement of double lacunary sequence θ and if $\{A_{kj}\} \notin [W_2N_{\theta}]$, then $\{A_{kj}\} \notin [W_2N_{\theta'}]$.

Proof: Let $\{A_{kj}\} \notin [W_2N_{\theta}]$. Then, for any non-empty closed subset $A \subseteq X$ there exists $\varepsilon > 0$ and a subsequence (k_{r_n}) of (k_r) and (j_{u_n}) of (j_u) such that

$$\tau_{r_n u_n} = \frac{1}{h_{r_n} \overline{h}_{u_n}} \sum_{k,j=1,1}^{k_{r_n}, j_{u_n}} |d(x, A_{kj}) - d(x, A)| \ge \varepsilon.$$

Writing

$$I_{r_n u_n} = I'_{s+1,t+1} \cup I'_{s+1,t+2} \cup I'_{s+2,t+1} \cup I'_{s+2,t+2} \cup \dots \cup I'_{s+p,t+p}$$

where

$$k_{r_n-1} = k'_s < k'_{s+1} < \dots < k'_{s+p} = k_{r_n} \text{ and } j_{u_{n-1}} = j'_t < j'_{t+1} < \dots < j'_{t+p} = j_{u_n}.$$

Then we have

$$\tau_{r_n u_n} = \frac{\sum\limits_{I'_{s+1,t+1}} |d(x,A_{kj}) - d(x,A)| + \ldots + \sum\limits_{I'_{s+p,t+p}} |d(x,A_{kj}) - d(x,A)|}{h'_{s+1}\overline{h}'_{t+1} + \ldots + h'_{s+p}\overline{h}'_{t+p}}.$$

It follows from Lemma 2.1 that

$$\frac{1}{h'_{s+p}\overline{h}'_{t+p}}\sum_{I'_{s+p,t+p}}|d(x,A_{kj})-d(x,A)| \ge \varepsilon$$

for some j and consequently, $\{A_{kj}\} \notin [W_2 N_{\theta'}]$.

References

- B. Altay and F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(1) (2005), 70-90.
- [2] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhauser, Boston, (1990).
- [3] M. Baronti and P. Papini, Convergence of sequences of sets, In: Methods of Functional Analysis in Approximation Theory, ISNM 76, Birkhauser-Verlag, Basel, (1986), 133-155.
- [4] G. Beer, On convergence of closed sets in a metric space and distance functions, Bull. Aust. Math. Soc., 31(1985), 421-432.
- [5] G. Beer, Wijsman convergence: A survey, Set-Valued Var. Anal., 2(1994), 77-94.
- [6] J.S. Connor, The statistical and strong p-Cesaro convergence of sequences, Analysis, 8(1988), 46-63.
- [7] A.R. Freedman, J.J. Sember and M. Raphael, Some Cesaro type summability spaces, Proc. London Math. Soc., 37(1978), 508-520.
- [8] J.D. Hill, On perfect summability of double sequences, Bull. Amer. Math. Soc., 46(1940), 327-331.
- [9] I.G. Kull, Multiplication of summable double series, Uch. zap. Tartusskogo un-ta, 62(1958), 3-59 (in Russian).

- [10] B.V. Limayea and M. Zeltser, On the pringsheim convergence of double series, Proc. Est. Acad. Sci., 58(2009), 108-121.
- [11] F. Nuray and B.E. Rhoades, Statistical convergence of sequences of sets, Fasc. Math., 49(2012), 87-99.
- [12] A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(1900), 289-321.
- [13] R.T. Rockafellar and R.J.B. Wets, Variational Analysis, Grundlehren der Mathematischen Wissenschaften 317, Springer-Verlag, (2009).
- [14] E. Savaş, On some double lacunary sequence spaces of fuzzy numbers, Math. Comput. Appl., 15(3) (2010), 439-448.
- [15] U. Ulusu and F. Nuray, Lacunary statistical convergence of sequence of sets, Prog. Appl. Math., 4(2) (2012), 99-109.
- [16] U. Ulusu and F. Nuray, On strongly lacunary summability of sequences of sets, J. Appl. Math. Bioinform, 3(3) (2013), 75-88.
- [17] R.A. Wijsman, Convergence of sequences of convex sets, cones and functions, Bull. Amer. Math. Soc., 70(1964), 186-188.
- [18] R.A. Wijsman, Convergence of sequences of convex sets, cones and functions II, Trans. Amer. Math. Soc., 123(1) (1966), 32-45.
- [19] M. Zeltser, M. Mursaleen and S.A. Mohiuddine, On almost conservative matrix methods for double sequence spaces, *Publ. Math. Debrecen*, 75(2009), 1-13.