

Gen. Math. Notes, Vol. 5, No. 1, July 2011, pp. 7-14 ISSN 2219-7184; Copyright © ICSRS Publication, 2011 www.i-csrs.org Available free online at http://www.geman.in

Free Actions on Semiprime Gamma Rings

Kalyan Kumar Dey¹ and Akhil Chandra Paul²

¹Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh E-mail: kkdmath@yahoo.com ²Department of Mathematics, Rajshahi University, Rajshahi-6205, Bangladesh E-mail: acpaulrubd_math@yahoo.com

(Received: 25-5-11/Accepted: 13-6-11)

Abstract

Let M be a semiprime Γ -ring. We study on some mappings related to left centralizers, centralizers, derivations, (σ, τ) -derivations and generalized (σ, τ) -derivations which are free actions on semiprime Γ -rings. If $\varphi(x) = T(x)\alpha x - x\alpha T(x)$ for all $x \in M$, $\alpha \in \Gamma$ is a mapping from M into M. Then we show that it is a free action. If $F : M \to M$ is a generalized (σ, τ) derivation with associate (σ, τ) -derivation d, and a in F is a dependent element, then we also show that it is a dependent element of $(\sigma + d)$. Furthermore, we prove that for centralizer fand a derivation d of a semiprime Γ -ring M, $\varphi = d\circ f$ is a free action.

Keywords: prime Γ -ring, semiprime Γ -ring, dependent element, free action, centralizer, derivation.

1 Introduction

Let *M* and Γ be additive abelian groups. *M* is called a Γ -ring if for all $a, b, c \in M$, $\alpha, \beta \in \Gamma$ the following conditions are satisfied :

- (i) $a\beta b \in M$,
- (ii) $(a+b)\alpha c = a\alpha c + b\alpha c, \ a(\alpha + \beta)b = a\alpha b + a\beta b, \ a\alpha(b+c) = a\alpha b + a\alpha c,$

(iii) $(a\alpha b)\beta c = a\alpha (b\beta c).$

Throughout, Z(M) denote the center of M. As usual, the commutator $x\alpha y - y\alpha x$ will be denoted by $[x, y]_{\alpha}$. We know that $[x\beta y, z]_{\alpha} = x\beta[y, z]_{\alpha} + [x, z]_{\alpha}\beta y + x[\beta,\alpha]_z y$ and $[x, y\beta z]_{\alpha} = y\beta[x, z]_{\alpha} + [x, y]_{\alpha}\beta z + y[\beta,\alpha]_x z$, for all $x,y,z \in M$ and for all $\alpha,\beta \in \Gamma$. We shall take an assumption (*) $x\alpha y\beta z = x\beta y\alpha z$ for all $x,y,z \in M$, $\alpha,\beta \in \Gamma$. Using the assumption (*) the identities $[x\beta y, z]_{\alpha} = x\beta[y, z]_{\alpha} + [x, z]_{\alpha}\beta y$ and $[x, y\beta z]_{\alpha} = y\beta[x, z]_{\alpha} + [x, y]_{\alpha}\beta z$, for all x,y, $z \in M$ and for all $\alpha,\beta \in \Gamma$ are used extensively in our results. Recall that a Γ -ring M is prime if $a\Gamma M\Gamma b = 0$ implies that either a = 0 or b = 0, and is semiprime if $a\Gamma M\Gamma a = 0$ implies a = 0. An additive mapping D: $M \to M$ is called a derivation provided $D(x\alpha y) = D(x)\alpha y + x\alpha D(y)$ holds for all pairs $x,y \in M$, $\alpha \in \Gamma$. Let σ be an automorphism of a Γ -ring M. An additive mapping D: $M \to M$ is called an σ -derivation if D $(x\alpha y) = D(x)\alpha\sigma(y) + x\alpha D(y)$ holds for all $x,y \in M$, $\alpha \in \Gamma$. Note that the mapping, $D = \sigma - I$, where I denotes the identity mapping on M, is an σ -derivation. Of course, the concept of an σ -derivation generalizes the concept of a derivation, since any I-derivation is a derivation. σ -derivations are further generalized as (σ, τ) -derivations. Let σ, τ be automorphisms of M, then an additive mapping D: $M \to M$ is

(6, τ)-derivations. Let σ , τ be automorphisms of M, then an additive mapping $D: M \to M$ is called an (σ, τ) -derivation if $D(x\alpha y) = D(x)\alpha\sigma(y) + \tau(x)\alpha D(y)$ holds for all pairs $x, y \in M$, $\alpha \in \Gamma$. σ -derivations and (σ, τ) -derivations have been applied in various situations; in particular, in the solution of some functional equations. An additive mapping F of a Γ -ring M into itself is called a generalized derivation, with the associated derivation d, if there exists a derivation d of M such that $F(x\alpha y) = F(x)\alpha y + x\alpha d(y)$ for all $x, y \in M$, $\alpha \in \Gamma$. The concept of a generalized derivation covers both the concepts of a derivation and of a left centralizer provided F = d and d = 0, respectively. An additive mapping $f: M \to M$ is called centralizing (commuting) if $[f(x), x]_{\alpha} \in Z(M)$ ($[f(x), x]_{\alpha} = 0$) for all $x \in M$, $\alpha \in \Gamma$. An additive mapping

 $T: M \to M$ is called a left (right) centralizer if $T(x\alpha y) = T(x)\alpha y$ ($T(x\alpha y) = x\alpha T(y)$) for all x, $y \in M$, $\alpha \in \Gamma$. If $a \in M$, then $L_a(x) = a\alpha x$ and $R_a(x) = x\alpha a$ ($x \in M$, $\alpha \in \Gamma$) define a left centralizer and a right centralizer of M, respectively.

An additive mapping T: $M \to M$ is called a centralizer if $T(x\alpha y) = T(x)\alpha y = x\alpha T(y)$ for all x, $y \in M$, $\alpha \in \Gamma$. An element $a \in M$ is called a dependent element of a mapping $F : M \to M$ if $F(x)\alpha a = a\alpha x$ holds for all $x \in M$, $\alpha \in \Gamma$. A mapping $F : M \to M$ is called a free action if zero is the only dependent element of F. For a mapping $F : M \to M$, D(F) denotes the collection of all dependent elements of F.

The notion of a free action has been introduced by Murray and Neumann [7] and von Neumann [8] to study abelian von Neumann algebras.

Laradji and Thaheem [6] introduced the dependent elements of the endomorphism of semiprime rings and obtained a number of results of [5] to semiprime rings.

Vukman and Kosi-Ulbl [12, 13] and Vukman [11] have made further study of dependent elements of various mappings related to automorphisms, derivations, (α , β)-derivations and generalized derivations of semiprime rings.

Chaudhry and Samman [3] studied on dependent elements of mappings and free actions of semiprime rings by the motivation of the work of Laradji and Thaheem [6], Vukman and Kosi-Ulbl [13] and Vukman [11].

In this paper, motivated the works in [6] we obtain the analogous results of [6] on Γ -rings.

2. **Results**

Lemma 2.1 Let M be a semiprime Γ -ring satisfying the condition (*). Let $a\beta[x, y]_{\alpha} = 0$, for $a, x, y \in M$, $\alpha, \beta \in \Gamma$, then $a \in Z(M)$.

Proof

Since $a\beta[x, y]_{\alpha} = 0$, for $a, x, y \in M$, $\alpha, \beta \in \Gamma$, then replace y by a, we get $a\beta[x, a]_{\alpha} = 0$, for $a, x \in M$, $\alpha, \beta \in \Gamma$. Thus we get $a\beta x\alpha a = a\beta a\alpha x$, for all $a, x \in M$, $\alpha, \beta \in \Gamma$. Now $[a, x]_{\alpha}\beta[a, y]_{\alpha} = (a\alpha x - x\alpha a)\beta(a\alpha y - y\alpha a)$ $= a\alpha x\beta a\alpha y - a\alpha x\beta y\alpha a - x\alpha a\beta a\alpha y + x\alpha a\beta y\alpha a$ $= a\alpha(x\beta a)\alpha y - a\alpha(x\beta y)\alpha a - x\alpha a\beta a\alpha y + x\alpha a\beta(y\alpha a)$ $= a\alpha a\beta x\alpha y - a\alpha a\alpha x\beta y - x\alpha a\beta a\alpha y + x\alpha a\beta a\alpha y$ $= a\alpha a\beta x\alpha y - a\alpha a\alpha x\beta y - x\alpha a\beta a\alpha y + x\alpha a\beta a\alpha y$ $= a\alpha a\beta x\alpha y - a\alpha a\alpha x\beta y - a\alpha a\beta x\alpha y - a\alpha a\beta x\alpha y = 0$, for all $a, x, y \in M$, $\alpha, \beta \in \Gamma$. Hence $[a, x]_{\alpha}\beta[a, y]_{\alpha} = 0$, for all $a, x, y \in M$, $\alpha, \beta \in \Gamma$. Replace y by y δx , we get, $[a, x]_{\alpha}\beta[a, y\delta x]_{\alpha} = 0$ $\Rightarrow [a, x]_{\alpha}\beta y\delta[a, x]_{\alpha} + [a, x]_{\alpha}\beta[a, y]_{\alpha}\delta x = 0$, $\Rightarrow [a, x]_{\alpha}\beta y\delta[a, x]_{\alpha} = 0$, for all $a, x, y \in M$, $\alpha, \beta, \delta \in \Gamma$. By the semiprimeness of M we get, $[a, x]_{\alpha} = 0$, for all $a, x \in M$. Hence $a \in Z(M)$, for all $a \in M$.

Theorem 2.2. Let M be a semiprime Γ -ring satisfying the assumption (*) and T a left centralizer of M. Then $a \in D(T)$ if and only if $a \in Z(M)$ and T(a) = a.

Proof. Let $a \in D(T)$. Then (1) $T(x)\alpha a = a\alpha x, \alpha \in \Gamma$. Replacing x by x β y in (1), we get T(x β y) α a = a α x β y, x,y \in M, α , $\beta \in \Gamma$. That is, (2) $T(x)\beta y\alpha a = a\alpha x\beta y, x, y \in M, \alpha, \beta \in \Gamma.$ Multiplying (2) by δz on the right, we get (3) $T(x)\beta ya\delta z = a\alpha x\beta y\delta z, x, y, z \in M, \alpha, \beta, \delta \in \Gamma.$ Replacing y by $y\delta z$ in (2), we get (4) $T(x)\beta y \delta z \alpha a = a \alpha x \beta y \delta z, x, y, z \in M, \alpha, \beta, \delta \in \Gamma.$ Subtracting (4) from (3), we get $T(x)\beta y\delta(a\alpha z - z\alpha a) = T(x)\beta y\delta[a, z]_{\alpha} = 0$, $x, y, z \in M$, $\alpha, \beta, \delta \in \Gamma$. Replacing y by addy and then using semiprimeness of M, we get $T(x)\beta a\delta[a, z]_{\alpha} = 0$. That is, $a\beta x\delta[a, z]_{\alpha} = 0$, which, by semiprimeness of M, implies $a\beta[a, z]_{\alpha} = 0$ for all $a \in M$, $\alpha, \beta \in \Gamma$. By lemma 2.1 we get $a \in Z(M)$. Since $a \in Z(M)$, we have $a\alpha y = y\alpha a$, $\alpha \in \Gamma$. Thus $T(a\alpha y) = T(y\alpha a)$, $\alpha \in \Gamma$. That is, $T(a)\alpha y = T(y)\alpha a = a\alpha y$. So $(T(a) - a)\alpha y = 0$, Thus we get, $(T(a) - a)\alpha y(T(a) - a) = 0$. By semiprimeness of M, implies T(a) - a = 0. Thus T(a) = a. Conversely, let T(a) = a and $a \in Z(M)$. Then $T(x)\alpha a = T(x\alpha a) = T(a\alpha x) = T(a)\alpha x = a\alpha x$. Thus $a \in D(T)$.

Theorem 2.3. Let M be a prime Γ -ring and $T \neq I$ a left centralizer of M. Then T is a free action on M.

Proof. Let $a \in D(T)$. Then $T(x)\alpha = a\alpha x$, $\alpha \in \Gamma$. Moreover, $a \in Z(M)$ by Theorem 2.2. Thus $T(x)\alpha = x\alpha a$, $\alpha \in \Gamma$. That is, (5) $(T(x) - x)\alpha a = 0$, $\alpha \in \Gamma$. Since $a \in Z(M)$, from (5) we get $(T(x) - x)\alpha z\beta a = 0$ for all $z \in M$, $\alpha, \beta \in \Gamma$. Since $T \neq I$ and M is prime, we have a = 0. So T is a free action.

Theorem 2.4. Let *M* be a semiprime Γ -ring satisfying the condition (*) and *T* an injective left centralizer of *M*. Then $\varphi = T + I$ is a free action on *M*.

Proof. Obviously T + I is a left centralizer of M. Let $a \in D(T + I)$. Then by Theorem 2.2, $a \in Z(M)$ and (T + I)(a) = T(a) + I(a) = T(a) + a = a. Thus T(a) = 0. So $a \in Ker(T)$. Since T is injective, we have a = 0. Hence T is a free action.

Theorem 2.5. Let T be a left centralizer of a semiprime Γ -ring M satisfying the condition (*). Then $\varphi: M \to M$, defined by $\varphi(x) = [T(x), x]_{\alpha}$ for all $x \in M$, $\alpha \in \Gamma$ is a free action.

Proof . Let $a \in D(\phi)$. Then (6) $[T(x), x]_{\alpha}\beta a = a\beta x$ for all $x \in M$, $\alpha, \beta \in \Gamma$. Linearizing (6) and using (6) after linearization, we get (7) $[T(x), y]_{\alpha}\beta a + [T(y), x]_{\alpha}\beta a = 0$. Replacing y by $a\delta y$ in (7), we get $0 = [T(x), a\delta y]_{\alpha}\beta a + [T(a\delta y), x]_{\alpha}\beta a = a\delta[T(x), y]_{\alpha}\beta a + [T(x), a]_{\alpha}\delta y\beta a + [T(a)\delta y, x]_{\alpha}\beta a$ $= a\delta[T(x), y]_{\alpha}\beta a + [T(x), a]_{\alpha}\delta y\beta a + T(a)\delta[y, x]_{\alpha}\beta a + [T(a), x]_{\alpha}\delta y\beta a$. That is, (8) $a\delta[T(x), y]_{\alpha}\beta a + [T(x), a]_{\alpha}\delta y\beta a + T(a)\delta[y, x]_{\alpha}\beta a + [T(a), x]_{\alpha}\delta y\beta a = 0$. Using (7), from (8) we get $- a\delta[T(y), x]_{\alpha}\beta a + [T(x), a]_{\alpha}\delta y\beta a + T(a)\delta[y, x]_{\alpha}\beta a + [T(a), x]_{\alpha}\delta y\beta a = 0$, which implies (9) $- a\delta[T(a), a]_{\alpha}\beta a + [T(a), a]_{\alpha}\delta a\beta a + [T(a), a]_{\alpha}\delta a\beta a = 0$. using (6), from (9) we get $- a\delta a\beta a + a\delta a\beta a + a\delta a\beta a = 0$. That is, $a\delta a\beta a = 0$. Putting $\delta = \beta$, we have $a\delta a\delta a = 0 \Longrightarrow (a\delta)^2 a = 0$. Hence a is nilpotent. But we know that a semiprime Γ -ring does not contain nonzero nilpotent element. Hence a = 0. Hence ϕ is a free action.

Theorem 2.6. Let M be a semiprime Γ -ring satisfying the condition (*) and $d: M \to M$ a derivation. Then the mapping $\varphi: M \to M$, defined by $\varphi(x) = [d(x), x]_{\alpha}$ for all $x \in M$, $\alpha \in \Gamma$ is a free action.

Proof. Let $a \in D(\phi)$. Then (10) $\varphi(x)\beta a = [d(x), x]_{\alpha}\beta a = a\beta x, \alpha, \beta \in \Gamma.$ Linearizing (10) and using (10) after linearization, we get (11) $[d(x), y]_{\alpha}\beta a + [d(y), x]_{\alpha}\beta a = 0$ for all $x, y \in M, \alpha, \beta \in \Gamma$. Replacing y by x in (11), we get (12) $2[d(x), x]_{\alpha}\beta a = 0$ for all $x \in M$, $\alpha, \beta \in \Gamma$. Replacing y by $x\delta y$ in (11), we get $0 = [d(x), x\delta y]_{\alpha}\beta a + [d(x\delta y), x]_{\alpha}\beta a$ $= x\delta[d(x), y]_{\alpha}\beta a + [d(x), x]_{\alpha}\delta y\beta a + [d(x)\delta y + x\delta d(y), x]_{\alpha}\beta a$ $= x\delta[d(x), y]_{\alpha}\beta a + [d(x), x]_{\alpha}\delta y\beta a + d(x)\delta[y, x]_{\alpha}\beta a + [d(x), x]_{\alpha}\delta y\beta a + x\delta[d(y), x]_{\alpha}\beta a$ + $[x, x]_{\alpha} \delta d(y) \beta a$. That is, (13) $0 = x\delta\{[d(x), y]_{\alpha}\beta a + [d(y), x]_{\alpha}\beta a\} + 2[d(x), x]_{\alpha}\delta\gamma\alpha a + d(x)\delta[y, x]_{\alpha}\beta a.$ Using (11), from (13) we get (14) $2[d(x), x]\alpha\delta\gamma\beta a + d(x)\delta[\gamma, x]\alpha\beta a = 0$ for all $x, y \in M$. Replacing y by $y\gamma a$ in (14), we get $0 = 2[d(x), x]_{\alpha} \delta y \gamma a \beta a + d(x) \delta [y \gamma a, x]_{\alpha} \beta a$ $= 2[d(x), x]_{\alpha} \delta y \gamma a \beta a + d(x) \delta [y, x]_{\alpha} \gamma a \beta a + d(x) \delta y \gamma [a, x]_{\alpha} \beta a.$ That is, (15) $(2[d(x), x]_{\alpha}\delta y\gamma a + d(x)\delta[y, x]_{\alpha}\gamma a)\beta a + d(x)\delta y\gamma[a, x]_{\alpha}\beta a = 0.$ Using (14), from (15) we get

(16) $d(x)\delta y\gamma[a, x]_{\alpha}\beta a = 0.$ Replacing v by $x\lambda v$ in (16), we get (17) d(x) $\delta x \lambda y \gamma [a, x]_{\alpha} \beta a = 0.$ Multiplying (16) by $x\lambda$ on the left, we get (18) $x\lambda d(x)\delta y\gamma[a, x]_{\alpha}\beta a = 0.$ Subtracting (18) from (17), we get $[d(x), x]_{\lambda}\delta y\gamma[a, x]_{\alpha}\beta a = 0$. Replacing y by aay in the last identity and then using (10), we get (19) $a\delta x \alpha y \gamma [a, x]_{\alpha} \beta a = 0.$ Replacing y by a β a δ y in (19), we get (20) adx $\alpha a\beta a \delta y \gamma [a, x]_{\alpha} \beta a = 0.$ Multiplying (19) on the left by a and replacing y by $a\delta y$ in (19), we get (21) aaa $\delta x \alpha a \delta y \gamma [a, x]_{\alpha} \beta a = 0.$ Subtracting (20) from (21), we get (22) $a\delta(a\alpha x - x\alpha a)\beta a\delta y\lambda[a, x]_{\alpha}\beta a = 0.$ Replacing y by yoa in (22), we get $a\delta[a, x]_{\alpha}\beta a\delta y\delta a\lambda[a, x]_{\alpha}\beta a = 0$, which, by semiprimeness of M, implies that $a\delta[a, x]_{\alpha}\beta a = 0$. In particular, $a\delta[d(a), a]_{\alpha}\beta a = 0$. This, by (10), implies that $a\delta a\beta a = 0$. Putting $\delta = \beta$, we have $a\delta a\delta a = 0 \Rightarrow$

 $a\delta[d(a), a]_{\alpha}\beta a = 0$. This, by (10), implies that $a\delta a\beta a = 0$. Putting $\delta = \beta$, we have $a\delta a\delta a = 0 \Rightarrow (a\delta)^2 a = 0$. Hence a is nilpotent. But we know that a semiprime Γ -ring does not contain a nonzero nilpotent element. Hence a = 0. Hence we get that $\phi(x) = [d(x), x]_{\alpha}$ is a free action on M.

We now define a generalized (σ , τ)-derivation of a Γ -ring M.

Definition 2.7. Let σ and τ be automorphisms of a Γ -ring M. An additive mapping $F : M \to M$ is called a generalized (σ, τ) -derivation, with the associated (σ, τ) -derivation d, if there exists an (σ, τ) -derivation d of M such that $F(x\alpha y) = \sigma(x)\alpha F(y) + d(x)\alpha \tau(y)$.

Remark 2.8. We note that for F = d, F is an (σ, τ) -derivation and for d = 0 and $\sigma = I$, F is a right centralizer. So a generalized (σ, τ) -derivation covers both the concepts of an (σ, τ) -derivation and a right centralizer.

Theorem 2.9. Let M be a semiprime Γ -ring satisfying the condition (*). Let σ , τ be centralizing automorphisms of M and let $F : M \to M$ be a generalized (σ , τ)-derivation with the associated (σ , τ)-derivation d. If a is a dependent element of F, then $a \in D(\sigma + d)$.

Proof . Let $a \in D(F)$. Then (23) $F(x)\alpha a = a\alpha x$ for all $x \in M$, $\alpha \in \Gamma$. Replacing x by $x\beta y$ in (23), we get $F(x\beta y)\alpha a = a\alpha x\beta y$, which implies $\sigma(x)\beta F(y)\alpha a + d(x)\beta \tau(y)\alpha a = a\alpha x\beta y$, $\alpha,\beta \in \Gamma$. That is, $\sigma(x)\beta a\alpha y + d(x)\beta \tau(y)\alpha a = a\alpha x\beta y = F(x)\alpha a\beta y$. Thus (24) $(F(x)\alpha a - \sigma(x)\alpha a)\beta y = d(x)\beta \tau(y)\alpha a$. Multiplying (24) by δz on the right, we get $(F(x)\alpha a - \sigma(x)\alpha a)\beta y\delta z = d(x)\beta \tau(y)\alpha a\delta z$. (25) $(F(x)\alpha a - \sigma(x)\alpha a)\beta y\delta z = d(x)\beta \tau(y)\delta \alpha \alpha z$, $\alpha,\beta,\delta \in \Gamma$. Replacing y by $y\delta z$ in (24), we get (26) $(F(x)\alpha a - \sigma(x)\alpha a)\beta y\delta z = d(x)\beta \tau(y)\delta \tau(z)\alpha a$. Subtracting (25) from (26), we get $d(x)\beta \tau(y)\delta(\tau(z)\alpha a - a\alpha z) = 0$, which, due to surjectivity of τ , implies (27) $d(x)\beta y\delta(\tau(z)\alpha a - a\alpha z) = 0$. Since τ is centralizing and M is semiprime, from (27) we get $d(x)\beta(\tau(z)\alpha a - a) = 0$. That is, (28) $d(x)\beta\tau(z)\alpha a = d(x)\beta\alpha\alpha z$ for all x, $z \in M$, $\alpha,\beta \in \Gamma$. Using (28), from (24) we get (F(x)\alpha a - $\sigma(x)\alpha a)\beta y = d(x)\alpha a\beta y$. That is, (F(x)\alpha a - $\sigma(x)\alpha a - d(x)\alpha a)\beta y = 0$. Hence (F(x)\alpha a - $\sigma(x)\alpha a - d(x)\alpha a)\beta y\delta(F(x)\alpha a - \sigma(x)\alpha a - d(x)\alpha a) = 0$, $\alpha,\beta,\delta \in \Gamma$, which implies due to semiprimeness of M, (F(x)\alpha a - $\sigma(x)\alpha a - d(x)\alpha a) = 0$. Thus (29) F(x)\alpha a - ($\sigma + d$)(x) $\alpha a = 0$. Using (23), from (29) we get (30) ($\sigma + d$)(x) $\alpha a = a\alpha x$. This shows that $a \in D(\sigma + d)$. We now have the following result as a corollary of Theorem 2.9.

Corollary 2.10. If F is an (σ, τ) -derivation of a semiprime Γ -ring M satisfying the condition (*), then F is a free action.

Proof. Let F = d. Then d is an (σ, τ) -derivation and so equation (30) gives $(\sigma + F)(x)\alpha a = a\alpha x$. That is, $\sigma(x)\alpha a + F(x)\alpha a = a\alpha x$, which implies that $\sigma(x)\alpha a + a\alpha x = a\alpha x$. Thus $\sigma(x)\alpha a = 0$ for all $x \in M$. Since σ is onto, we have $x\alpha a = 0$ for all $x \in M$. Thus $a\alpha x\beta a = 0$. Putting $\alpha = \beta$, we have $a\alpha a\alpha a = 0 \Rightarrow (a\alpha)^2 a = 0$. Hence a is nilpotent. But we know that a semiprime Γ -ring does not contain a nonzero nilpotent element. Hence a = 0. Hence F is a free action.

Corollary 2.11. Let *M* be a semiprime Γ -ring satisfying the condition (*) and σ a centralizing automorphism of *M*. Let $F : M \to M$ be an additive mapping satisfying $F(x\alpha y) = \sigma(x)\alpha F(y)$ for all $x, y \in M, \alpha \in \Gamma$. If $a \in D(F)$, then $a \in Z(M)$.

Proof. We take d = 0 in Theorem 2.9. Then $F(x\alpha y) = \sigma(x)\alpha F(y)$ and $a \in D(F)$ implies that $a \in D(\sigma)$. Since σ is a centralizing automorphism, we obtained that $a \in Z(M)$.

Remark 2.12. If in the above corollary we take $\sigma = I$, the identity automorphism, then F is a right centralizer. Thus all dependent elements of a right centralizer F of a semiprime Γ -ring M lie in Z(M).

Theorem 2.13. Let *M* be a semiprime Γ -ring. Let *f* be a centralizer and *d* a derivation of *M*. Then $\varphi = (d \circ f)$ is a free action.

Proof. Let $a \in D(\phi)$. Then $\phi(x)\alpha a = a\alpha x$. That is, (31) $(d \circ f)(x)\alpha a = a\alpha x$ for all $x \in M$, $\alpha \in \Gamma$. Replacing x by $x\beta y$ in (31), we get $a\alpha x\beta y = (d \circ f)(x\beta y)\alpha a = d(f(x)\beta y)\alpha a = (d \circ f)(x)\beta y\alpha a + f(x)\beta d(y)\alpha a$. That is, $(d \circ f)(x)\beta y\alpha a + f(x)\beta d(y)\alpha a = a\alpha x\beta y = (d \circ f)(x)\alpha a\beta y$. Thus, (32) $(d \circ f)(x)\beta [a, y]_{\alpha} = f(x)\beta d(y)\alpha a$ for all x, $y \in M$, $\alpha,\beta \in \Gamma$. Replacing y by $a\delta y$ in (32), we get $(d \circ f)(x)\beta [a, a\delta y] = f(x)\beta d(a\delta y)\alpha a$. That is, (33) $(d \circ f)(x)\beta a\delta [a, y]_{\alpha} = f(x)\beta d(a)\delta y\alpha a + f(x)\beta a\delta d(y)\alpha a$, $\alpha,\beta,\delta \in \Gamma$. Using (31), from (33) we get (34) $a\beta x\delta [a, y]_{\alpha} = f(x)\beta d(a)\delta y\alpha a + f(x)\beta a\delta d(y)\alpha a$. Multiplying (34) on the left by $z\alpha$, we get (35) $z\alpha a\beta x\delta [a, y]_{\alpha} = z\alpha f(x)\beta d(a)\delta y\alpha a + z\alpha f(x)\beta a\delta d(y)\alpha a$. Replacing x by $z\alpha x$ in (34), we get $a\beta z\alpha x\delta [a, y]_{\alpha} = f(z\alpha x)\beta d(a)\delta y\alpha a + f(z\alpha x)\beta a\delta d(y)\alpha a$ $= z\alpha f(x)\beta d(a)\delta y\alpha a + z\alpha f(x)\beta a\delta d(y)\alpha a$. That is,

(36) $\alpha \alpha z \beta x \delta[a, y]_{\alpha} = z \alpha f(x) \beta d(a) \delta y \alpha a + z \alpha f(x) \beta a \delta d(y)$ for all x, y, $z \in M$.

Subtracting (35) from (36), we get $[a, z]_{\alpha}\beta x \delta[a, y]_{\alpha} = 0$. In particular, $[a, y]_{\alpha}\beta x \delta[a, y]_{\alpha} = 0$, which, by semiprimeness of M, implies $[a, y]_{\alpha} = 0$ for all $y \in M$, $\alpha \in \Gamma$. Thus $a \in Z(M)$, so from (32) we get

(37) $f(x)\beta d(y)\alpha a = 0$ for all x, $y \in M$, $\alpha, \beta \in \Gamma$.

Since f(y) = y (by lemma 2.1) in (37) and then using (31) we get $f(x)\beta a\alpha y = 0$, that is $f(x)\beta a\alpha y \delta f(x)\beta a = 0$. By semiprimeness of M, this implies that

(38) $f(x)\beta a = 0, \beta \in \Gamma$.

Thus $d(f(x)\beta a) = d(0) = 0$. That is $(d \circ f)(x)\beta a + f(x)\beta d(a) = 0$, which implies that

(39) $(d \circ f)(x)\beta a\alpha a + f(x)\beta d(a)\alpha a = 0.$

Using (37) and (31), from (39) we get $a\alpha x\beta a = 0$. Putting $\alpha = \beta$, we have $a\alpha a\alpha a = 0 \Rightarrow (a\alpha)^2 a = 0$. Hence a is nilpotent. But we know that a semiprime Γ -ring does not a contain nonzero nilpotent element. Hence a = 0, which implies that (dof) is a free action.

Theorem 2.14. Let f be a left centralizer of a semiprime Γ -ring M satisfying the assumption (*). Let $\varphi(x) = f(x)\alpha x + x\alpha f(x)$. Then φ is a free action on M.

Proof. Let $a \in D(\phi)$. Then $\phi(x)\alpha a = a\alpha x$, $\alpha \in \Gamma$. That is, (40) $(f(x)\alpha x + x\alpha f(x))\beta a = a\beta x$. Linearizing (40), we get (41) $(f(x)\alpha y + f(y)\alpha x + y\alpha f(x) + x\alpha f(y))\beta a = 0.$ Replacing both x and y by a in (41) and using (40), we get $0 = (f(a)\alpha a + f(a)\alpha a + a\alpha f(a) + a\alpha f(a))\beta a = 2(f(a)\alpha a + a\alpha f(a))\beta a = 2a\beta a$. That is, (42) $2a\alpha a = 0$. Now replacing y by x δa in (41) and using (40), we get $0 = (f(x)\alpha x \delta a + f(x \delta a)\alpha x + x \delta a \alpha f(x) + x \alpha f(x \delta a))\beta a$ $= (f(x)\alpha x \delta a + f(x)\delta a\alpha x + x\delta a\alpha f(x) + x\alpha f(x)\delta a)\beta a$ $= (f(x)\alpha x + x\alpha f(x))\delta a\beta a + f(x)\delta a\alpha x\beta a + x\alpha f(x)\beta a$ $= a\alpha x\beta a + f(x)\delta a\beta x\alpha a + x\beta a\delta f(x)\alpha a.$ That is, (43) $a\beta x\alpha a + f(x)\beta a\delta x\alpha a + x\beta a\delta f(x)\alpha a = 0$ for all $x \in M$. Replacing x by a in (43) and using (40) and (42), we get $0 = a\beta a\alpha a + f(a)\delta a\beta a\alpha a + a\beta a\delta f(a)\alpha a =$ $a\beta a\alpha a + f(a)\delta a\beta a\alpha a - a\beta a\delta f(a)\alpha a$. That is, (44) $a\beta a\alpha + f(a)\delta a\beta a\alpha a - a\beta a\delta f(a)\alpha a = 0.$ Replacing x by a in (40), we get (45) $f(a)\alpha a\beta a + a\beta f(a)\alpha a = a\beta a$. Multiplying (45) by a on the left as well as on the right, we get (46) $a\alpha f(a)\delta a\beta a + a\beta a\delta f(a)\alpha a = a\beta a\alpha$ and (47) $f(a)\delta a\beta a\alpha a + a\beta f(a)\delta a\alpha a = a\beta a\alpha a$, respectively. Subtracting (46) from (47), we get (48) $f(a)\delta a\beta a\alpha a - a\beta a\delta f(a)\alpha a = 0.$ Using (48), from (44) we get $a\beta a\alpha a = 0$. Thus a = 0, which implies that ϕ is a free action.

References

[1] W.E. Barnes, On the Γ -rings of Nabusawa, *Pacific J. Math.*, 18 (1966), 411-422.

- [2] M. Brešar, On the composition of (α, β) -derivations of rings and application to von Neumann algebras, *Acta Sci. Math.*, 56 (1992), 369–375.
- [3] M.A. Chaudhry and M.S. Samman, Free actions on semiprime rings, *Mathematica Bohemica*, 133(2) 2008, 197-208.
- [4] M.A. Chaudhry and A.B. Thaheem, On (α, β) -derivations of semiprime rings, *Demonstratio Math.*, 36 (2003), 283–287.
- [5] H. Choda, I. Kasahara and R. Nakamoto, Dependent elements of automorphisms of a C*-algebra, *Proc. Japan Acad.*, 48 (1972), 561–565.
- [6] A. Laradji and A.B. Thaheem, On dependent elements in semiprime rings, *Math. Japonica*, 47 (1998), 29–31.
- [7] F.J. Murray and J. V. Neumann, On rings of operators, *Ann. Math.*, 37 (1986), 116–229.
- [8] J.V. Neumann, On rings of operators III, Ann. Math., 41 (1980), 94–161.
- [9] M.S. Samman, M.A. Chaudhry, *Dependent Elements of Left Centralizers of Semiprime Rings*, Preprint.
- [10] J. Vukman, Centralizers of semiprime rings, *Comment. Math. Univ. Carolin.*, 42 (2001), 237–245.
- [11] J. Vukman, On dependent elements and related problems in rings, *Int. Math. J.*, 6 (2005), 93–112.
- [12] J. Vukman, I. Kosi-Ulbl, On dependent elements in rings, *Int. J. Math. Math. Sci.*, 53(56) (2004), 2895–2906.
- [13] J. Vukman, I. Kosi-Ulbl, Centralizers on rings and algebras, *Bull. Austral. Math. Soc.*, 71 (2005), 225–234.