

Gen. Math. Notes, Vol. 23, No. 1, July 2014, pp.9-14 ISSN 2219-7184; Copyright ©ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

Hoehnke and Hereditary Radical Class

Kishor Pawar

Department of Mathematics School of Mathematical Sciences North Maharashtra University, Jalgaon - 425 001, India E-mail: kfpawar@nmu.ac.in

(Received: 6-3-14 / Accepted: 10-5-14)

Abstract

We introduced the notion of Hoehnke Radical class for associative semirings in [7]. We give here some consequences of Hoehnke radical and hereditary Kurosh-Amitsur radical class.

Keywords: Semirings, Ideal, Radical class, Hoehnke radical class, Hereditary class.

1 Introduction

For the general radical theory of rings, the reader is referred to the classical monograph of N. J. Divinsky [3]. For definitions and properties of semirings, ideals, homomorphism, the reader is referred to [4]. The concepts of radical class for hemirings were given by D. M. Olson and T. L. Jenkins in 1983, see [6]. Moreover we introduced the notion of Hoehnke Radical class for associative semirings in [7]. In the present paper we have given some consequences of Hoehnke radical and hereditary Kurosh-Amitsur radical class.

2 Preliminaries

There are many different definitions of a semiring appearing in the literature. Throughout this paper, a Semirings, additively cancellative semirings, commutative semirings, semimodules, additively cancellative semimodules, ideals, k-ideals (subtractive ideals), homomorphisms semiring will be defined as follows:

Definition 2.1. [4] A semiring is a set R together with two binary operations called addition (+) and multiplication (\cdot) such that (R, +) is a commutative monoid with identity element 0_R ; (R, \cdot) is a monoid with identity element 1; multiplication distributes over addition from either side and 0 is multiplicative absorbing, that is, $a \cdot 0 = 0 \cdot a = 0$ for each $a \in R$.

Definition 2.2. [4] A semiring R is said to have a unity if there exists $1_R \in R$ such that $1_R \cdot a = a \cdot 1_R = a$ for each $a \in R$.

For e.g. The set \mathbb{N} of non-negative integers with the usual operations of addition and multiplication of integers is a semiring with $1_{\mathbb{N}}$.

Definition 2.3. [4] A semiring R is commutative if (R, \cdot) is a commutative semigroup.

Definition 2.4. [4] A subset I of a semiring R will be called an ideal of R if I is an additive subsemigroup of (R, +), $IR \subseteq I$ and $RI \subseteq I$.

Definition 2.5. [4] An ideal I of a semiring R will be called subtractive (k-ideal) if for $a \in I, a + b \in I, b \in R$ imply $b \in I$.

Definition 2.6. [4] A semiring R is said to be semisubtractive if for any arbitrary $a \neq b$ in R there is always some $x \in R$ satisfying b + x = a or some $y \in R$ satisfying a + y = b.

Each homomorphism $\phi: S \to T$ of semirings corresponds to a congruence k of S and the homomorphic image $\phi(S)$ is isomorphic to the semiring S/k of congruence classes. In this paper we mainly use congruences that are determined by an ideal I of S according to $sk_Is' \Leftrightarrow$ there are

$$a_i \in I$$
 satisfying $s + a_1 = s' + a_2$.

In this case one usually denotes S/k_I by S/I. Moreover, $k_I = k_{\overline{I}}$ and thus $S/I = S/\overline{I}$ hold for all ideals I of S with the same k-closure $\overline{I}, S/I$ has always an absorbing zero, namely the congruence class $\overline{I} = [a]_I = [a]_{\overline{I}}$ determined by each $a \in I$. We also mention that a semiring has in general much more congruences than those determined by its ideals. For a last concept of this kind, let $\phi: S \to T$ be a surjective homomorphism for semirings which have a zero. Then ϕ is called a semi-isomorphism and denoted by $\phi: S \to T$ if $\phi(0_S) = 0_T$ and $\phi^{-1}(0_T) = 0_S$ are satisfied. We emphasize here that such a semi-isomorphism, despite of misleading name, has in general very little in common with an isomorphism.

Convention: Throughout $R \mapsto S$ is a surjective homomorphism.

Theorem 2.7. [5] Let S be a semiring, T a semiring with an absorbing zero 0_T , and $\phi: S \to T$ a surjective homomorphism. Then $K = \phi^{-1}(0_T)$ is a k-ideal of S (also called the kernel of ϕ) and $\phi([s]_K) = \phi(s)$ for all $s \in S$ defines a semi-isomorphism $\phi: S/K \xrightarrow{\sim} T$ which satisfies $\phi \circ k_K^{\#} = \phi$, where $k_K^{\#}$ denotes the natural homomorphism of S onto $S/K = S/k_K$.

Theorem 2.8. [5] For a semiring S with an absorbing zero 0 let S be a subsemiring which contains 0 and B an ideal of S. Then $\phi([a]_{A\cap\overline{B}}) = [a]_B$ for all $a \in A \subseteq A + B$ defines a semi-isomorphism

$$\phi \colon A/A \cap \overline{B} \xrightarrow{\sim} A + B/B.$$

Theorem 2.9. [5] Let A, B be ideals of a semiring S with the additional condition $A \subseteq B$. Then $\overline{\phi}([s]_B) = [[s]_A]_{\overline{B}/A}$ for all $s \in S$ defines an isomorphism

$$\overline{\phi} \colon S/B \to (S/A)/(\overline{B}/A)$$

3 Radical Class

There are some definitions of radical class appearing in the semiring literature. But we were looking for the definition given by HMJ-Althani [1], who has introduced the definition of radical class in a different way. In [8] we have discuss useful equivalent conditions for a subclass of a fixed universal class to be a semisimple radical class and given some consequences of Upper radical class. In this paper we give some useful interrelationship between Hereditary Kurosh-Amitsur radical and Hoehnke radical.

Definition 3.1. [1] Let \mathcal{R} be a class of semirings. A semiring (ideal) belonging to the class \mathcal{R} , will be called a \mathcal{R} -semiring (\mathcal{R} -ideal).

Definition 3.2. [1] A class \mathcal{R} of semirings is called a radical class whenever the following three conditions are satisfied:

- (a) \mathcal{R} is homomorphically closed; i.e. if S is a homomorphic image of a \mathcal{R} -semiring R then S is also a \mathcal{R} -semiring
- (b) Every semiring R contains a \mathcal{R} -ideal $\mathcal{R}(R)$ which in turn contains every other \mathcal{R} -ideal of R.
- (c) The factor semiring $R/\mathcal{R}(R)$ does not contain any nonzero \mathcal{R} -ideal; i.e. $\mathcal{R}(R/\mathcal{R}(R)) = 0.$

Proposition 3.3. [7] Assuming conditions (a) and (b) on a class \mathcal{R} of semirings, condition (c) is equivalent to

(c') If I is an ideal of the semiring R and if both I and R/I are in \mathcal{R} , then R itself is in \mathcal{R} .

Proposition 3.4. [7] Assuming conditions (a) and (c') on a class \mathcal{R} of semirings, condition (b) is equivalent to

(b') if $I_1 \subset I_2 \subset \cdots \subset I_{\lambda} \subset \ldots$ is an ascending chain of ideals of a semiring R and if each I_{λ} is in \mathcal{R} , then $\bigcup I_{\lambda}$ is in \mathcal{R} .

Theorem 3.5. [7] A non-empty sub class \mathcal{R} of a universal class \mathbb{U} is a radical class if and only if

a) \mathcal{R} is homomorphically closed.

b') \mathcal{R} has the inductive property.

c') \mathcal{R} is closed under extensions.

4 Hoehnke and Hereditary Radical Class

Definition 4.1. [7] From an axiomatic point of view a radical \mathcal{R} may be defined as an assignment $\mathcal{R} : \mathbb{R} \longrightarrow \mathcal{R}(\mathbb{R})$ designating a certain ideal $\mathcal{R}(\mathbb{R})$ to each semiring \mathbb{R} . Such an assignment \mathcal{R} is called Hoehnke radical if

(i) $\phi(\mathcal{R}(R)) \subseteq \mathcal{R}(\phi(R))$ for any homomorphism $\phi : R \mapsto \phi(R)$.

(ii) $\mathcal{R}(R/\mathcal{R}(R)) = 0.$

A Hoehnke radical \mathcal{R} may also satisfy the following conditions:

(iii) \mathcal{R} is complete: If $I \triangleleft R$ and $\mathcal{R}(I) = I$, then $I \subseteq \mathcal{R}(R)$.

(iv) \mathcal{R} is idempotent: $\mathcal{R}(\mathcal{R}(R)) = \mathcal{R}(R)$, for every semiring R.

Theorem 4.2. [7] If \mathcal{R} is a Kurosh-Amitsur radical then the assignment $R \to \mathcal{R}(R)$ is a complete, idempotent, Hoehnke radical. Conversely, if \mathcal{R} is a complete, idempotent, Hoehnke radical, then there is a Kurosh-Amitsur radical ϱ such that $\mathcal{R}(R) = \varrho(R)$ for every semiring R. Moreover $\varrho = \{R \mid \mathcal{R}(R) = R\}$.

Definition 4.3. [5] A class \mathcal{R} of semirings is a hereditary radical class if $R \in \mathcal{R}$ and I is an ideal of R, then $I \in \mathcal{R}$.

Definition 4.4. [5] A class \mathcal{R} is said to be regular if for every semiring $R \in \mathcal{R}$, every nonzero ideal of R has a nonzero homomorphic image in \mathcal{R} .

In particular, every hereditary class is regular.

Proposition 4.5. A radical class \mathcal{R} is hereditary if and only if $I \cap \mathcal{R}(R) \subseteq \mathcal{R}(I)$ for every ideal I of a semiring R.

Proof. If $I \triangleleft R$ and \mathcal{R} is hereditary, then $I \cap \mathcal{R}(R)$ is an ideal in $\mathcal{R}(R) \in \mathcal{R}$, implies that $I \cap \mathcal{R}(R) \in \mathcal{R}$. Therefore, by $I \cap \mathcal{R}(R)$ is an ideal in I and $I \cap \mathcal{R}(R) \subseteq \mathcal{R}(I)$.

Conversely, assume that $I \triangleleft R \in \mathcal{R}$ and $I \cap \mathcal{R}(R) \subseteq \mathcal{R}(I)$. Then $I = I \cap R = I \cap \mathcal{R}(R) \subseteq \mathcal{R}(I) \in \mathcal{R}$, showing that $I \in \mathcal{R}$. Thus every ideal I of a semiring $R \in \mathcal{R}$ is also in \mathcal{R} . Hence \mathcal{R} is hereditary. \Box

12

In ring theoretic sense, for a ring R, $I \triangleleft J \triangleleft R$ does in general not imply $I \triangleleft R$. Therefore it was an important result for the radical theory of (associative) rings by T. Anderson N. Divinsky and A. Sulinski in [2] that at least each radical $\mathcal{R}(I)$ of an ideal I of a ring R is an ideal of R.

In this context one speaks about the A-D-S-property of a radical class. In [5] it has been proved that this property also holds true for each radical class of semirings, and we deal with some consequences of the A-D-S-property.

Lemma 4.6. [5] Assume $I \triangleleft J \triangleleft R$ and $r \in R$ for a semiring R. Then rI + I is an ideal of R and $\varphi(b) = [rb]_I$ defines a surjective homomorphism $\varphi: I \rightarrow (rI + I)/I$.

Theorem 4.7. [5] Let \mathcal{R} be a radical class of a universal class \mathbb{U} of semirings and $\rho = \rho_{\mathcal{R}}$ the corresponding radical operator. Then, for each ideal I of a semiring $R \in \mathbb{U}$ the radical $\rho(I)$ of I is an ideal of R, which in particular yields $\rho(I) \subseteq \rho(R) \cap I$.

Theorem 4.8. [5] Let \mathcal{R} be a radical class of \mathbb{U} and $\varrho = \varrho_{\mathcal{R}}$ the corresponding radical operator. Then \mathcal{R} is hereditary if and only if $\varrho(I) \supseteq I \cap \varrho(R)$ holds for each ideal I of any semiring $R \in \mathbb{U}$. By Theorem 4.7 this inclusion is equivalent to $\varrho(I) = I \cap \varrho(R)$.

Together with these results we can prove the following.

Corollary 4.9. A radical class \mathcal{R} is hereditary if and only if $\mathcal{R}(I) = I \cap \mathcal{R}(R)$, for any ideal I of a semiring R.

Theorem 4.10. A Hoehnke radical \mathcal{R} satisfies the condition

$$\mathcal{R}(I) = I \cap \mathcal{R}(R) \quad for \ all \quad I \triangleleft R \tag{1}$$

if and only if \mathcal{R} is a hereditary Kurosh-Amitsur radical.

Proof. Let \mathcal{R} be a Hoehnke radical with (1). In a view of Theorem 4.2 and above corollary it suffices to show that \mathcal{R} is complete and idempotent. If $I \triangleleft R$ and $\mathcal{R}(I) = I$, then $I = \mathcal{R}(I) = I \cap \mathcal{R}(R)$ holds implying that $I \subseteq \mathcal{R}(R)$. Shows that \mathcal{R} is complete.

Further, for $I = \mathcal{R}(R)$ we have $\mathcal{R}(\mathcal{R}(R)) = \mathcal{R}(R) \cap \mathcal{R}(R) = \mathcal{R}(R)$, and hence \mathcal{R} is idempotent.

Conversely, a hereditary Kurosh -Amitsur radical \mathcal{R} is a Hoehnke radical by Theorem 4.2 and satisfies (1) by above corollary.

References

- H.M.J. Al-Thani, Weak radical classes, *Tamkang Journal of Mathematics*, 35(4)(Winter) (2004), 359-369.
- [2] T. Anderson, N.J. Divinsky and A. Suliński, Hereditary radicals in associative and alternative rings, *Canad. J. Math.*, 17(1965), 594-603.
- [3] N.J. Divinsky, *Rings and Radicals*, Allen and Unwin, (1965).
- [4] J.S. Golan, The theory of semirings with applications in mathematics and theoretical computer sciences, *Pitman Monographs and Surveys in Pure* and Applied Mathematics, Longman Science Tech, Harlow, 54(1992).
- [5] B. Morak, On the radical theory for semiring, *Beitrage Alg. Und. Geom.*, 40(1999), 533-549.
- [6] D.M. Olson and T.L. Jenkins, Radical theory for hemirings, J. Nature. Sci. Math., 23(1983), 23-32.
- [7] K. Pawar and R. Deore, A note on Kurosh Amitsur radical and Hoehnke radical, *Thai J. of Math.*, 9(3) (2011), 571-576.
- [8] K.F. Pawar and R.P. Deore, Upper and semisimple radical, *Gen. Math.* Notes, 11(1) (2012), 50-55.