Gen. Math. Notes, Vol. 22, No. 2, June 2014, pp.7-21
ISSN 2219-7184; Copyright © ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

On the Spectra of the Operator of the First Difference on the Spaces W_{τ} and W_{τ}^{0} and Application to Matrix Transformations

Bruno de Malafosse
Université du Havre
76610 Le Havre, France
E-mail: bdemalaf@wanadoo.fr

(Received: 10-2-14 / Accepted: 19-3-14)

Abstract

Given any sequence $\tau=\left(\tau_{n}\right)_{n \geq 1}$ of positive real numbers and any set E of complex sequences, we write E_{τ} for the set of all sequences $x=\left(x_{n}\right)_{n \geq 1}$ such that $x / a=\left(x_{n} / a_{n}\right)_{n \geq 1} \in E$. We define the sets $W_{\tau}=\left(w_{\infty}\right)_{\tau}$ and $W_{\tau}^{0}=$ $\left(w_{0}\right)_{\tau}$, where w_{∞} is the set of all sequences such that $\sup _{n}\left(n^{-1} \sum_{m=1}^{n}\left|x_{m}\right|\right)<$ ∞, and w_{0} is the set of all sequences such that $\lim _{n \rightarrow \infty}\left(n^{-1} \sum_{m=1}^{n}\left|x_{m}\right|\right)=$ 0 . Then we explicitly calculate the spectra $\sigma\left(\Delta, W_{\tau}\right)$ and $\sigma\left(\Delta, W_{\tau}^{0}\right)$ of the operator of the first difference on each of the sets W_{τ} and W_{τ}^{0}. We then determine the sets (E, F) of all matrix transformations mapping E to F, with $E=W_{\tau}\left((\Delta-\lambda I)^{h}\right)$, or $W_{\tau}^{0}\left((\Delta-\lambda I)^{h}\right)$ and $F=s_{\xi}$, or s_{ξ}^{0} for complex numbers λ and h and obtain simplifications of these sets for some values of λ.

Keywords: spectrum of an operator, operator of the first difference, matrix transformations, sets of strongly C_{1} summable to zero and bounded sequences.

1 Introduction

In this paper we consider spaces that generalize the well known sets w_{0} and w_{∞} introduced and studied by Maddox [15]. Recall that w_{0} and w_{∞} are the sets of strongly C_{1} summable to zero and bounded sequences. In [19] Malkowsky and

Rakočević gave characterizations of matrix maps between w_{0}, w, or w_{∞} and w_{∞}^{p} and between w_{0}, w, or w_{∞} and l_{1}. In $[11,4]$ were defined the spaces $w_{\alpha}(\lambda)$, $w_{\alpha}^{(c)}(\lambda)$ and $w_{\alpha}^{0}(\lambda)$ of all sequences that are $\alpha-$ strongly bounded, summable and summable to zero respectively. For instance recall that $w_{\alpha}(\lambda)$ is the set of all sequences $\left(x_{n}\right)_{n}$ such that

$$
\frac{1}{\lambda_{n}} \sum_{k=1}^{n}\left|x_{k}\right|=\alpha_{n} O(1) \quad(n \rightarrow \infty)
$$

It was shown that these spaces can be written in the form $s_{\xi}, s_{\xi}^{(c)}$ and s_{ξ}^{0} under some conditions on α and λ, where $s_{\xi}, s_{\xi}^{(c)}$ and s_{ξ}^{0} were defined for positive sequences ξ by $(1 / \xi)^{-1} * \chi$ and $\chi=\ell_{\infty}, c, c_{0}$, respectively, (cf. [4]). More recently in [18] it was shown that if λ is a sequence exponentially bounded then $\left(w_{\infty}(\lambda), w_{\infty}(\lambda)\right)$ is a Banach algebra. This result led to consider bijective operators mapping $w_{\infty}(\lambda)$ into itself.

In [8] de Malafosse and Malkowsky gave among other things properties of the spectrum of the matrix of weighted means \bar{N}_{q} considered as operator in the set s_{a}. In [12] were given simplifications of the set $s_{\alpha}^{0}\left((\Delta-\lambda I)^{h}\right)+$ $s_{\beta}^{(c)}\left((\Delta-\mu I)^{l}\right)$ where h, l are complex numbers, α, β are given sequences, using spectral properties of the operator of the first difference in the sets s_{α}^{0} and $s_{\beta}^{(c)}$, then characterizations of matrix transformations in this set were stated.

Here we deal with the spectrum of the operator of the first difference over the spaces $W_{\tau}=D_{\tau} w_{\infty}$ and $W_{\tau}^{0}=D_{\tau} w_{0}$, and we characterize matrix transformations in the sets $W_{\tau}\left((\Delta-\lambda I)^{h}\right)$ and $W_{\tau}^{0}\left((\Delta-\lambda I)^{h}\right)$. We then obtain simplifications for these sets under some conditions on λ, h and on the sequence τ.

This paper is organized as follows. In Section 2 we recall some results on matrix transformations and define the sets w_{0} and w_{∞} of strongly C_{1} summable to zero and bounded sequences. In Section 3 we give some properties of the sets W_{τ} and W_{τ}^{0}. In Section 4 we deal with the spectra of the operator of the first difference on W_{τ} and W_{τ}^{0}. In Section 5 we determine the sets (E, F) of matrix transformations mapping E to F, with $E=W_{\tau}\left((\Delta-\lambda I)^{h}\right)$, or $W_{\tau}^{0}\left((\Delta-\lambda I)^{h}\right)$ and $F=s_{\xi}$, or s_{ξ}^{0}, for complex numbers λ and h and obtain simplifications for these sets for some values of λ.

2 Preliminaries and Well Known Results

For a given infinite matrix $A=\left(a_{n m}\right)_{n, m \geq 1}$ we define the operators A_{n} for any integer $n \geq 1$, by $A_{n}(x)=\sum_{m=1}^{\infty} a_{n m} x_{m}$, where $x=\left(x_{n}\right)_{n \geq 1}$ and the series
are assumed to be convergent. So we are led to the study of the infinite linear system $A_{n}(x)=b_{n}$ with $n=1,2, \ldots$ where $b=\left(b_{n}\right)_{n \geq 1}$ is a one-column matrix and x is the unknown, see for instance [4-8]. The equations $A_{n}(x)=b_{n}$ for $n=1,2, \ldots$ can be written in the form $A x=b$, where $A x=\left(A_{n}(x)\right)_{n \geq 1}$. Let E and F be two sets of sequences, then (E, F) denotes the set of all operators mapping E to F, [15]. We write s for the set of all complex sequences, ℓ_{∞} and c_{0} for the sets of all bounded and null sequences. It is well known that $A \in\left(\ell_{\infty}, \ell_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n} \sum_{m=1}^{\infty}\left|a_{n m}\right|<\infty ; \tag{1}
\end{equation*}
$$

and $A \in\left(c_{0}, c_{0}\right)$ if and only if (1) holds and $\lim _{n \rightarrow \infty} a_{n m}=0$ for all $m \geq 1$.
A Banach space E of complex sequences with the norm $\left\|\|_{E}\right.$ is a $B K$ space if each projection $P_{n}: x \mapsto P_{n} x=x_{n}$ is continuous. We will write $e=$ $(1, \ldots, 1, \ldots)$, and define by $e^{(m)}$ the sequence with 1 in the $m-t h$ position and 0 otherwise. A $B K$ space $E \subset s$ is said to have $A K$ if every sequence $x=$ $\left(x_{m}\right)_{m \geq 1} \in E$ has a unique representation $x=\sum_{m=1}^{\infty} x_{m} e^{(m)}$. The set $B(E)$ of all operators $L: E \longrightarrow E$ with the norm $\|L\|_{B(E)}^{*}=\sup _{x \neq 0}\left(\|L(x)\|_{E} /\|x\|_{E}\right)$ is a Banach algebra and it is well known that if E is a BK space with AK, then $B(E)=(E, E)$. In all what follows we will use the set U^{+}of all sequences $\left(u_{n}\right)_{n \geq 1}$ with $u_{n}>0$ for all n. For any given sequence $\tau=\left(\tau_{n}\right)_{n \geq 1} \in U^{+}$, we write D_{τ} for the infinite diagonal matrix defined by $\left[D_{\tau}\right]_{n n}=\tau_{n}$. For any subset E of $s, D_{\tau} E$ is the set of all sequences $x=\left(x_{n}\right)_{n}$ such that $\left(x_{n} / \tau_{n}\right)_{n \geq 1} \in E$. Note that have $D_{\tau} E=E_{\tau}$. Then we put $D_{\tau} c_{0}=s_{\tau}^{0}, D_{\tau} \ell_{\infty}=s_{\tau}$ and $D_{\tau} c=s_{\tau}^{(c)}$. It is well known that each of the spaces s_{τ}^{0}, s_{τ} and $s_{\tau}^{(c)}$ is a BK space normed by $\|x\|_{s_{\tau}}=\sup _{n}\left(\left|x_{n}\right| / \tau_{n}\right)$, (cf. [6]). Recall the next elementary and useful result.

Lemma 1 Let $\tau, \xi \in U^{+}$, and $E, F \subset \omega$. Then $A \in\left(D_{\tau} E, D_{\xi} F\right)$ if and only if $D_{1 / b} A D_{\xi} \in(E, F)$.

For $\lambda=\left(\lambda_{n}\right)_{n \geq 1} \in U^{+}$define the triangle $C(\lambda)$ by $[C(\lambda)]_{n m}=1 / \lambda_{n}$ for $m \leq n$. It can be easily shown that the matrix $\Delta(\lambda)$ defined by

$$
[\Delta(\lambda)]_{n m}=\left\{\begin{array}{cl}
\lambda_{n} & \text { if } m=n \\
-\lambda_{n-1} & \text { if } m=n-1 \text { and } n \geq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

is the inverse of $C(\lambda)$. Using the notation $|x|=\left(\left|x_{n}\right|\right)_{n}$, we have $[C(\lambda)|x|]_{n}=$ $\lambda_{n}^{-1} \sum_{m=1}^{n}\left|x_{m}\right|$. In this way we consider the spaces of strongly bounded and summable sequences $w_{\infty}(\lambda)$ and $w_{0}(\lambda)$ defined by

$$
\begin{aligned}
w_{\infty}(\lambda) & =\left\{x=\left(x_{n}\right)_{n \geq 1} \in s: C(\lambda)|x| \in \ell_{\infty}\right\}, \\
w_{0}(\lambda) & =\left\{x \in s: C(\lambda)|x| \in c_{0}\right\} .
\end{aligned}
$$

These spaces were studied by Malkowsky, with the concept of exponentially bounded sequences, see for instance [19]. Recall that Maddox [16] defined and studied the previous sets where $\lambda_{n}=n$ for all n and it is written $w_{\infty}(\lambda)=w_{\infty}$ and $w_{0}(\lambda)=w_{0}$.

3 The Sets W_{τ} and W_{τ}^{0}

In this section we state some results on the sets $W_{\tau}=D_{\tau} w_{\infty}$ and $W_{\tau}^{0}=D_{\tau} w_{0}$ and deal with triangles Δ_{ρ} and Δ_{ρ}^{T} mapping from W_{τ} to itself.

3.1 Some Properties of the Sets W_{τ} and W_{τ}^{0}

Here we consider the sets $W_{\tau}=D_{\tau} w_{\infty}$ and $W_{\tau}^{0}=D_{\tau} w_{0}$, (see [17, 9]), which can be written as

$$
W_{\tau}=\left\{x \in s:\|x\|_{W_{\tau}}=\sup _{n}\left(\frac{1}{n} \sum_{m=1}^{n} \frac{\left|x_{m}\right|}{\tau_{m}}\right)<\infty\right\}
$$

and

$$
W_{\tau}^{0}=\left\{x \in s: \lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{m=1}^{n} \frac{\left|x_{m}\right|}{\tau_{m}}\right)=0\right\} .
$$

For $\tau \in U^{+}$it was shown in [9] that the sets W_{τ} and W_{τ}^{0} are BK spaces normed by $\left\|\|_{W_{\tau}}\right.$ and W_{τ}^{0} has AK, [9, Proposition 3.1, p. 54]. So $W_{e}=w_{\infty}$ and $W_{e}^{0}=w_{0}$. It was shown in $[18,7]$ that the class $\left(w_{\infty}, w_{\infty}\right)$ is a Banach algebra normed by $\|A\|_{\left(w_{\infty}, w_{\infty}\right)}^{*}=\sup _{x \neq 0}\left(\|A x\|_{w_{\infty}} /\|x\|_{w_{\infty}}\right)$. In the following we will write $D_{r}=D_{\left(r^{n}\right)_{n}}$ for any given $r>0$, and define the sets

$$
W_{r}=D_{r} w_{\infty}=\left\{x: \sup _{n}\left(\frac{1}{n} \sum_{m=1}^{n} \frac{\left|x_{m}\right|}{r^{m}}\right)<\infty\right\}
$$

and

$$
W_{r}^{0}=D_{r} w_{0}=\left\{x: \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{m=1}^{n} \frac{\left|x_{m}\right|}{r^{m}}=0\right\} .
$$

Note that we have $W_{1}=w_{\infty}$ and $W_{1}^{0}=w_{0}$.

3.2 On the Operators Δ_{ρ} and Δ_{ρ}^{+}Considered as Maps in W_{τ} and W_{τ}^{0}

On the operators Δ_{ρ} and Δ_{ρ}^{+}considered as operators in W_{τ}. In all what follows we use the convention $x_{0}=0$. For given $\rho=\left(\rho_{n}\right)_{n \geq 1}$ we will consider
the operator Δ_{ρ} defined by $\left[\Delta_{\rho} x\right]_{n}=x_{n}-\rho_{n-1} x_{n-1}$ for all $n \geq 1$. Then putting $\Delta_{\rho}^{+}=\left(\Delta_{\rho}\right)^{T}$ we obtain $\left[\Delta_{\rho}^{+} x\right]_{n}=x_{n}-\rho_{n} x_{n+1}$ for all $n \geq 1$. To state the next Lemma we will put for $\tau \in U^{+}$and any integer k

$$
\rho_{n}^{-}(\tau)=\rho_{n} \frac{\tau_{n-1}}{\tau_{n}} \text { and } \rho_{n}^{+}(\tau)=\rho_{n} \frac{\tau_{n+1}}{\tau_{n}} \text { for all } n
$$

Now recall the next lemma which is a direct consequence of [9, Proposition 3.3, pp. 56-57]

Lemma 2 Let $\rho, \tau \in U^{+}$.
i) Let χ be any of the symbols W or W^{0}.
a) If $\rho^{-}(\tau) \in \ell_{\infty}$, then $\Delta_{\rho} \in\left(\chi_{\tau}, \chi_{\tau}\right)$ and

$$
\left\|\Delta_{\rho}\right\|_{\left(W_{\tau}, W_{\tau}\right)}^{*} \leq 1+\left\|\rho^{-}(\tau)\right\|_{l_{\infty}} .
$$

b) If $\varlimsup_{n \rightarrow \infty}\left|\rho_{n}^{-}(\tau)\right|<1$, then the operator Δ_{ρ} is a bijection from χ_{τ} to itself and

$$
\chi_{\tau}\left(\Delta_{\rho}\right)=\chi_{\tau}
$$

ii) a) If $\rho^{+}(\tau) \in \ell_{\infty}$, then $\Delta_{\rho}^{+} \in\left(W_{\tau}, W_{\tau}\right)$ and

$$
\left\|\Delta_{\rho}^{+}\right\|_{\left(W_{\tau}, W_{\tau}\right)}^{*} \leq 1+2\left\|\rho^{+}(\tau)\right\|_{l_{\infty}}
$$

b) If $\varlimsup_{\lim _{n \rightarrow \infty}}\left|\rho_{n}^{+}(\tau)\right|<1$, then the operator Δ_{ρ}^{+}is a bijection from W_{τ} to itself.

Remark 3 The proof of i) b) for $\chi=W^{0}$ comes from the fact that W_{τ}^{0} is a $B K$ space with $A K$ which implies $B\left(W_{\tau}^{0}\right)=\left(W_{\tau}^{0}, W_{\tau}^{0}\right)$ is a Banach algebra.

4 On the Spectra of the Operator of the First Difference on W_{τ}^{0} and W_{τ}

In this section we deal with the spectra of the operator of the first difference Δ defined by $\Delta x_{n}=\Delta_{e} x_{n}=x_{n}-x_{n-1}$ for all n, considered as an operator from W_{τ}^{0} to itself and from W_{τ} to itself.

Let E be a BK space and A be an operator mapping E to itself, (note that A is continuous since E is a BK space). We denote by $\sigma(A, E)$ the set of all complex numbers λ such that $A-\lambda I$ considered as an operator from E to itself is not invertible. Then we write $\rho(A, E)=[\sigma(A, E)]^{c}$ for the resolvent set, which is the set of all complex numbers λ such that $\lambda I-A$ considered as an operator from E to itself is bijective. Recall that the resolvent set of a linear operator on E is an open subset of the complex plane \mathbb{C}. We use the
notation $\bar{D}\left(\lambda_{0}, r\right)=\left\{\lambda \in \mathbb{C}:\left|\lambda-\lambda_{0}\right| \leq r\right\}$ for $\lambda_{0} \in \mathbb{C}$ and $r>0$. Recently the fine spectra of the operator of the first difference over the sequence spaces ℓ_{p} and $b v_{p}$, were studied in [1], where $b v_{p}$ is the space of p-bounded variation sequences, with $1 \leq p<\infty$. In [2] there is a study on the fine spectrum of the generalized difference operator $B(r, s)$ on each of the sets ℓ_{p} and $b v_{p}$. In [14] there is a study of the spectrum of the operator of the first difference on the sets $s_{\alpha}, s_{\alpha}^{0}, s_{\alpha}^{(c)}$ and $\ell_{p}(\alpha)(1 \leq p<\infty)$. In [13], among other things there is a study of the spectrum of the operator $B(r, s)$ on the sets s_{α} and s_{α}^{0}. In the following we deal with the spectra of Δ in the sets W_{τ} and W_{τ}^{0}. For this we need the next lemmas.

Lemma 4 Let u be a sequence with $u_{n} \neq 0$ for all n, and assume $\left(u_{n} / u_{n-1}\right)_{n} \in$ c. We have

$$
u \in \ell_{\infty} \text { implies } \lim _{n \rightarrow \infty}\left|\frac{u_{n}}{u_{n-1}}\right| \leq 1
$$

Proof. Assume $\lim _{n \rightarrow \infty}\left|u_{n} / u_{n-1}\right|=L>1$. Then for $0<\varepsilon<L-1$, there is an integer N such that

$$
\left|\frac{u_{n}}{u_{n-1}}\right| \geq L-\varepsilon>1 \text { for all } n \geq N
$$

So we obtain

$$
\left|u_{n}\right|=\left|\frac{u_{n}}{u_{n-1}}\right|\left|\frac{u_{n-1}}{u_{n-2}}\right| \ldots\left|\frac{u_{N}}{u_{N-1}}\right|\left|u_{N-1}\right| \geq(L-\varepsilon)^{n-N+1}\left|u_{N-1}\right| \text { for all } n \geq N .
$$

Since $(L-\varepsilon)^{n-N+1} \rightarrow \infty(n \rightarrow \infty)$ we conclude $u \notin \ell_{\infty}$.
Lemma 5 We have

$$
\begin{equation*}
\left(w_{0}, w_{0}\right) \subset\left(c_{0}, s_{(n)_{n}}^{0}\right) \text { and }\left(w_{\infty}, w_{\infty}\right) \subset\left(\ell_{\infty}, s_{(n)_{n}}\right) \tag{2}
\end{equation*}
$$

Proof. Trivially we have $c_{0} \subset w_{0}$, and since $\left|x_{n}\right| / n \leq n^{-1} \sum_{k=1}^{n}\left|x_{k}\right|$ we deduce $w_{0} \subset s_{(n)_{n}}^{0}$. Thus we have $\left(w_{0}, w_{0}\right) \subset\left(c_{0}, s_{(n)_{n}}^{0}\right)$. By similar arguments we obtain $\left(w_{\infty}, w_{\infty}\right) \subset\left(\ell_{\infty}, s_{(n)_{n}}\right)$.

In the next result we put $\tau^{\bullet}=\left(\tau_{n-1} / \tau_{n}\right)_{n \geq 2}$.
Theorem 6 Let χ be any of the symbols W, or W^{0}. Then
(i) If $\tau^{\bullet} \in \ell_{\infty}$, then we have

$$
\begin{equation*}
\sigma\left(\Delta, \chi_{\tau}\right) \subset \bar{D}\left(1, \varlimsup_{n \rightarrow \infty} \tau_{n}^{\bullet}\right) \tag{3}
\end{equation*}
$$

On the Spectra of the Operator of the First...
(ii) If $\tau^{\bullet} \in c$, then we have

$$
\sigma\left(\Delta, \chi_{\tau}\right)=\bar{D}\left(1, \lim _{n \rightarrow \infty} \tau_{n}^{\bullet}\right)
$$

(iii) For any given $r>0$, we have

$$
\sigma\left(\Delta, \chi_{r}\right)=\bar{D}(1,1 / r)
$$

Proof. (i) We only consider the case $\chi=W$, the case $\chi=W^{0}$ can be obtained in a similar way. Let $\lambda \in\left[\bar{D}\left(1, \overline{\varlimsup_{n \rightarrow \infty}} \tau_{n}^{\bullet}\right)\right]^{c}$, that is, $\lambda \neq 1$ and

$$
\begin{equation*}
\overline{\lim _{n \rightarrow \infty}} \tau_{n}^{\bullet}<|\lambda-1| \tag{4}
\end{equation*}
$$

Putting $\rho_{n}=1 /|\lambda-1|$ for all n we have

$$
\rho_{n}^{-}(\tau)=\left(\frac{1}{|\lambda-1|} \tau_{n}^{\bullet}\right)_{n \geq 1} \in \ell_{\infty}
$$

and inequality (4) means that $\varlimsup_{n \rightarrow \infty}\left|\rho_{n}^{-}(\tau)\right|<1$. By Lemma 2 where

$$
\Delta_{\rho}=\frac{1}{1-\lambda}(\Delta-\lambda I)
$$

we deduce $\Delta-\lambda I$ is bijective from W_{τ} to itself. This shows that

$$
\left[\bar{D}\left(1, \varlimsup_{n \rightarrow \infty} \tau_{n}^{\bullet}\right)\right]^{c} \subset \rho\left(\Delta, W_{\tau}\right)
$$

and (3) in (i) is satisfied for $\chi=W$. This concludes the proof of (i).
(ii) Case $\chi=W^{0}$. First we show

$$
D\left(1, \lim _{n \rightarrow \infty} \tau_{n}^{\bullet}\right) \subset \sigma\left(\Delta, W_{\tau}^{0}\right) \subset \bar{D}\left(1, \lim _{n \rightarrow \infty} \tau_{n}^{\bullet}\right)
$$

The inclusion $\sigma\left(\Delta, W_{\tau}^{0}\right) \subset \bar{D}\left(1, \lim _{n \rightarrow \infty} \tau_{n}^{\bullet}\right)$ is a direct consequence of (i), since we have $\tau^{\bullet} \in c$. Now we show

$$
\begin{equation*}
D\left(1, \lim _{n \rightarrow \infty} \tau_{n}^{\bullet}\right) \subset \sigma\left(\Delta, W_{\tau}^{0}\right) \tag{5}
\end{equation*}
$$

Since the inclusion $\rho\left(\Delta, W_{\tau}^{0}\right) \subset\left[D\left(1, \lim _{n \rightarrow \infty} \tau_{n}^{\bullet}\right)\right]^{c}$ is equivalent to (5), we will show if $\lambda I-\Delta$ considered as an operator from W_{τ}^{0} to itself is invertible, then $\lambda \neq 1$ and

$$
|\lambda-1| \geq \lim _{n \rightarrow \infty} \tau_{n}^{\bullet}
$$

We have $(\lambda I-\Delta)^{-1} \in\left(W_{\tau}^{0}, W_{\tau}^{0}\right)$ if and only if

$$
D_{1 / \tau}(\lambda I-\Delta)^{-1} D_{\tau} \in\left(w_{0}, w_{0}\right)
$$

Then by Lemma 5 we have $\left(w_{0}, w_{0}\right) \subset\left(c_{0}, s_{(n)_{n}}^{0}\right)$, and

$$
\begin{equation*}
D_{\left(1 / n \tau_{n}\right)_{n}}(\lambda I-\Delta)^{-1} D_{\tau} \in\left(c_{0}, c_{0}\right) \tag{6}
\end{equation*}
$$

Now it is well known that $(\lambda I-\Delta)^{-1}$ is the triangle defined for $\lambda \neq 1$, by

$$
\left[(\lambda I-\Delta)^{-1}\right]_{n m}=\frac{(-1)^{n-m}}{(\lambda-1)^{n-m+1}} \text { for } m \leq n
$$

We have

$$
u_{n}=\left|\left[D_{\left(1 / n \tau_{n}\right)_{n}}(\lambda I-\Delta)^{-1} D_{\tau}\right]_{n 1}\right|=\frac{\tau_{1}}{n \tau_{n}|\lambda-1|^{n}} \text { for } n \geq 2
$$

and by Lemma 4 we obtain

$$
\lim _{n \rightarrow \infty} \frac{u_{n}}{u_{n-1}}=\lim _{n \rightarrow \infty} \frac{n-1}{n} \frac{1}{|\lambda-1|} \tau_{n}^{\bullet} \leq 1,
$$

and

$$
\frac{1}{|\lambda-1|} \lim _{n \rightarrow \infty} \tau_{n}^{\bullet} \leq 1
$$

We conclude

$$
\rho\left(\Delta, W_{\tau}^{0}\right) \subset\left\{\lambda \in \mathbb{C}:|\lambda-1| \geq \lim _{n \rightarrow \infty} \tau_{n}^{\bullet} \text { and } \lambda \neq 1\right\}
$$

and

$$
D\left(1, \lim _{n \rightarrow \infty} \tau_{n}^{\bullet}\right) \subset \sigma\left(\Delta, W_{\tau}^{0}\right)
$$

We then have

$$
D\left(1, \lim _{n \rightarrow \infty} \tau_{n}^{\bullet}\right) \subset \sigma\left(\Delta, W_{\tau}^{0}\right) \subset \bar{D}\left(1, \lim _{n \rightarrow \infty} \tau_{n}^{\bullet}\right)
$$

and since $\sigma\left(\Delta, W_{\tau}^{0}\right)$ is a closed subset of \mathbb{C}, and $\bar{D}\left(1, \lim _{n \rightarrow \infty} \tau_{n}^{\bullet}\right)$ is the smallest closed set containing $D\left(1, \lim _{n \rightarrow \infty} \tau_{n}^{\bullet}\right)$, we conclude $\sigma\left(\Delta, W_{\tau}^{0}\right)=\bar{D}\left(1, \lim _{n \rightarrow \infty} \tau_{n}^{\bullet}\right)$.

Case $\chi=W$. The proof follows exactly the same lines that above. It is enough to notice that by Lemma 5, the condition $D_{1 / \tau}(\lambda I-\Delta)^{-1} D_{\tau} \in$ $\left(w_{\infty}, w_{\infty}\right)$ implies

$$
D_{1 / \tau}(\lambda I-\Delta)^{-1} D_{\tau} \in\left(\ell_{\infty}, s_{(n)_{n}}\right)
$$

and

$$
D_{\left(1 / n \tau_{n}\right)_{n}}(\lambda I-\Delta)^{-1} D_{\tau} \in\left(\ell_{\infty}, \ell_{\infty}\right)=S_{1}
$$

This completes the proof of (ii).
(iii) is an immediate consequence of (ii) with $\tau_{n}=r^{n}$.

5 Matrix Transformations in $W_{\tau}^{0}\left((\Delta-\lambda I)^{h}\right)$

In this section we recall results on the sets (E, F) where E is either w_{0} and w_{∞} and $F=\ell_{\infty}$, or c_{0}. Then we apply the results of Section 4 to determine the sets $\left(E^{\prime}, F^{\prime}\right)$ where E^{\prime} is either $W_{\tau}^{0}\left((\Delta-\lambda I)^{h}\right)$, or $W_{\tau}\left((\Delta-\lambda I)^{h}\right)$ and $F^{\prime}=s_{\xi}$, or s_{ξ}^{0}.

5.1 Matrix Transformations in the Sets w_{0} and w_{∞}

Here we recall some results that are direct consequence of [3, Theorem 2.4], where it is written

$$
\begin{equation*}
\left\|\left(a_{n}\right)_{n \geq 1}\right\|_{\mathcal{M}}=\sum_{\nu=1}^{\infty} 2^{\nu} \max _{2^{\nu} \leq m \leq 2^{\nu+1}-1}\left|a_{m}\right| \tag{7}
\end{equation*}
$$

sing the notation $A_{n}=\left(a_{n m}\right)_{m \geq 1}$ we obtain the following.
Lemma 7 [3] (i) We have $\left(w_{0}, \ell_{\infty}\right)=\left(w_{\infty}, \ell_{\infty}\right)$ and $A \in\left(w_{\infty}, \ell_{\infty}\right)$ if and only if

$$
\begin{equation*}
\sup _{n}\left(\left\|A_{n}\right\|_{\mathcal{M}}\right)=\sup _{n}\left(\sum_{\nu=1}^{\infty} 2^{\nu} \max _{2^{\nu} \leq m \leq 2^{\nu+1}-1}\left|a_{n m}\right|\right)<\infty \tag{8}
\end{equation*}
$$

(ii) $A \in\left(w_{\infty}, c_{0}\right)$ if and only if

$$
\lim _{n \rightarrow \infty}\left\|A_{n}\right\|_{\mathcal{M}}=\lim _{n \rightarrow \infty}\left(\sum_{\nu=1}^{\infty} 2^{\nu} \max _{2^{\nu} \leq m \leq 2^{\nu+1}-1}\left|a_{n m}\right|\right)=0
$$

(iii) $A \in\left(w_{0}, c_{0}\right)$ if and only if (8) holds and

$$
\lim _{n \rightarrow \infty} a_{n m}=0 \text { for all } m
$$

5.2 Matrix Transformations in the Sets $w_{0}(T)$ and $w_{\infty}(T)$

To state the next result we consider the matrix Σ^{+}, by $\left[\Sigma^{+}\right]_{n m}=1$ for $m \geq n$ and $\left[\Sigma^{+}\right]_{n m}=0$ otherwise, and from any matrix $A=\left(a_{n m}\right)_{n, m \geq 1}$ we define for any integer i, the triangle $W^{(i)}$ by

$$
\left[W^{(i)}\right]_{n m}=\left[\Sigma^{+} D_{\left(a_{i n}\right)_{n}} T^{-1}\right]_{n m} \text { for } m \leq n .
$$

So an elementary calculations yield

$$
\begin{equation*}
\left[W^{(i)}\right]_{n m}=\sum_{k=n}^{\infty} a_{i k} s_{k m} \text { for } m \leq n \tag{9}
\end{equation*}
$$

where T^{-1} is the triangle whose nonzero entries are defined by $\left[T^{-1}\right]_{n m}=s_{n m}$. From [3, Lemma 4.1 and Theorem 4.2], we obtain the following.

Lemma 8 Let χ be any of the sets w_{∞} or w_{0} and Y be an arbitrary subset of s. Then $A \in(\chi(T), Y)$ if and only if
(i) $A T^{-1} \in(\chi, Y)$,
(ii) $W^{(i)} \in\left(\chi, c_{0}\right)$ for all $i \geq 1$.

From (9) and (7) we easily see that for every $n \in \mathbb{N}$, there is $\nu(n)$ uniquely defined with $2^{\nu(n)} \leq n \leq 2^{\nu(n)+1}-1$, and for any $i \geq 1$ we have

$$
\left\|W_{n}^{(i)}\right\|_{\mathcal{M}}=\sum_{\nu=0}^{\nu(n)-1} 2^{\nu} \max _{2^{\nu} \leq m \leq 2^{\nu+1}-1}\left|\sum_{k=n}^{\infty} a_{i k} s_{k m}\right|+2^{\nu(n)} \max _{2^{\nu(n) \leq m \leq n}}\left|\sum_{k=n}^{\infty} a_{i k} s_{k m}\right|
$$

Now we state the next lemma which is a direct consequence of Lemma 7 and Lemma 8, where we have $\left[A T^{-1}\right]_{n m}=\sum_{k=m}^{\infty} a_{n k} s_{k m}$ for all n, m.

Lemma 9 (i) $A \in\left(w_{\infty}(T), \ell_{\infty}\right)$ if and only if
a)

$$
\begin{equation*}
\sup _{n}\left(\sum_{\nu=0}^{\infty} 2^{\nu} \max _{2^{\nu} \leq m \leq 2^{\nu+1}-1}\left|\sum_{k=m}^{\infty} a_{n k} s_{k m}\right|\right)<\infty . \tag{10}
\end{equation*}
$$

b) For every $i \geq 1$ we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|W_{n}^{(i)}\right\|_{\mathcal{M}}=0 \tag{11}
\end{equation*}
$$

(ii) $A \in\left(w_{\infty}(T), c_{0}\right)$ if and only if (11) holds for all i, and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left(\sum_{\nu=0}^{\infty} 2^{\nu} \max _{2^{\nu} \leq m \leq 2^{\nu+1}-1}\left|\sum_{k=m}^{\infty} a_{n k} s_{k m}\right|\right)=0 \tag{12}
\end{equation*}
$$

(iii) $A \in\left(w_{0}(T), \ell_{\infty}\right)$ if and only if (10) holds, and for each i we have

$$
\begin{equation*}
\sup _{n}\left(\sum_{\nu=0}^{\infty} 2^{\nu} \max _{2^{\nu} \leq m \leq 2^{\nu+1}-1}\left|\sum_{k=n}^{\infty} a_{i k} s_{k m}\right|\right)<\infty \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{k=n}^{\infty} a_{i k} s_{k m}=0 \text { for all } m \tag{14}
\end{equation*}
$$

(iv) $A \in\left(w_{0}(T), c_{0}\right)$ if and only if (10) holds, (14) and (13) hold for all i, and

$$
\lim _{n \rightarrow \infty} \sum_{k=m}^{\infty} a_{n k} s_{k m}=0 \text { for all } m
$$

5.3 The Operator $(\Delta-\lambda I)^{h}$, where $h \in \mathbb{C}$

For any given $h \in \mathbb{C}$, we put
$\binom{-h+k-1}{k}=\left\{\begin{array}{lc}\frac{-h(-h+1) \ldots(-h+k-1)}{k!} & \text { if } k>0, \\ 1 & \text { if } k=0,\end{array}\right.$
(cf. [10]). To simplify we will write

$$
[-h, k]=\binom{-h+k-1}{k}
$$

It is known that $(\Delta-\lambda I)^{h}$ with $\lambda \neq 1$ is the triangle defined by

$$
\left[(\Delta-\lambda I)^{h}\right]_{n m}=\frac{[-h, n-m]}{(1-\lambda)^{-h+n-m}} \text { for } m \leq n
$$

see [10, Theorem 8, pp. 295-296].

5.4 The Sets (E, F) where E is either $W_{\tau}^{0}\left((\Delta-\lambda I)^{h}\right)$, or $W_{\tau}\left((\Delta-\lambda I)^{h}\right)$ and $F=s_{\xi}$, or s_{ξ}^{0}.

In the following we consider for $\lambda \neq 1$, matrix transformations mapping in the sets

$$
W_{\tau}\left((\Delta-\lambda I)^{h}\right)=\left\{x \in s: \sup _{n}\left(\frac{1}{n} \sum_{m=1}^{n} \frac{1}{\tau_{m}}\left|\frac{[-h, n-m]}{(1-\lambda)^{-h+n-m}} x_{m}\right|\right)<\infty\right\}
$$

and

$$
W_{\tau}^{0}\left((\Delta-\lambda I)^{h}\right)=\left\{x \in s: \lim _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{m=1}^{n} \frac{1}{\tau_{m}}\left|\frac{[-h, n-m]}{(1-\lambda)^{-h+n-m}} x_{m}\right|\right)=0\right\}
$$

To state the next result we put

$$
\chi_{n m}(i)=\sum_{k=n}^{\infty}[h, k-m] \frac{a_{i k}}{(1-\lambda)^{h+k-m}} \text { for } n, m, i \geq 1 \text { integers. }
$$

Theorem 10 (i) Let $\lambda \neq 1$. Then
a) $A \in\left(W_{\tau}\left((\Delta-\lambda I)^{h}\right), s_{\xi}\right)$ if and only if

$$
\begin{equation*}
\sup _{n}\left(\frac{1}{\xi_{n}} \sum_{\nu=0}^{\infty} 2^{\nu} \max _{2^{\nu} \leq m \leq 2^{\nu+1}-1}\left|\sum_{k=m}^{\infty}[h, k-m] \frac{a_{n k}}{(1-\lambda)^{h+k-m}} \tau_{m}\right|\right)<\infty \tag{15}
\end{equation*}
$$

and for every $n \in \mathbb{N}$, there is $\nu(n)$ uniquely defined with $2^{\nu(n)} \leq n \leq 2^{\nu(n)+1}-1$, and for any $i \geq 1$ we have
$\lim _{n \rightarrow \infty}\left\{\frac{1}{\xi_{n}}\left(\sum_{\nu=0}^{\nu(n)-1} 2^{\nu} \max _{2^{\nu} \leq m \leq 2^{\nu+1}-1}\left|\chi_{n m}(i)\right| \tau_{m}+2^{\nu(n)} \max _{2^{\nu(n) \leq m \leq n}}\left|\chi_{n m}(i)\right| \tau_{m}\right)\right\}=0$.
b) $A \in\left(W_{\tau}\left((\Delta-\lambda I)^{h}\right), s_{\xi}^{0}\right)$ if and only if (16) holds for every $i \geq 1$ and
$\lim _{n \rightarrow \infty}\left(\frac{1}{\xi_{n}} \sum_{\nu=0}^{\infty} 2^{\nu} \max _{2^{\nu} \leq m \leq 2^{\nu+1}-1}\left|\sum_{k=m}^{\infty}[h, k-m] \frac{a_{n k}}{(1-\lambda)^{h+k-m}} \tau_{m}\right|\right)=0$.
c) $A \in\left(W_{\tau}^{0}\left((\Delta-\lambda I)^{h}\right), s_{\xi}\right)$ if and only if (15) holds and for every $n \in \mathbb{N}$, there is $\nu(n)$ uniquely defined with $2^{\nu(n)} \leq n \leq 2^{\nu(n)+1}-1$, and for any $i \geq 1$ condition (17) holds and
$\sup _{n}\left\{\frac{1}{\xi_{n}}\left(\sum_{\nu=0}^{\nu(n)-1} 2^{\nu} \max _{2^{\nu} \leq m \leq 2^{\nu+1}-1}\left|\chi_{n m}(i)\right| \tau_{m}+2^{\nu(n)} \max _{2^{\nu(n)} \leq m \leq n}\left|\chi_{n m}(i)\right| \tau_{m}\right)\right\}<\infty$.
d) $A \in\left(W_{\tau}^{0}\left((\Delta-\lambda I)^{h}\right), s_{\xi}^{0}\right)$ if and only if (15) holds, (17) and (18) hold for all i, and

$$
\lim _{n \rightarrow \infty} \frac{1}{\xi_{n}} \sum_{k=m}^{\infty}[h, k-m] \frac{a_{n k}}{(1-\lambda)^{h+k-m}} \tau_{m}=0 \text { for all } m
$$

(ii) Let $h \in \mathbb{N}$. Assume that $\tau^{\bullet}=\left(\tau_{n-1} / \tau_{n}\right)_{n \geq 2} \in \ell_{\infty}$ and let λ such that

$$
\begin{equation*}
|\lambda-1|>\varlimsup_{n \rightarrow \infty} \tau_{n}^{\bullet} \tag{19}
\end{equation*}
$$

a) We have $\left(W_{\tau}\left((\Delta-\lambda I)^{h}\right), s_{\xi}\right)=\left(W_{\tau}^{0}\left((\Delta-\lambda I)^{h}\right), s_{\xi}\right)$ and $A \in\left(W_{\tau}\left((\Delta-\lambda I)^{h}\right), s_{\xi}\right)$ if and only if

$$
\begin{equation*}
\sup _{n}\left\{\frac{1}{\xi_{n}} \sum_{\nu=0}^{\infty} 2^{\nu} \max _{2^{\nu} \leq m \leq 2^{\nu+1}-1}\left|a_{n m}\right| \tau_{m}\right\}<\infty \tag{20}
\end{equation*}
$$

b) We have $A \in\left(W_{\tau}^{0}\left((\Delta-\lambda I)^{h}\right)\right.$, $\left.s_{\xi}^{0}\right)$ if and only if (20) holds and $\lim _{n \rightarrow \infty} a_{n m} / \xi_{n}=$ 0 for all $m \geq 1$.
c) We have $A \in\left(W_{\tau}\left((\Delta-\lambda I)^{h}\right), s_{\xi}^{0}\right)$ if and only if

$$
\lim _{n \rightarrow \infty}\left\{\frac{1}{\xi_{n}} \sum_{\nu=0}^{\infty} 2^{\nu} \max _{2^{\nu} \leq m \leq 2^{\nu+1}-1}\left|a_{n m}\right| \tau_{m}\right\}=0 .
$$

On the Spectra of the Operator of the First...

Proof. (i) By Lemma 9 with $T=(\Delta-\lambda I)^{h}$, we have $T^{-1}=(\Delta-\lambda I)^{-h}$ which is defined by

$$
\left[(\Delta-\lambda I)^{-h}\right]_{n m}=\frac{[h, n-m]}{(1-\lambda)^{h+n-m}} \text { for } m \leq n
$$

Then we have

$$
\begin{aligned}
{\left[A(\Delta-\lambda I)^{-h}\right]_{n m} } & =\sum_{k=m}^{\infty} a_{n k}\left[(\Delta-\lambda I)^{-h}\right]_{k m} \\
& =\sum_{k=m}^{\infty}[h, k-m] \frac{a_{n k}}{(1-\lambda)^{h+k-m}} \text { for all } n, m \geq 1
\end{aligned}
$$

We also have

$$
\left[W^{(i)}\right]_{n m}=\sum_{k=n}^{\infty} a_{i k}\left[(\Delta-\lambda I)^{-h}\right]_{k m}=\chi_{n m}(i) \text { for } m \leq n \text { and for all } i \geq 1
$$

Then by Lemma 8 we have $A \in\left(W_{\tau}\left((\Delta-\lambda I)^{h}\right), s_{\xi}\right)$ if and only if

$$
D_{1 / \xi} A(\Delta-\lambda I)^{-h} D_{\tau} \in\left(w_{\infty}, \ell_{\infty}\right)
$$

and

$$
D_{1 / \xi} W^{(i)} D_{\tau} \in\left(w_{\infty}, c_{0}\right) \text { for all } i \geq 1
$$

So there is $\nu(n)$ uniquely defined with $2^{\nu(n)} \leq n \leq 2^{\nu(n)+1}-1$, and for any $i \geq 1$ we have

$$
\left\|\left[D_{1 / \xi} W^{(i)} D_{\tau}\right]_{n}\right\|_{\mathcal{M}}=\frac{1}{\xi_{n}} \sum_{\nu=0}^{\nu(n)-1} 2^{\nu} \max _{2^{\nu} \leq m \leq 2^{\nu+1}-1}\left|\chi_{n m}(i)\right| \tau_{m}+\frac{1}{\xi_{n}} 2^{\nu(n)} \max _{2^{\nu(n)} \leq m \leq n}\left|\chi_{n m}(i)\right| \tau_{m}
$$

Applying Lemma 7 with $a_{n m}$ replaced by

$$
\frac{1}{\xi_{n}} \sum_{k=m}^{\infty}[h, k-m] \frac{a_{n k}}{(1-\lambda)^{h+k-m}} \tau_{m}
$$

we obtain (i) a). Then replacing $a_{n m}$ by

$$
\frac{1}{\xi_{n}} \chi_{n m}(i) \tau_{m} \text { for } m \leq n \text { and for } i \geq 1
$$

we obtain (i) b). The statements (i) c) and (i) d) can be shown in the same way.
(ii) Since (19) holds, by Theorem 6, we have $\lambda \notin \sigma\left(\Delta, W_{\tau}^{0}\right)$, and $\Delta-\lambda I$ is bijective from W_{τ}^{0} to itself and $W_{\tau}^{0}\left((\Delta-\lambda I)^{h}\right)=W_{\tau}^{0}$. Then

$$
A \in\left(W_{\tau}^{0}\left((\Delta-\lambda I)^{h}\right), s_{\xi}\right)=\left(W_{\tau}^{0}, s_{\xi}\right)
$$

if and only if $D_{1 / \xi} A D_{\tau} \in\left(w_{0}, \ell_{\infty}\right)$, and we conclude applying Lemma 7. The cases b) and c) are direct consequences of Theorem 6 and Lemma 7 .

References

[1] A.M. Akhmedov and F. Başar, On the fine spectrum of the operator Δ over the sequence space $b v_{p}(1 \leq p<\infty)$, Acta Math. Sin. Eng. Ser., 23(10) (2007), 1757-1768.
[2] H. Bilgiç and H. Furkan, On the fine spectrum of the generalized difference operator $B(r, s)$ over the sequence spaces ℓ_{p} and $b v_{p}(1<p<\infty)$, Nonlinear Analysis, 68(3) (2008), 499-50.
[3] F. Başar, E. Malkowsky and A. Bilâl, Matrix transformations on the matrix domains of triangles in the spaces of strongly C_{1} summable and bounded sequences, Publicationes Math., 78(2008), 193-213.
[4] B. de Malafosse, On some BK space, Int. J. Math. Math. Sci., 28(2003), 1783-1801.
[5] B. de Malafosse, On the set of sequences that are strongly α-bounded and α-convergent to naught with index p, Rend. Sem. Mat. Univ. Politec. Torino, 61(2003), 13-32.
[6] B. de Malafosse, Calculations on some sequence spaces, Int. J. Math. Math. Sci., 31(2004), 1653-1670.
[7] B. de Malafosse and E. Malkowsky, On the banach algebra $\left(w_{\infty}(\Lambda), w_{\infty}(\Lambda)\right)$ and applications to the solvability of matrix equations in $w_{\infty}(\Lambda)$, Pub. Math. Debr. Math. J., 84(2014), 197-217.
[8] B. de Malafosse and E. Malkowsky, Matrix transformations in the sets $\chi\left(\bar{N}_{p} \bar{N}_{q}\right)$ where χ is in the form s_{ξ}, or s_{ξ}°, or $s_{\xi}^{(c)}$, Filomat, $17(2003)$, 85-106.
[9] B. de Malafosse and E. Malkowsky, Matrix transformations between sets of the form W_{ξ} and operator generators of analytic semigroups, Jordan J. Math. Stat., 1(1) (2008), 51-67.
[10] B. de Malafosse, Properties of some sets of sequences and application to the spaces of bounded difference sequences of order μ, Hokkaido Math. J., 31(2002), 283-299.
[11] B. de Malafosse, Sum and product of certain BK spaces and matrix transformations between these spaces, Acta Math. Hung., 104(3) (2004), 241263.

On the Spectra of the Operator of the First...
[12] B. de Malafosse, Sum of sequence spaces and matrix transformations mapping in $s_{\alpha}^{0}\left((\Delta-\lambda I)^{h}\right)+s_{\beta}^{(c)}\left((\Delta-\mu I)^{l}\right)$, Acta Math. Hung., 122(2008), 217-230.
[13] B. de Malafosse, Applications of the summability theory to the solvability of certain sequence spaces equations with operators of the form $B(r, s)$, Commun. Math. Anal., 13(1) (2012), 35-53.
[14] A. Farés and B. de Malafosse, Spectra of the operator of the first difference in $s_{\alpha}, s_{\alpha}^{0}, s_{\alpha}^{(c)}$ and $\ell_{p}(\alpha)(1 \leq p<\infty)$ and application to matrix transformations, Demonstratio Math, 41($\left.\mathrm{N}^{\circ} 3\right)$ (2008), 661-676.
[15] I.J. Maddox, Elements of Functionnal Analysis, Cambridge University Press, London and New York, (1970).
[16] I.J. Maddox, On Kuttner's theorem, J. London Math. Soc., 43(1968), 285-290.
[17] B. de Malafosse and V. Rakočević, Calculations in new sequence spaces and application to statistical convergence, Cubo, A12(3) (2010), 117-132.
[18] E. Malkowsky, Banach algebras of matrix transformations between spaces of strongly bounded and summable sequences, Adv. Dyn. Syst. Appl., $6\left(\mathrm{n}^{\circ} 1\right)(2011), 241-250$.
[19] E. Malkowsky and V. Rakočević, An introduction into the theory of sequence spaces and measure of noncompactness, Zbornik Radova, Matematčki institut SANU, 9(17) (2000), 143-243.
[20] A. Wilansky, Summability through Functional Analysis, North-Holland Mathematics Studies, 85(1984).

