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Abstract
The main purpose of this work is to obtain a common fixed point theorem for

a pair of self mappings in cone metric spaces by using the concept of generalized
c-distance. Our results will improve and supplement some results in the existing
literature. Finally, an example is provided to show that the generalized c-
distances form a bigger category than that of c-distances.
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1 Introduction

Over the past two decades a considerable amount of research work for the de-
velopment of fixed point theory have executed by several authors. There has
been a number of generalizations of the usual notion of a metric space. One
such generalization is a cone metric space initiated by Huang and Zhang[8].
After that a series of articles have been dedicated to the improvement of fixed
point theory. In most of those articles, the authors used normality property of
cones in their results. The idea of common fixed point was initially given by
Junck[11]. In fact, they considered commuting mappings to obtain common
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fixed point. Afterwards, many generalizations of this common fixed point result
were obtained by several mathematicians viz., Hadzic[9], Singh and Meade[20],
Pathak[16], Yeh[23] etc.. Recently, Wang et. al.[22] introduced the concept of
c-distance on a cone metric space, which is a cone version of the w-distance
of Kada et.al.[12] and proved a common fixed point theorem. In this paper,
we introduce the concept of generalized c-distance on a cone metric space and
obtain sufficient conditions for existence of points of coincidence and common
fixed points for a pair of self mappings satisfying generalized contractive con-
ditions. The cone under consideration is not assumed to be normal.

2 Preliminaries

In this section we need to recall some basic notations, definitions, and necessary
results from existing literature. Let E be a real Banach space and θ denote
the zero element in E. A cone P is a subset of E such that

(i) P is closed, nonempty and P 6= {θ};
(ii) a, b ∈ R, a, b ≥ 0, x, y ∈ P ⇒ ax+ by ∈ P ;

(iii) P ∩ (−P ) = {θ}.

For any cone P ⊆ E, we can define a partial ordering � on E with respect to
P by x � y if and only if y−x ∈ P . We shall write x ≺ y (equivalently, y � x)
if x � y and x 6= y, while x � y will stand for y − x ∈ int(P ), where int(P )
denotes the interior of P . The cone P is called normal if there is a number
k > 0 such that for all x, y ∈ E,

θ � x � y implies ‖x‖ ≤ k ‖y‖. (1)

The least positive number satisfying the above inequality is called the normal
constant of P .

Definition 2.1 [8] Let X be a nonempty set. Suppose the mapping d :
X ×X → E satisfies

(i) θ � d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y ;

(ii) d(x, y) = d(y, x) for all x, y ∈ X;

(iii) d(x, y) � d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.
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Definition 2.2 [8] Let (X, d) be a cone metric space. Let (xn) be a sequence
in X and x ∈ X. If for every c ∈ E with θ � c there is a natural number n0

such that for all n > n0, d(xn, x) � c, then (xn) is said to be convergent and
(xn) converges to x, and x is the limit of (xn). We denote this by lim

n→∞
xn = x

or xn → x (n→∞).

Definition 2.3 [8] Let (X, d) be a cone metric space, (xn) be a sequence in
X. If for any c ∈ E with θ � c, there is a natural number n0 such that for all
n,m > n0, d(xn, xm)� c, then (xn) is called a Cauchy sequence in X.

Definition 2.4 [8] Let (X, d) be a cone metric space, if every Cauchy se-
quence is convergent in X, then X is called a complete cone metric space.

Here we point to some elementary results of [8].
Let (X, d) be a cone metric space, P a normal cone, x ∈ X and (xn) a sequence
in X. Then

(i) (xn) converges to x if and only if d(xn, x)→ θ(Lemma 1).

(ii) Limit point of every sequence is unique (Lemma 2).

(iii) Every convergent sequence is Cauchy (Lemma 3).

(iv) (xn) is a Cauchy sequence if and only if d(xn, xm) → θ as n,m → ∞
(Lemma 4).

(v) If xn → x and yn → y then d(xn, yn)→ d(x, y) as n→∞ (Lemma 5).

Lemma 2.5 [19] Let E be a real Banach space with a cone P . Then
(i) If a� b and b� c, then a� c.
(ii) If a � b and b� c, then a� c.

Lemma 2.6 [8] Let E be a real Banach space with cone P . Then one has
the following.
(i) If θ � c, then there exists δ > 0 such that ‖b‖ < δ implies b� c.
(ii) If an, bn are sequences in E such that an → a, bn → b and an � bn for all
n ≥ 1, then a � b.

Proposition 2.7 [10] If E is a real Banach space with cone P and if a � λa
where a ∈ P and 0 ≤ λ < 1 then a = θ.

Definition 2.8 [2] Let T and S be self mappings of a set X. If y = Tx =
Sx for some x in X, then x is called a coincidence point of T and S and y is
called a point of coincidence of T and S.
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Definition 2.9 [11] The mappings T, S : X → X are weakly compatible, if
for every x ∈ X, the following holds:

T (Sx) = S(Tx) whenever Sx = Tx.

Proposition 2.10 [2] Let S and T be weakly compatible selfmaps of a
nonempty set X. If S and T have a unique point of coincidence y = Sx = Tx,
then y is the unique common fixed point of S and T .

Definition 2.11 [22] Let (X, d) be a cone metric space. Then a mapping
q : X ×X → E is called a c-distance on X if the following are satisfied :

(i) θ � q(x, y) for all x, y ∈ X;

(ii) q(x, z) � q(x, y) + q(y, z) for all x, y, z ∈ X;

(iii) for all x ∈ X, if q(x, yn) � u for some u = ux ∈ P and all n ≥ 1,
then q(x, y) � u whenever (yn) is a sequence in X converging to a point
y ∈ X;

(iv) for all c ∈ E with θ � c, there exists e ∈ E with θ � e such that
q(z, x)� e and q(z, y)� e imply d(x, y)� c.

Example 2.12 [22] Let (X, d) be a cone metric space and P be a normal
cone. Put q(x, y) = d(x, y) for all x, y ∈ X. Then q is a c-distance.

Example 2.13 [22] Let (X, d) be a cone metric space and P be a normal
cone. Put q(x, y) = d(u, y) for all x, y ∈ X, where u ∈ X is a fixed point.
Then q is a c-distance.

Example 2.14 [22] Let E = R and P = {x ∈ E : x ≥ 0}. Let X = [0,∞)
and define a mapping d : X × X → E by d(x, y) =| x − y | for all x, y ∈ X.
Then (X, d) is a cone metric space. Define a mapping q : X × X → E by
q(x, y) = y for all x, y ∈ X. Then q is a c-distance.

Remark 2.15 [22](1)q(x, y) = q(y, x) does not necessarily hold for all x, y ∈
X.
(2) q(x, y) = θ is not necessarily equivalent to x = y for all x, y ∈ X.

Definition 2.16 Let (X, d) be a cone metric space and j ∈ N. A function
q : X×X → E is called a generalized c-distance of order j on X if the following
conditions are satisfied:

(q1) θ � q(x, y), for all x, y ∈ X;
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(q2) q(x, z) �
j∑
i=0

q(xi, xi+1), for all x, z ∈ X and for all distinct points

xi ∈ X, i ∈ {1, 2, 3, · · ·, j} each of them different from x(= x0) and
z(= xj+1);

(q3) for all x ∈ X, if q(x, yn) � u for some u = ux ∈ P and all n ≥ 1,
then q(x, y) � u whenever (yn) is a sequence in X converging to a point
y ∈ X;

(q4) for all c ∈ E with θ � c, there exists e ∈ E with θ � e such that
q(z, x)� e and q(z, y)� e imply d(x, y)� c.

We see that every c-distance is a generalized c-distance of order 1. In fact,
every c-distance may also be considered as a generalized c-distance of any
order j ∈ N. But the converse does not hold (see Example 3.8).

3 Main Result

In this section we always suppose that E is a real Banach space, P is a cone in
E with int(P ) 6= ∅ and � is the partial ordering with respect to P . We begin
with the following Lemma that will play a crucial role in the proof of the main
theorem.

Lemma 3.1 Let (X, d) be a cone metric space and q is a generalized c-
distance of order j on X. Let (xn) and (yn) be sequences in X. Suppose that
(αn) and (βn) are sequences in P converging to θ, and let x, y, z ∈ X. Then
the following hold :
(i) If q(xn, yn) � αn and q(xn, z) � βn for any n ∈ N, then (yn) converges to
z;
(ii) If q(xn, y) � αn and q(xn, z) � βn for any n ∈ N, then y = z. In particular,
if q(x, y) = θ and q(x, z) = θ, then y = z;
(iii) If q(xn, xm) � αn for any n,m ∈ N with m > n, then (xn) is a Cauchy
sequence.

(i) Let c ∈ E with θ � c. Then there exists δ > 0 such that ‖ x ‖< δ implies
c − x ∈ int (P ). Since (αn) and (βn) are converging to θ, there exists n0 ∈ N
such that ‖ αn ‖< δ and ‖ βn ‖< δ for all n > n0. Thus c− αn ∈ int (P ) and
c − βn ∈ int (P ) for all n > n0 and so αn � c and βn � c for all n > n0. By
hypothesis, q(xn, yn) � αn � c and q(xn, z) � βn � c for all n > n0. Now
from (q4) with e = c it follows that d(yn, z)� c for all n > n0. Therefore (yn)
converges to z.
Clearly, (ii) is immediate from (i).
(iii) Let c ∈ E with θ � c. Then by the arguments similar to that used above,



Generalized c-Distance and a Common... 15

there exists a positive integer n0 such that q(xn, xm) � αn � c for all m > n
with n > n0. This implies that q(xn, xn+1) � αn � c and q(xn, xm+1) �
αn � c for all m > n with n > n0. From (q4) with e = c it follows that
d(xn+1, xm+1) � c for all m > n with n > n0. This shows that (xn) is a
Cauchy sequence in X.

Theorem 3.2 Let (X, d) be a cone metric space and q is a generalized c-
distance of order j on X. Suppose the mappings f, g : X → X satisfy

q(fx, fy) � a1 q(gx, gy) + a2 q(gx, fx) + a3 q(gy, fy) (2)

for all x, y ∈ X, and a1, a2, a3 ∈ [0, 1) with a1 + a2 + a3 < 1 and that

inf {q(gx, y) + q(fx, y) + q(gx, fx) : x ∈ X} � θ (3)

for all y ∈ X with y is not a point of coincidence of f and g. If f(X) ⊆ g(X)
and g(X) is a complete subspace of X, then f and g have a unique point of
coincidence in X. Moreover, if f and g are weakly compatible, then f and g
have a unique common fixed point in X.

Let x0 ∈ X be arbitrary. Since f(X) ⊆ g(X), there exists an x1 ∈ X such
that fx0 = gx1. Proceeding in this way, a sequence (xn) can be chosen such
that fxn = gxn+1, n = 0, 1, 2, · · ·.

For any natural number n, we have by using condition (2) that

q(gxn, gxn+1) = q(fxn−1, fxn)

� a1 q(gxn−1, gxn) + a2 q(gxn−1, fxn−1) + a3 q(gxn, fxn)

= a1 q(gxn−1, gxn) + a2 q(gxn−1, gxn) + a3 q(gxn, gxn+1).

So, it must be the case that

q(gxn, gxn+1) � r q(gxn−1, gxn) (4)

where r = a1+a2
1−a3 ∈ [0, 1).

By repeated application of (4), we obtain

q(gxn, gxn+1) � rn q(gx0, gx1). (5)

We can suppose that gxn 6= gxm for all distinct n,m ∈ {0, 1, 2, · · ·}. In
fact, if gxn = gxm for some n,m ∈ {0, 1, 2, · · ·}, m 6= n then assuming m > n,
we may write

gxn = gxn+k, where k = m− n ≥ 1. (6)
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Put y = gxn. Then

q(y, gxn+1) = q(gxn, gxn+1)

= q(gxn+k, gxn+1)

= q(fxn+k−1, fxn)

� a1 q(gxn+k−1, gxn) + a2 q(gxn+k−1, fxn+k−1) + a3 q(gxn, fxn)

= a1 q(gxn+k−1, gxn+k) + a2 q(gxn+k−1, gxn+k) + a3 q(y, gxn+1)

which gives that
q(y, gxn+1) � r q(gxn+k−1, gxn+k). (7)

By repeated use of (4), we obtain from (7)

q(y, gxn+1) � r q(gxn+k−1, gxn+k)

� r2 q(gxn+k−2, gxn+k−1)

·
·
·
� rk q(gxn, gxn+1)

= rk q(y, gxn+1).

Since 0 ≤ r < 1, by using Proposition 2.7 it follows that q(y, gxn+1) = θ and
so

q(gxn, gxn+1) = θ. (8)

Now using conditions (2), (4) and (8), we obtain

q(y, y) = q(gxn, gxn)

= q(gxn+k, gxn+k)

= q(fxn+k−1, fxn+k−1)

� a1q(gxn+k−1, gxn+k−1) + (a2 + a3)q(gxn+k−1, fxn+k−1)

= a1q(gxn+k−1, gxn+k−1) + (a2 + a3)q(gxn+k−1, gxn+k)

� a1q(gxn+k−1, gxn+k−1) + (a2 + a3)r
k−1q(gxn, gxn+1)

= a1q(gxn+k−1, gxn+k−1).

Similarly,

q(gxn+k−1, gxn+k−1) � a1q(gxn+k−2, gxn+k−2) + (a2 + a3)r
k−2q(gxn, gxn+1)

= a1q(gxn+k−2, gxn+k−2).

Proceeding in this way, we obtain at the k-th step that

q(gxn+1, gxn+1) � a1q(gxn, gxn)+(a2 +a3)q(gxn, gxn+1) = a1q(gxn, gxn). (9)
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Thus,

q(y, y) � a1q(gxn+k−1, gxn+k−1) � · · · � ak1q(gxn, gxn) = ak1q(y, y). (10)

Again by using Proposition 2.7, q(y, y) = θ. Since q(y, gxn+1) = θ and q(y, y) =
θ, by using Lemma 3.1(ii), we have gxn+1 = y. Therefore, fxn = y = gxn
which implies that y is a point of coincidence of f and g.
Thus in the sequel of the proof we can assume that gxn 6= gxm for all distinct
n,m ∈ {0, 1, 2, · · ·}.

Let m,n ∈ N with m > n. Taking m = n + p where p = 1, 2, 3, · · · and
using (2) and (5), we have

q(gxn, gxm) = q(fxn−1, fxm−1)

� a1q(gxn−1, gxm−1) + a2q(gxn−1, fxn−1) + a3q(gxm−1, fxm−1)

= a1q(gxn−1, gxm−1) + a2q(gxn−1, gxn) + a3q(gxm−1, gxm)

� a1q(gxn−1, gxm−1) + a2r
n−1q(gx0, gx1) + a3r

m−1q(gx0, gx1)

� a1q(gxn−1, gxm−1) + (a2 + a3)r
n−1q(gx0, gx1),

since rm−1 ≤ rn−1.
Continuing in this way, we obtain at the n-th step that

q(gxn, gxm) � an1q(gx0, gxp) + (a2 + a3)[r
n−1 + a1r

n−2 + · · ·+ an−11 ]q(gx0, gx1)

= an1q(gx0, gxp) + βnq(gx0, gx1), (11)

where βn = (a2 + a3)[r
n−1 + a1r

n−2 + · · ·+ an−11 ].

We now show that

q(gx0, gxp) �
1

1− aj1

(
1

1− r
+ βj

)
M, (12)

where M = q(gx0, gx1) + q(gx0, gx2) + · · ·+ q(gx0, gxj) ∈ P .

If p ≤ j, then

q(gx0, gxp) � (1 + βj) q(gx0, gxp)

� [(1 + r + r2 + · · ·) + βj] q(gx0, gxp)

=

(
1

1− r
+ βj

)
q(gx0, gxp)

�
(
1 + aj1 + (aj1)

2 + · · ·
)( 1

1− r
+ βj

)
q(gx0, gxp)

� 1

1− aj1

(
1

1− r
+ βj

)
M.
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If p > j, then there exists s ∈ N such that p = sj + t, where 0 ≤ t < j.
If t = 0, then by using conditions (5) and (11)

q(gx0, gxp) � q(gx0, gx1) + q(gx1, gx2) + · · ·+ q(gxj−1, gxj) + q(gxj, gxp)

� q(gx0, gx1) + rq(gx0, gx1) + · · ·+ rj−1q(gx0, gx1)

+aj1q(gx0, gxp−j) + βjq(gx0, gx1)

=

(
j−1∑
ν=0

rν + βj

)
q(gx0, gx1) + aj1q(gx0, gxp−j). (13)

By repeated application of (13), we obtain at (s− 1)-th step that

q(gx0, gxp) �
[
1 + aj1 + (aj1)

2 + · · ·+ (aj1)
s−2]( j−1∑

ν=0

rν + βj

)
q(gx0, gx1)

+(aj1)
(s−1)q(gx0, gxj)

�
[
1 + aj1 + (aj1)

2 + · · ·+ (aj1)
s−2]( j−1∑

ν=0

rν + βj

)
q(gx0, gx1)

+(aj1)
(s−1)

(
j−1∑
ν=0

rν + βj

)
q(gx0, gxj)

�
[
1 + aj1 + (aj1)

2 + · · ·+ (aj1)
s−1]( j−1∑

ν=0

rν + βj

)
M

� 1

1− aj1

(
1

1− r
+ βj

)
M.

If t 6= 0, then

q(gx0, gxp) � q(gx0, gx1) + q(gx1, gx2) + · · ·+ q(gxj−1, gxj) + q(gxj, gxp)

�

(
j−1∑
ν=0

rν + βj

)
q(gx0, gx1) + aj1q(gx0, gxp−j). (14)

By repeated application of (14), we obtain at s-th step that

q(gx0, gxp) �
[
1 + aj1 + (aj1)

2 + · · ·+ (aj1)
s−1]( j−1∑

ν=0

rν + βj

)
q(gx0, gx1)

+(aj1)
sq(gx0, gxt)

�
[
1 + aj1 + (aj1)

2 + · · ·+ (aj1)
s−1]( j−1∑

ν=0

rν + βj

)
q(gx0, gx1)
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+(aj1)
s

(
j−1∑
ν=0

rν + βj

)
q(gx0, gxt)

�
[
1 + aj1 + (aj1)

2 + · · ·+ (aj1)
s
]( j−1∑

ν=0

rν + βj

)
M

� 1

1− aj1

(
1

1− r
+ βj

)
M.

Thus, for the case p > j, we have

q(gx0, gxp) �
1

1− aj1

(
1

1− r
+ βj

)
M. (15)

It now follows from (11) that for all m,n ∈ N with m > n,

q(gxn, gxm) � an1
1− aj1

(
1

1− r
+ βj

)
M + βn q(gx0, gx1)

� bnM, (16)

where bn =
an1

1−aj1

(
1

1−r + βj
)

+ βn → 0 as n→∞. By using Lemma 3.1(iii), we

conclude that (gxn) is a Cauchy sequence in g(X). Since g(X) is complete,
there exists an element u ∈ g(X) such that gxn → u as n→∞.
By (16) and (q3), we have

q(gxn, u) � bnM. (17)

Suppose that u is not a point of coincidence of f and g. Then by hypothesis,
(5) and (17), we have

θ ≺ inf{q(gx, u) + q(fx, u) + q(gx, fx) : x ∈ X}
� inf{q(gxn, u) + q(fxn, u) + q(gxn, fxn) : n ∈ N}
= inf{q(gxn, u) + q(gxn+1, u) + q(gxn, gxn+1) : n ∈ N}
� inf{bnM + bn+1M + rn q(gx0, gx1) : n ∈ N}
= θ,

which is a contradiction. Therefore, u is a point of coincidence of f and g. So
there exists z ∈ X such that fz = gz = u.
For uniqueness, let there exists w(6= u) ∈ X such that fx = gx = w for some
x ∈ X. Then

q(u, u) = q(fz, fz) � a1 q(gz, gz) + a2 q(gz, fz) + a3 q(gz, fz)

= (a1 + a2 + a3) q(u, u).
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Using Proposition 2.7, it follows that q(u, u) = θ.
By the arguments similar to that used above, we have q(w,w) = θ.
Now,

q(u,w) = q(fz, fx) � a1 q(gz, gx) + a2 q(gz, fz) + a3 q(gx, fx)

= a1 q(u,w) + a2 q(u, u) + a3 q(w,w)

= a1 q(u,w).

Again, by Proposition 2.7, we have q(u,w) = θ.

Thus, q(u,w) = θ and q(u, u) = θ imply that u = w. Therefore, f and g
have a unique point of coincidence in X.
If f and g are weakly compatible, then by Proposition 2.10 , f and g have a
unique common fixed point in X.

Remark 3.3 We see that if u is a point of coincidence of f and g, then
q(u, u) = θ.

Corollary 3.4 Let (X, d) be a complete cone metric space and q is a gen-
eralized c-distance of order j on X. Suppose the mapping f : X → X satisfies

q(fx, fy) � a1 q(x, y) + a2 q(x, fx) + a3 q(y, fy) (18)

for all x, y ∈ X, and a1, a2, a3 ∈ [0, 1) with a1 + a2 + a3 < 1 and that

inf {q(x, y) + q(fx, y) + q(x, fx) : x ∈ X} � θ (19)

for all y ∈ X with y 6= fy. Then f has a unique fixed point in X.

The proof follows from Theorem 3.2 by taking g = I, the identity mapping.
As an application of Corollary 3.4, we have the following results.

Theorem 3.5 [8] Let (X, d) be a complete cone metric space, P a normal
cone. Suppose the mapping T : X → X satisfies the contractive condition

d(Tx, Ty) � α [d(x, Tx) + d(y, Ty)] (20)

for all x, y ∈ X, where α ∈ [0, 1
2
) is a constant. Then T has a unique fixed

point in X.

Since P is normal, it follows that d is a c-distance on X. So, we may consider d
as a generalized c-distance of any order j. The condition (20) can be restated
as

d(Tx, Ty) � 0 · d(x, y) + α d(x, Tx) + α d(y, Ty) (21)
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for every x, y ∈ X, where 2α ∈ [0, 1) is a constant. Thus, condition (18) of
Corollary 3.4 is satisfied.
Assume that there exists y ∈ X with y 6= Ty and

inf {d(x, y) + d(Tx, y) + d(x, Tx) : x ∈ X} = θ. (22)

Then, there exists a sequence (xn) in X such that

lim
n→∞

{d(xn, y) + d(Txn, y) + d(xn, Txn)} = θ, (23)

which implies that d(xn, y)→ θ, d(Txn, y)→ θ, d(xn, Txn)→ θ.
By condition (20), we have

d(Txn, T y) � α [d(xn, Txn) + d(y, Ty)] (24)

for any n ∈ N. Since P is normal, it follows that

d(y, Ty) � α d(y, Ty) (25)

which gives that d(y, Ty) = θ i.e., y = Ty, a contradiction.
Hence, if y 6= Ty, then

inf {d(x, y) + d(Tx, y) + d(x, Tx) : x ∈ X} � θ. (26)

So, using Corollary 3.4, we have the desired result.

Theorem 3.6 [8]Let (X, d) be a complete cone metric space, P a normal
cone. Suppose the mapping T : X → X satisfies the contractive condition

d(Tx, Ty) � α d(x, y) (27)

for all x, y ∈ X, where α ∈ [0, 1) is a constant. Then T has a unique fixed
point in X.

As in Theorem 3.5, we treat d as a generalized c-distance of any order j. The
condition (27) can be restated as

d(Tx, Ty) � α d(x, y) + 0 · d(x, Tx) + 0 · d(y, Ty) (28)

for every x, y ∈ X, where α ∈ [0, 1) is a constant. Thus, condition (18) of
Corollary 3.4 is satisfied.
Assume that there exists y ∈ X with y 6= Ty and

inf {d(x, y) + d(Tx, y) + d(x, Tx) : x ∈ X} = θ. (29)

Then, there exists a sequence (xn) in X such that

lim
n→∞

{d(xn, y) + d(Txn, y) + d(xn, Txn)} = θ, (30)
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which implies that d(xn, y)→ θ, d(Txn, y)→ θ, d(xn, Txn)→ θ.
By using condition (27), we have

d(Txn, T y) � α d(xn, y) (31)

for any n ∈ N. Since P is normal, it follows that

d(y, Ty) � θ (32)

which gives that d(y, Ty) = θ i.e., y = Ty, a contradiction.
Hence, if y 6= Ty, then

inf {d(x, y) + d(Tx, y) + d(x, Tx) : x ∈ X} � θ. (33)

So, by Corollary 3.4, T has a unique fixed point in X.

Theorem 3.7 [7] Let (X, d) be a complete cone metric space and q is a
c-distance on X. Suppose that the mapping f : X → X is continuous and
satisfies the contractive condition:

q(fx, fy) � a1 q(x, y) + a2 q(x, fx) + a3 q(y, fy) (34)

for all x, y ∈ X, where a1, a2, a3 ∈ [0, 1) are nonnegative real numbers such
that a1 + a2 + a3 < 1. Then f has a unique fixed point in X.

We treat q as a generalized c-distance of order 1. Assume that there exists
y ∈ X with y 6= fy and

inf {q(x, y) + q(fx, y) + q(x, fx) : x ∈ X} = θ. (35)

Then, there exists a sequence (xn) in X such that

lim
n→∞

{q(xn, y) + q(fxn, y) + q(xn, fxn)} = θ, (36)

which implies that q(xn, y)→ θ, q(fxn, y)→ θ, q(xn, fxn)→ θ.
Since q(xn, y)→ θ and q(xn, fxn)→ θ, by Lemma 3.1, we have (fxn) converges
to y.
By using Condition (34), we obtain

q(fxn, f
2xn) � a1 q(xn, fxn) + a2 q(xn, fxn) + a3 q(fxn, f

2xn). (37)

So, it must be the case that

q(fxn, f
2xn) � a1 + a2

1− a3
q(xn, fxn). (38)
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Now, by using condition (38)

q(xn, f
2xn) � q(xn, fxn) + q(fxn, f

2xn)

� q(xn, fxn) +
a1 + a2
1− a3

q(xn, fxn)

−→ θ.

Again, by Lemma 3.1, (f 2xn) converges to y.
Since f is continuous, we have

fy = f( lim
n→∞

fxn) = lim
n→∞

f 2xn = y, (39)

which is a contradiction.
Hence, if y 6= fy, then

inf {q(x, y) + q(fx, y) + q(x, fx) : x ∈ X} � θ. (40)

So, by Corollary 3.4, f has a unique fixed point in X.
We conclude with an example.

Example 3.8 Let E = R2, the Euclidean plane and P = {(x, y) ∈ R2 :
x, y ≥ 0} a cone in E. Let X = {α, β, γ, δ} ⊆ R and define d : X ×X → E
by

d(x, y) = (a | x− y |, b | x− y |) (41)

for all x, y ∈ X, where a, b are positive constants. Then (X, d) is a cone metric
space. Let q : X ×X → E be defined by

q(α, β) = q(β, α) = (9, 9), q(α, γ) = q(γ, α) = q(β, γ) = q(γ, β) = (3, 3),
(42)

q(α, δ) = q(δ, α) = q(β, δ) = q(δ, β) = q(γ, δ) = q(δ, γ) = (5, 5) (43)

and q(x, x) = (0, 0) for every x ∈ X. (44)

Then q satisfies condition (q2) of Definition 2.16 for j = 2. The conditions
(q1) and (q3) are immediate. To show (q4), for any c ∈ E with θ � c, put
e = (1

2
, 1
2
). Then

q(z, x)� e and q(z, y)� e imply d(x, y)� c. (45)

Thus q is a generalized c-distance of order 2 on X but it is not a c-distance on
X since it lacks the triangular property:

q(α, β) = (9, 9) 6� q(α, γ) + q(γ, β) = (3, 3) + (3, 3) = (6, 6). (46)

We define f, g : X → X by

fx = γ, for all x ∈ X (47)



24 Sushanta Kumar Mohanta et al.

and

gx = γ, for x ∈ {α, γ, δ}
= δ, for x = β.

We see that γ is the unique point of coincidence of f and g.
It is easy to verify that

inf {q(gx, y) + q(fx, y) + q(gx, fx) : x ∈ X} � θ (48)

for all y ∈ X with y 6= γ. Also, for every x, y ∈ X one has

q(fx, fy) � a1 q(gx, gy) + a2 q(gx, fx) + a3 q(gy, fy) (49)

where a1, a2, a3 ∈ [0, 1) with a1 +a2 +a3 < 1. Thus, we have all the conditions
of Theorem 3.2 and γ is the unique common fixed point of f and g in X.
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