Gen. Math. Notes, Vol. 17, No. 2, August, 2013, pp.8-14
ISSN 2219-7184; Copyright © ICSRS Publication, 2013
www.i-csrs.org
Available free online at http://www.geman.in

A Study of a New Family of Functions on the Space of Analytic Functions

Abdul Rahman S. Juma ${ }^{1}$ and Hazha Zirar ${ }^{2}$
${ }^{1}$ Department of Mathematics
University of Anbar, Ramadi, Iraq
E-mail: dr_juma@hotmail.com
${ }^{2}$ Department of Mathematics, College of Science University of Salahaddin Erbil, Kurdistan, Iraq
E-mail: hazhazirar@yahoo.com

(Received: 6-5-13 / Accepted: 15-6-13)

Abstract

By making use of a linear differential operator, we give some applications of the new families of analytic functions on the same space associated with quasi-Hadamard product in the unit disk U.

Keywords: Analytic functions, Differential operator, Quasi-Hadamard product.

1 Introduction

Let H be the class of functions analytic in $\mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$ and $H[a, n]$ be the subclass of H consisting of functions of the form $f(z)=a+a_{n} z^{n}+$ $a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\ldots$. Let $A_{p} \subseteq H[a, n]$ denote the class of all functions of the form $f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}, p \in \mathbb{N}=\{1,2, \ldots\}$.

Let A denote the class of functions of the form $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$ or $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ which are analytic in the open unit disk $\mathcal{U}=\{z \in$ $\mathbb{C}:|z|<1\}$ normalized by $f(0)=f^{\prime}(0)-1=0$.

For functions $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ the Hadamard
product (or convolution) $f * g$ is defined by

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}
$$

see [7], for $f \in A_{p}$ we define the operator as follows:

$$
\begin{aligned}
\Theta_{p}^{0}(\beta, \gamma) f(z) & =f(z) \\
(p(\gamma+1)+\beta) \Theta_{p}^{1}(\beta, \gamma) f(z) & =\beta f(z)+p(\gamma+1)\left(\frac{z f^{\prime}(z)}{p}\right) \\
& \cdot \\
& \cdot \\
\Theta_{p}^{m}(\beta, \gamma) f(z)= & D\left(\Theta_{p}^{m-1}(\beta, \gamma)\right)
\end{aligned}
$$

This gives rise to

$$
\begin{equation*}
\Theta_{p}^{m}(\beta, \gamma) f(z)=z^{p}+\sum_{k=2}^{\infty}\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{m} a_{k} z^{k}, \beta, \gamma \geq 0, p \in \mathbb{N}, \tag{1}
\end{equation*}
$$

which was given for $k=p+1$ in [4]. This operator generalize certain differential operators which already exist in literature as under.

- $\beta=\lambda, \gamma=0$ we get $\Theta_{p}^{m}(m, \lambda, 0)$ of Aghalary et al. differential operator [1].
- $\beta=\lambda, \gamma=0$ and $p=1$ we get Cho-Kim [2] and Cho-Srivastava [3] differential operator.
- $\beta=1, \gamma=0$ and $p=1$ we get Uralegaddi and Somanatha differential operator [9].
- $\beta=0, \gamma=0$ and $p=1$ we get Salagean differential operator [6].
- $\beta=l, \gamma=0$ and $p=1$ we get Kumar et al. differential operator [5] and Srivastava et al. differential operator [8].

Note that

$$
(\gamma+1) z\left(\Theta_{p}^{m}(\beta, \gamma) f(z)\right)^{\prime}=(p(\gamma+1)+\beta) \Theta_{p}^{m+1}(\beta, \gamma) f(z)-\beta \Theta_{p}^{m}(\beta, \gamma) f(z)
$$

Throughout this paper, we consider the functions of the form as follow

$$
\begin{equation*}
f(z)=a_{1} z+\sum_{n=2}^{\infty} a_{n} z^{n},\left(a_{1}>0, a_{n} \geq 0\right) \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
f_{i}(z)=a_{1, i} z+\sum_{n=2}^{\infty} a_{n, i} z^{n},\left(a_{1, i}>0, a_{n, i} \geq 0\right) \tag{3}\\
g(z)=b_{1} z+\sum_{n=2}^{\infty} b_{n} z^{n},\left(b_{1}>0, b_{n} \geq 0\right) \tag{4}\\
g_{j}(z)=b_{1, j} z+\sum_{n=2}^{\infty} b_{n, j} z^{n},\left(b_{1, j}>0, b_{n, j} \geq 0\right) \tag{5}
\end{gather*}
$$

be regular and univalent in the unit disc $\mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$.
For $0 \leq \rho<1,0 \leq \delta<1$ and $\eta \geq 0$, we let $\mathfrak{U}(k, \rho, \delta, \eta)$ denote the class of functions f defined by (2) and satisfying the analytic criterion
$\Re\left\{\frac{z\left(\Theta_{p}^{m}(\beta, \gamma)\right)^{\prime}}{(1-\rho)\left(\Theta_{p}^{m}(\beta, \gamma)\right)+\rho z\left(\Theta_{p}^{m}(\beta, \gamma)\right)^{\prime}}-\delta\right\}>\eta\left\{\frac{z\left(\Theta_{p}^{m}(\beta, \gamma)\right)^{\prime}}{(1-\rho)\left(\Theta_{p}^{m}(\beta, \gamma)\right)+\rho z\left(\Theta_{p}^{m}(\beta, \gamma)\right)^{\prime}}-1\right\}$.
Also let $\mathfrak{E}(k, \rho, \delta, \eta)$ denote the class of functions f defined by (2) and satisfying the analytic criterion

$$
\Re\left\{\frac{\left(\Theta_{p}^{m}(\beta, \gamma)\right)^{\prime}+z\left(\Theta_{p}^{m}(\beta, \gamma)\right)^{\prime \prime}}{\left(\Theta_{p}^{m}(\beta, \gamma)\right)^{\prime}+\rho z\left(\Theta_{p}^{m}(\beta, \gamma)\right)^{\prime \prime}}-\delta\right\}>\eta\left\{\frac{\left(\Theta_{p}^{m}(\beta, \gamma)\right)^{\prime}+z\left(\Theta_{p}^{m}(\beta, \gamma)\right)^{\prime \prime}}{\left(\Theta_{p}^{m}(\beta, \gamma)\right)^{\prime}+\rho z\left(\Theta_{p}^{m}(\beta, \gamma)\right)^{\prime \prime}}-1\right\}
$$

A function $f \in \mathfrak{U}(k, \rho, \delta, \eta)(0 \leq \rho<1,0 \leq \delta<1, \eta \geq 0)$ if and only if
$\left.\sum_{n=2}^{\infty}\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{k}[n(1+\eta)-(\delta+\eta)(1+n \rho-\rho)] a_{n, i}|\leq(1-\delta)| a_{1, i} \right\rvert\,$,
and $f \in \mathfrak{E}(k, \rho, \delta, \eta)(0 \leq \rho<1,0 \leq \delta<1, \eta \geq 0)$ if and only if
$\left.\sum_{n=2}^{\infty}\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{k+1}[n(1+\eta)-(\delta+\eta)(1+n \rho-\rho)] a_{n, i}|\leq(1-\delta)| a_{1, i} \right\rvert\,$.
A function f which is analytic in U belonging to the class $\mathfrak{M}_{s}(k, \rho, \delta, \eta)$ if and only if

$$
\begin{equation*}
\left.\sum_{n=2}^{\infty}\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{s}[n(1+\eta)-(\delta+\eta)(1+n \rho-\rho)] a_{n, i}|\leq(1-\delta)| a_{1, i} \right\rvert\, \tag{6}
\end{equation*}
$$

where $0 \leq \rho<1,0 \leq \delta<1, \eta \geq 0$ and s is any fixed nonnegative real number. For $s=k$ and $s=k+1$, it is identical to the family of functions denoted by $\mathfrak{U}(k, \rho, \delta, \eta)$ and $\mathfrak{E}(k, \rho, \delta, \eta)$ respectively. Further, for any positive integer $s>h>h-1>\ldots>k+1>k$, we have the inclusion relation

$$
\mathfrak{U}(k, \rho, \delta, \eta) \subseteq \mathfrak{E}(k, \rho, \delta, \eta) \subseteq \ldots \subseteq \mathfrak{M}_{h}(k, \rho, \delta, \eta) \subseteq \mathfrak{M}_{s}(k, \rho, \delta, \eta)
$$

The class $\mathfrak{M}_{s}(k, \rho, \delta, \eta)$ is nonempty for any nonnegative real number s as the functions of the form
$f(z)=a_{1} z+\sum_{n=2}^{\infty}\left(\frac{(\beta+p(\gamma+1))^{s}(1-\delta)}{(\beta+(p+n-1)(\gamma+1))^{s}[n(1+\eta)-(\delta+\eta)(1+n \rho-\rho)]} \lambda_{n} z^{n}\right.$,
where $a_{1}>0, \lambda_{n} \geq 0$ and $\sum_{n=2}^{\infty} \lambda_{n} \leq 1 ;$ satisfy the inequality (6).

2 Main Results

Theorem 2.1: Let the functions f_{i} defined by (3) belonging to the family of functions $\mathfrak{E}(k, \rho, \delta, \eta)$ defined on space of analytic functions for all $i=$ $1,2, \ldots, r$. Then quasi-Hadamard product of $f_{1} * f_{2} * \ldots * f_{r}$ belongs to the family $\mathfrak{M}_{r(k+2)-1}(n, \rho, \delta, \eta)$ on same space of analytic functions.

Proof: Since $f_{i} \in \mathfrak{E}(k, \rho, \delta, \eta)$, implies
$\left.\sum_{n=2}^{\infty}\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{k+1}[n(1+\eta)-(\delta+\eta)(1+n \rho-\rho)] a_{n, i}|\leq(1-\delta)| a_{1, i} \right\rvert\,$,
implies

$$
\begin{equation*}
\left|a_{n, i}\right| \leq\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{-k-2}\left|a_{1, i}\right|, \forall i=1,2, \ldots, r . \tag{8}
\end{equation*}
$$

Using (7) as well as (8) for $i=1,2, \ldots, r-1$, implies

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{r(k+2)-1}[n(1+\eta)-(\delta+\eta)(1+n \rho-\rho)] \prod_{i=1}^{r-1}\left|a_{n, i}\right| \leq \\
& \sum_{n=2}^{\infty}\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{k+1}[n(1+\eta)-(\delta+\eta)(1+n \rho-\rho)]\left|a_{n, r}\right| \prod_{i=1}^{r}\left|a_{1, i}\right|= \\
& (1-\delta) \prod_{i=1}^{r}\left|a_{1, i}\right| .
\end{aligned}
$$

Thus

$$
f_{1} * f_{2} * \ldots * f_{r} \in \mathfrak{M}_{r(k+2)-1}(k, \rho, \delta, \eta)
$$

Hence the proof is complete.
Theorem 2.2: Let the functions f_{i} defined by (3) belonging to the family of functions $\mathfrak{U}(k, \rho, \delta, \eta)$ defined on space of analytic functions for all $i=$
$1,2, \ldots, r$. Then quasi-Hadamard product of $f_{1} * f_{2} * \ldots * f_{r}$ belongs to the family $\mathfrak{M}_{r(k+1)-1}(n, \rho, \delta, \eta)$ on the same space of analytic functions.

Proof: Using the same techniques of the proof of Theorem 2.1, we proved that

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{r(k+1)-1}[n(1+\eta)-(\delta+\eta)(1+n \rho-\rho)] \prod_{n=1}^{r}\left|a_{n, i}\right| \leq \\
& \sum_{n=2}^{\infty}\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{k+1}[n(1+\eta)-(\delta+\eta)(1+n \rho-\rho)]\left|a_{n, r}\right| \prod_{i=1}^{r-1}\left|a_{1, i}\right|= \\
& (1-\delta) \prod_{i=1}^{r}\left|a_{1, i}\right| .
\end{aligned}
$$

Thus

$$
f_{1} * f_{2} * \ldots * f_{r} \in \mathfrak{M}_{r(k+1)-1}(k, \rho, \delta, \eta)
$$

Hence the proof is complete.
Theorem 2.3: Let the functions f_{i} defined by (3) belonging to the family $\mathfrak{E}(k, \rho, \delta, \eta)$ of functions on space of analytic functions for all $i=1,2, \ldots, r$ and let g_{i} defined by (5) belonging to family $\mathfrak{U}(k, \rho, \delta, \eta)$ of functions on space of analytic functions for all $j=1,2, \ldots, q$. Then quasi-Hadamard product of $f_{1} * f_{2} * \ldots * f_{r} * g_{1} * g_{2} * \ldots * g_{q}$ belongs to the class $\mathfrak{M}_{r(k+2)+q(k+1)-1}(n, \rho, \delta, \eta)$ on the same space of analytic functions.

Proof: Let us denote $f_{1} * f_{2} * \ldots * f_{r} * g_{1} * g_{2} * \ldots * g_{q}$ by H. Then

$$
H(z)=\left[\prod_{i=1}^{r}\left|a_{1, i}\right|\right]\left[\prod_{j=1}^{q}\left|b_{1, j}\right|\right] z+\sum_{n=2}^{\infty}\left[\prod_{i=1}^{r}\left|a_{n, i}\right|\right]\left[\prod_{j=1}^{q}\left|b_{n, j}\right|\right] z^{n} .
$$

Since $f_{i} \in \mathfrak{E}(k, \rho, \delta, \eta)$ and $g_{j} \in \mathfrak{U}(k, \rho, \delta, \eta)$, implies

$$
\begin{gather*}
\left.\sum_{n=2}^{\infty}\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{k+1}[n(1+\eta)-(\delta+\eta)(1+n \rho-\rho)] a_{n, i}|\leq(1-\delta)| a_{1, i} \right\rvert\,, \forall i=1,2, \ldots, r . \\
\left|a_{n, i}\right| \leq \frac{(\beta+p(\gamma+1))^{k+1}(1-\delta)\left|a_{1, i}\right|}{(\beta+(p+n-1)(\gamma+1))^{k+1}[n(1+\eta)-(\delta+\eta)(1+n \rho-\rho)]} \\
\left|a_{n, i}\right| \leq\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{-k-2}\left|a_{1, i}\right|, \forall i=1,2, \ldots, r \tag{9}\\
\left|b_{n, i}\right| \leq\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{-k-1}\left|a_{b, i}\right|, \forall i=1,2, \ldots, q \tag{10}
\end{gather*}
$$

Also

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{k}[n(1+\eta)-(\delta+\eta)(1+n \rho-\rho)]\left|b_{n, j}\right| \leq(1-\delta)\left|b_{1, j}\right| \tag{11}
\end{equation*}
$$

Using (9), (11) and (10) for $i=1,2, \ldots, r, j=q$ and $j=1,2, \ldots, q-1$ respectively. We have (consider $t=r(k+2)+q(k+1)-1)$

$$
\begin{aligned}
& \sum_{n=2}^{\infty}\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{t}[n(1+\eta)-(\delta+\eta)(1+n \rho-\rho)]\left[\prod_{i=1}^{r}\left|a_{n, i}\right|\right]\left[\prod_{j=1}^{q}\left|b_{n, j}\right|\right] \leq \\
& \sum_{n=2}^{\infty}\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{k}[n(1+\eta)-(\delta+\eta)(1+n \rho-\rho)]\left|b_{n, q}\right|\left[\prod_{i=1}^{r}\left|a_{1, i}\right|\right]\left[\prod_{j=1}^{q-1}\left|b_{1, j}\right|\right]= \\
& \sum_{n=2}^{\infty}\left(\frac{\beta+(p+n-1)(\gamma+1)}{\beta+p(\gamma+1)}\right)^{k}[n(1+\eta)-(\delta+\eta)(1+n \rho-\rho)]\left|b_{n, q}\right|\left[\prod_{i=1}^{r}\left|a_{1, i}\right|\right]\left[\prod_{j=1}^{q-1}\left|b_{1, j}\right|\right] \leq \\
& (1-\delta)\left[\prod_{i=1}^{r}\left|a_{1, i}\right| \mid\right]\left[\prod_{j=1}^{q}\left|b_{1, j}\right|\right] .
\end{aligned}
$$

Thus

$$
f_{1} * f_{2} * \ldots * f_{r} * g_{1} * g_{2} * \ldots * g_{q} \in \mathfrak{M}_{r(k+2)+q(k+1)-1}(n, \rho, \delta, \eta)
$$

Hence the proof is complete.

References

[1] R. Aghalary, R.M. Ali, S.B. Joshi and V. Ravichandran, Inequalities for analytic functions defined by certain linear operators, Int. J. Math. Sci., 4(2005), 267-274.
[2] N.E. Cho and T.H. Kim, Multiplier transformations and strongly close to convex functions, Bull. Korean Math. Soc., 40(2003), 399-410.
[3] N.E. Cho and H.M. Srivastava, Argument estimates of certain analytic functions defined by a class of multiplier transformations, Math. Comput. Modeling, 37(2003), 39-49.
[4] I. Faisal, Z. Shareef and M. Darus, A study of a new subclass of multivalent analytic functions, Revista Notas de Mathematica, 7(1)(39) (2011), 101110.
[5] S.S. Kumar, H.C. Taneja and V. Ravichandran, Classes multivalent functions defined by Dziok-Srivastava linear operator and multiplier transformations, Kyungpook Math. J., 46(2006), 97-109.
[6] G.S. Salagean, Subclasses of univalent functiond, Lecture Notes in Math., Springer-Verlag, Heideberg, 1013(1983), 362-372.
[7] R.K. Sharma and D. Singh, An inequality of subclasses of univalent functions related to complex order by convolution method, Gen. Math. Notes, $3(2)$ (2011), 59-65.
[8] H.M. Srivastava, K. Suchithra, B.A. Stephen and S. Sivasubramanian, Inclusion and neighborgood properties of certain subclasses of multivalent functions of complex order, J. Ineq. Pure Appl. Math., 7(5) (2006), 1-8.
[9] B.A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, In: Current Topics in Analytic Functions Theory, (eds.) H.M. Srivastava and S. Owa, World Scientific Company, Singpore, (1992).

