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Abstract

In this paper, we investigate some notions of the classical sets of sequences
and functions by using the partial metrics with respect to the partial ordering.
Also, we examine the completeness of these spaces and obtain the alpha-, beta-
and gamma-duals of some of these. We investigate the relationships between
these sets and their classical forms and give some properties including de�-
nitions, propositions and various kinds of partial metric spaces. Finally, we
show that each of the sets forms a vector space on the real �eld and present
some results on the completeness of these partial metric spaces.

Keywords: Sequence and function spaces, metric space, partial metric
space, complete partial metric space.
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1 Introduction

A partially ordered set (or poset) is a pair (X,v) such that v is a partial
ordering on X. For each partial metric space (X, p) let vp be the binary
relation over X such that x vp y (to be read, x is part of y) if and only if
p(x, x) = p(x, y). For the partial metric max(min){a, b} over the nonnegative
reals, vmax (vmin) is the usual ordering ≥ (≤). For intervals, [a, b] vp [c, d] if
and only if [c, d] is a subset of [a, b].

By ω, we denote the space of all real valued sequences and any subspace of
w is called a sequence space. Firstly, we de�ne the classical sets `∞(P ), c(P ),
c0(P ) and `q(P ) consisting of the bounded, convergent, null and q-absolutely
summable sequences by using the partial metric p with respect to the partial
ordering vp, as follows:

`∞(P ) :=

{
x = (xk) ∈ ω : sup

k∈N

{
ps(xk, 0)

}
<∞

}
,

c(P ) :=

{
x = (xk) ∈ ω : ∃l ∈ R 3 lim

k→∞
ps(xk, l) = 0

}
,

c0(P ) :=

{
x = (xk) ∈ ω : lim

k→∞
ps(xk, 0) = 0

}
,

`q(P ) :=

{
x = (xk) ∈ ω :

∞∑
k=0

ps(xk, 0)q <∞

}
, (1 ≤ q <∞),

where the distance function ps denotes the usual metric with ps(x, y) = 2p(x, y)−
p(x, x)−p(y, y) induced by the partial metric p. One can show that c(P ), c0(P )
and `∞(P ) are complete metric spaces with the partial metric p∞ with respect
to the partial ordering vp de�ned by

p∞(x, y) := sup
k∈N
{ps(xk, yk)} ,

where x = (xk) and y = (yk) are the elements of the sets c0(P ), c(P ) or
`∞(P ). Also, the space `q(P ) is complete metric space with the partial metric
pq de�ned by

pq(x, y) :=

[
∞∑
k=0

ps(xk, yk)
q

]1/q

, (1 ≤ q <∞),

where x = (xk) and y = (yk) are the points of `q(P ).
Secondly, we construct the sets bs(P ), cs(P ) and cs0(P ) consisting of the

sets of all bounded, convergent, null series by using the partial metric p, as
follows:
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bs(P ) :=

{
x = (xk) ∈ w : sup

n∈N
ps

(
n∑
k=0

xk, 0

)
<∞

}
,

cs(P ) :=

{
x = (xk) ∈ w : ∃l ∈ R 3 lim

n→∞
ps

(
n∑
k=0

xk, l

)
= 0

}
,

cs0(P ) :=

{
x = (xk) ∈ w : lim

n→∞
ps

(
n∑
k=0

xk, 0

)
= 0

}
.

One can conclude that the spaces bs(P ), cs(P ) and cs0(P ) are complete metric
spaces with the partial metric P∞ with respect to the partial ordering vp
de�ned by

P∞(x, y) := sup
n∈N

{
ps
( n∑

k=0

xk,
n∑
k=0

yk

)}
,

where x = (xk) and y = (yk) are the elements of the sets bs(P ), cs(P ) or
cs0(P ).

Thirdly, we introduce the space bv(P ), bvq(P ) and bv∞(P ) consisting of
sequences of q-bounded variation by using the partial metric p with respect to
the partial ordering vp, as follows:

bv(P ) :=

{
x = (xk) ∈ w :

∞∑
k=0

ps [(∆x)k, 0] <∞

}
,

bvq(P ) :=

{
x = (xk) ∈ w :

∞∑
k=0

ps [(∆x)k, 0]q <∞

}
,

bv∞(P ) :=

{
x = (xk) ∈ w : sup

k∈N
{ps [(∆x)k, 0]} <∞

}
.

One can easily see that the sets bv(P ), bvq(P ) and bv∞(P ) are complete metric
spaces with the following partial metrics,

P∆(x, y) :=
∞∑
k=0

{
ps
[
(∆x)k, (∆y)k

]}
,

P∆
q (x, y) :=

{ ∞∑
k=0

ps
[
(∆x)k, (∆y)k

]q}1/q

,

P∆
∞(x, y) := sup

k∈N

{
ps
[
(∆x)k, (∆y)k

]}
,
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respectively, where x = (xk) and y = (yk) are the elements of the sets bv(P ),
bvq(P ) or bv∞(P ), and (∆x)k = xk − xk+1 for all k ∈ N.

Finally, we give the classical setsB[a, b] and C[a, b] consisting of the bounded
and continuous functions de�ned on [a, b], by using the partial metric p with
respect to the partial ordering vp, as follows:

B[a, b] :=
{
f |f : [a, b]

bounded−→ R+
}

C[a, b] :=
{
f |f : [a, b]

continuous−→ R+
}
.

It can be shown by a routine veri�cation that B[a, b] and C[a, b] are complete
partial metric spaces with the partial metric p1 and p2 de�ned by

p1(f, g) := sup
t∈[a,b]

ps[f(t), g(t)],

p2(f, g) := max
t∈[a,b]

ps[f(t), g(t)],

respectively, where f, g are bounded and continuous functions on [a, b].
The main purpose of the present paper is to study the corresponding sets

`∞(P ), c(P ), c0(P ), `q(P ), bs(P ), cs(P ), cs0(P ), bv(P ), bvq(P ), bv∞(P ) of
sequences and the sets C[a, b] and B[a, b] of functions to the classical spaces.
The rest of this paper is organized, as follows:

In section 2, some required de�nitions and consequences related with non-
zero self distance, partial order sets, weighted space, quasi-metric space, partial
Hausdor� metric and some topological properties are given. Section 3 is de-
voted to the completeness of the sets `∞(P ), c(P ), c0(P ), `q(P ), bs(P ), cs(P ),
cs0(P ), bv(P ), bvq(P ), bv∞(P ) of sequences and the sets C[a, b], B[a, b] of
functions with the partial metrics by taking into account the partially order-
ing together some related examples. Additionally, in this section we de�ne
the norm function with respect to the partial metric ps induced by the partial
metric p, and we show that the sets `∞(P ), c(P ), c0(P ) and `q(P ) of sequence
are Banach spaces with the related norms. In the �nal section of the paper, we
also de�ne the alpha-, beta- and gamma-duals of the sets `∞(P ), c(P ), c0(P ),
`1(P ), bs(P ), cs(P ) and cs0(P ) of sequences.

2 Preliminaries, Background and Notation

In 1992, a partial metric space is introduced as a generalisation of the notion
of metric space de�ned in 1906 by Maurice Frechet such that the distance
of a point from itself is not necessarily zero. This notion has a wide array
of applications not only in many branches of mathematics, but also in the
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�eld of computer domain and semantics. Motivated by the needs of computer
science for non Hausdor� Scott topology, one show that much of the essential
structure of metric spaces, such as Banach's contraction mapping theorem, can
be generalised to allow for the possibility of non zero self-distances d(x, x).

Nonzero self-distance is thus motivated by experience from computer sci-
ence, and seen to be plausible for the example of �nite and in�nite sequences.
The question we now ask is whether nonzero self-distance can be introduced to
any metric space. That is, is there a generalization of the metric space axioms
to introduce nonzero self-distance such that familiar metric and topological
properties are retained? The following is suggested.

Proposition 2.1 [11] (Nonzero self-distance) Let Sω be the set of all in�nite
sequences x = (x0, x1, x2, . . . ) over a set S. For all such sequences x and y, let
ds(x, y) = 2−k, where k is the largest number (possibly ∞) such that xi = yi
for each i < k. Thus ds(x, y) is de�ned to be 1 over 2 to the power of the length
of the longest initial sequence common to both x and y. It can be shown that
(Sω, ds) is a metric space.

To be interested in an in�nite sequence x they would want to know how to
compute it, that is, how to write a computer program to print out the values
x0, then x1, then x2, and so on. As x is an in�nite sequence, its values cannot
be printed out in any �nite amount of time, and so computer scientists are
interested in how the sequence x is formed from its parts, the �nite sequences
(x0), (x0, x1), (x0, x1, x2) and so on. After each value xk is printed, the �nite
sequence x = (x0, x1, x2, . . . , xk) represents that part of the in�nite sequence
produced so far. Each �nite sequence is thus thought of in computer science as
being a partially computed version of the in�nite sequence x, which is totally
computed. Suppose now that the above de�nition of ds is extended to S∗, the
set of all �nite sequences over S. If x is a �nite sequence, then ds(x, x) = 2−k

for some number k < ∞ which is not zero, since xj = xj can only hold if
xj is de�ned. Thus, axiom P1 does not hold for �nite sequences. This raises
an intriguing contrast between 20th century mathematics of which the theory
of metric spaces is our working example and the contemporary experience of
computer science. The truth of the statement x = x is surely unchallenged
in mathematics, while in computer scienceits truth can only be asserted to the
extent to which x is computed.

De�nition 2.2 [7] Let X be a non-empty set and p be a function from X×X
to the set R+ of non-negative real numbers. Then the pair (X, p) is called a
partial metric space and p is a partial metric for X, if the following partial
metric axioms are satis�ed for all x, y, z ∈ X:

(P1) x = y if and only if p(x, x) = p(x, y) = p(y, y).

(P2) 0 ≤ p(x, x) ≤ p(x, y).
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(P3) p(x, y) = p(y, x).

(P4) p(x, z) ≤ p(x, y) + p(y, z)− p(y, y).

Each partial metric space thus gives rise to a metric space with the additional
notion of nonzero self-distance introduced. Also, a partial metric space is a
generalization of a metric space; indeed, if an axiom p(x, x) = 0 is imposed,
then the above axioms reduce to their metric counterparts. Thus, a metric
space can be de�ned to be a partial metric space in which each self-distance is
zero.

It is clear that p(x, y) = 0 implies x = y from (P1) and (P2). But, x = y
does not imply p(x, y) = 0, in general. A basic example of a partial metric
space is the pair (R+, p), where p(x, y) = max{x, y} for all x, y ∈ R+.

Each partial metric p on X generates a T0 topology τp on X which has as
a base the family open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈
X : p(x, y) < p(x, x) + ε} for all x ∈ X and ε > 0.

Remark 2.3 [5] Clearly, a limit of a sequence in a partial metric space need
not be unique. Moreover, the function p(., .) need not be continuous in the
sense that xn → x and yn → y implies p(xn, yn) → p(x, y). For example, if
X = [0,+∞) and p(x, y) = max{x, y} for x, y ∈ X, then for {xn} = {1},
p(xn, x) = x = p(x, x) for each x ≥ 1 and so, e.g., xn → 2 and xn → 3 as
n→∞.

Proposition 2.4 [12] If p is a partial metric on X, then the function ps de-
�ned by

ps : X ×X −→ R+

(x, y) 7−→ ps(x, y) = 2p(x, y)− p(x, x)− p(y, y)

is a usual metric on X. For example, in (R−, p) where p is the usual partial
metric on R−, we obtain the usual distance in R− since for any x, y ∈ R−,
ps(x, y) = 2p(x, y)− p(x, x)− p(y, y) = x+ y − 2 min{x, y} = |x− y|.

De�nition 2.5 [11] A partial ordering on X is a binary relation v on X such
that

(i) x v x (re�exivity).

(ii) If x v y and y v x then x = y (antisymmetry).

(iii) If x v y and y v z then x v z (transitivity).

A partially ordered set (or poset) is a pair (X,v) such that v is a partial
ordering on X. For each partial metric space (X, p); let vp be the binary
relation over X such that x vp y (to be read, x is part of y) if and only if
p(x, x) = p(x, y). Then, it can be shown that (X,vp) is a poset.
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De�nition 2.6 [5] Let X be a nonempty set. Then, (X, p,�) is called an
ordered (partial) metric space if

(i) (X, p) is a (partial) metric space,

(ii) (X,�) is a partially ordered set.

De�nition 2.7 [5] Let (X,�) be a partially ordered set. Then, the following
statements hold:

(a) The elements x, y ∈ X are called comparable if x � y or y � x holds.

(b) A subset K of X is said to be well ordered if every two elements of K are
comparable.

(c) A mapping f : X → X is called nondecreasing with respect to � if x � y
implies f(x) � f(y).

For the partial metric max{a, b} over the nonnegative reals, vmax is reduced
to the usual ordering ≥. For intervals, [a, b] vp [c, d] if and only if [c, d] is a
subset of [a, b]. Thus the notion of a partial metric extends that of a metric
by introducing nonzero self-distance which can be used to de�ne the relation
is part of which, for example, can be applied to model the output from a
computer program.

De�nition 2.8 (cf. [8, 12, 13, 1]) Let (xn) be a sequence in a partial metric
space (X, p). Then, we say that

(a) A sequence (xn) converges to a point x ∈ X if and only if p(x, x) =
limn→∞ p(xn, x).

(b) A sequence (xn) is a Cauchy sequence if there exists (and is �nite)
limm,n→∞ p(xn, xm).

(c) A partial metric space (X, p) is said to be complete if every Cauchy se-
quence (xn) in X converges, with respect to the topology τp, to a point
x ∈ X such that p(x, x) = limm,n→∞ p(xm, xn). It is easy to see that
every closed subset of a complete partial metric space is complete.

(d) A mapping f : X → X is called to be continuous at x0 ∈ X if for every
ε > 0, there exists δ > 0 such that f(Bp(x0, δ)) ⊂ Bp(f(x0), ε).

(e) A sequence (xn) in a partial metric space (X, p) converges to a point
x ∈ X, for any ε > 0 such that x ∈ Bp(x, ε), there exists n0 ≥ 1 so that,
xn ∈ Bp(x, ε) for any n ≥ n0.
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A sequence (xn) in a partial metric space (X, p), is called 0-Cauchy, if
limm,n→∞ p(xm, xn) = 0. We say that (X, p) is 0-complete if every 0-Cauchy
sequence in X converges, with respect to p, to a point x ∈ X such that
p(x, x) = 0. Note that every 0-Cauchy sequence in (X, p) is Cauchy in (X, ps),
and that every complete partial metric space is 0-complete. A paradigm for
partial metric spaces is the pair (X, p), where X = Q ∩ [0,+∞) and p(x, y) =
max{x, y} for x, y ≥ 0 which provides an example of an incomplete 0-complete
partial metric space.

Lemma 2.9 [12] Let (X, p) be a partial metric space. Then,

(i) (xn) is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence
in the metric space (X, ps).

(ii) A partial metric space (X, p) is complete if and only if the metric space
(X, ps) is complete. Furthermore, limn→∞ p

s(xn, x) = 0 if and only if
p(x, x) = limn→∞ p(xn, x) = limm,n→∞ p(xn, xm).

In the partial metric space (R−, p), the limit of the sequence (−1/n) is 0 since
one has limn→∞ p

s(−1/n, 0), where ps is the usual metric induced by p on R−.

Lemma 2.10 [5] Let (X, p) be a partial metric space, f : X → X be a given
mapping. Suppose that f is continuous at x0 ∈ X and for each sequence (xn),
if xn → x0 in (X, τp) then f(xn)→ f(x0) holds in (X, τp).

De�nition 2.11 [1] Suppose that (X1, p1) and (X2, p2) are partial metric spaces
with induced metrics ps1 and ps2 respectively. Then the function f : (X1, p1)→
(X2, p2) is said to be continuous if both f : (X1, τp1) → (X2, τp2) and f :
(X1, p

s
1) → (X2, p

s
2) are respectively continuous in the sense of topological and

metric spaces.

De�nition 2.12 [11] A sequence x = (xn) of points in a partial metric space
(X, p) is Cauchy if there exists a ≥ 0 such that for each ε > 0 there exists
k such that |p(xn, xm) − a| < ε for all n,m > k. In other words, a sequence
x = (xn) in a partial metric space (X, p) is Cauchy if limn,m→∞ p(xn, xn) = a
implies a = 0 whenever (X, p) is a metric space.

De�nition 2.13 [11] A sequence x = (xn) in a partial metric space (X, p)
converges to y in X if

p(y, y) = lim
n→∞

p(xn, xn) = lim
n→∞

p(xn, y).

Lemma 2.14 [10] Assume that xn → z as n → ∞ in a partial metric space
(X, p) such that p(z, z) = 0. Then limn→∞ p(xn, y) = p(z, y) for every y ∈ X.
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De�nition 2.15 A sequence (xn) in a partial metric space (X, p) is bounded
if and only if there exists M > 0 such that ps(xn, 0) ≤M .

Now, we give some de�nitions about the sets of bounded or continuous
functions by taking into account the partial order vp on [a, b].

De�nition 2.16 The sequence {fn(t)} of functions is said to be uniformly
convergent to f(t) on [a, b], if for every ε > 0 and there exists n0 = n0(ε) ∈ N,
depending only on ε, such that ps(fn(t), 0) < ε for every n > n0.

Lemma 2.17 Let (X, p) be a partial metric space and f be a function from X
to Y . The function f is said to be bounded if and only if there exists M > 0
such that ps(f(t), 0) ≤M .

Lemma 2.18 Let (X, p) be partial metric space and {fn(t)} be a sequence of
continuous functions on I. If {fn(t)} uniformly converges to f(t) on I, then
the function f(t) is continuous on I.

Partial metric spaces arose from the need to develop a version of the con-
traction �xed point theorem which would work for partially computed se-
quences as well as totally computed ones. Since then much research has been
aimed at extrapolating away from computer science in order to develop a math-
ematics of posets for metric spaces. To discover more about the properties of
partial metric spaces we now look at equivalent formulations.

De�nition 2.19 [11] (Equivalent partial metric spaces) A weighted metric
space is a triple (X, d, | · |) such that (X, d) is a metric space. Then,

(i) 0 ≤ |x|,

(ii) |x| − |y| ≤ d(x, y)

for all x, y ∈ X. Thus, a weighted metric space is a metric space with a non-
negative real number assigned to each point as a weight. Let (X, d, | · |) be a
weighted metric space and let

p(x, y) =
|x|+ |y|+ d(x, y)

2
.

Then (X, p) is a partial metric space and p(x, x) = |x|. Conversely, if (X, p) is
a partial metric space, then (X, d, | · |), where (as before) ps(x, y) = 2p(x, y)−
p(x, x) − p(y, y) and |x| = p(x, x), is a weighted metric space. It can be seen
that from either space we can move to the other and back again. In a weighted
metric space the ordering can be de�ned by x vp y if |x| = d(x, y) + |y|. Note
that any metric space can be trivially weighted by de�ning |x| = 0 for each x.
Thus a partial metric space combines the metric notion of distance, weight,
and poset in a single formalism.
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De�nition 2.20 [11] A quasi-metric q on X, de�ned by q : X×X → R which
has the following properties for x, y, z ∈ X,

(Q1) 0 ≤ q(x, y).

(Q2) If x = y then q(x, y) = 0.

(Q3) If q(x, y) = q(y, x) = 0 then x = y.

(Q4) q(x, z) ≤ q(x, y) + q(y, z).

Since quasi-metrics are not in general symmetric, we revise our de�nition of
indistancy to be q(x, y) = q(y, x) = 0. Thus, in quasi-metric spaces equality
is identi�ed with indistancy. A metric space (X, d) can be formed by de�n-
ing d(x, y) = q(x, y) + q(y, x). For any quasi-metric q, a partial order vq is
described by x vp y if and only if q(x, y) = 0.

Each partial metric induces a quasi-metric in a natural way. In fact, partial
metrics are equivalent to weighted quasi-metrics [12]. Their topology is the
topology of the associated quasi-metric. It is well known that each second-
countable T0 space is quasi-metrizable. This does not hold for partial metrics.
Kunzi and Vajner [4] provide a subtle discussion of which spaces are partial
metrizable. Every quasi-metric generates a quasi-uniformity in the usual way.
Conversely, every countably based quasi-uniformity with associated T0 topol-
ogy can be generated in such a way. It is not known whether this is also true
for partial metrics. This connection between posets and quasi-metric spaces
can be related to partial metric spaces as follows.

De�nition 2.21 [11] A weighted quasi-metric space is a triple (X, q, | · | :
X → R) such that (X, q) is a quasi-metric space and 0 ≤ |x| for each x
in X, and |x| + q(x, y) = |y| + q(y, x) for all x and y in X. If we de�ne
p(x, y) = |x| + q(x, y) then (X, p) is a partial metric space. Conversely, if
(X, p) is a partial metric space then (X, qs, |·|p) where qs(x, y) = p(x, y)−p(x, x)
and |x|p = p(x, x), is a weighted quasi-metric space. A weightless point of a
weighted quasi-metric space is a point of zero weight. With these de�nitions,
for any partial metric, vp=vqs. Every quasi-metric space has not a weight
function | · |.

De�nition 2.22 [14] Let (X, p) and (Y, p′) be two partial metric spaces. A
mapping f : X → Y is said to be an isometry if p′[f(x), f(y)] = p(x, y) for all
x, y ∈ X.

De�nition 2.23 [14] Two partial metric spaces (X, p) and (Y, p′) are called
isometric if there is an isometry from X onto Y .



20 U§ur Kadak et al.

De�nition 2.24 [6] (Partial Hausdor� metric) Let (X, p) be a partial metric
space. Let CBp(X) be the family of all nonempty, closed and bounded subsets
of the partial metric space (X, p), induced by the partial metric p. Note that
closedness is take from (X, τp) (τp is the topology induced by p) and boundedness
is given as follows: A is a bounded subset in (X, p) if there exist x0 ∈ X and
M ≥ 0 such that for all a ∈ A, we have a ∈ Bp(x0,M), that is, p(x0, a) <
p(a, a) +M .

For A,B ∈ CBp(X) and x ∈ X, de�ne p(x,A) = inf{p(x, a), a ∈ A},δp(A,B)
= sup{p(a,B), a ∈ A} and δp(B,A) = sup{p(b, A), b ∈ B}. Finally, we say
that

Hp(A,B) := max{δp(A,B), δp(B,A)}.

It is immediate to check that p(x,A) = 0 ⇒ ps(x,A) = 0 where ps(x,A) =
inf{ps(x, a), a ∈ A}.

Remark 2.25 [6] Let (X, p) be a partial metric space and A any nonempty
set in (X, p), then a ∈ A if and only if p(a,A) = p(a, a), where A denotes
the closure of A with respect to the partial metric p. Note that A is closed in
(X, p) if and only if A = A.

Proposition 2.26 [6] Let (X, p) be a partial metric space. For any A,B,C ∈
CBp(X), we have the following:

(i) δp(A,A) = sup{p(a, a), a ∈ A}.

(ii) δp(A,A) ≤ δp(A,B).

(iii) δp(A,B) = 0 implies that A ⊆ B.

(iv) δp(A,B) ≤ δp(A,C) + δp(C,B)− infc∈C p(c, c).

Proposition 2.27 [6] Let (X, p) be a partial metric space. For any A,B,C ∈
CBp(X), we have

(i) Hp(A,A) ≤ Hp(A,B).

(ii) Hp(A,B) ≤ Hp(B,A).

(iii) Hp(A,B) = 0 implies that A = B.

(vi) Hp(A,B) ≤ Hp(A,C) +Hp(C,B)− infc∈C p(c, c).

Remark 2.28 [6] It is easy to show that any Hausdor� metric is a partial
Hausdor� metric. The converse is not true, in general.
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3 Completeness of Some Spaces of Sequences

and Functions with Respect to the Partial Met-

ric

Proposition 3.1 [1] Let x, y ∈ X and de�ne the partial distance functions p
by

p : X ×X −→ R+ (R−)
(x, y) 7−→ p(x, y) = max{x, y} (−min{x, y})

for X = R+ and X = R−, respectively. Then, (R+, p) is complete partial
metric space; where the self-distance for any point x ∈ R+ is its value itself.
The pair (R−, p) is complete partial metric space for which p is called the
usual partial metric on R−; where the self-distance for any point x ∈ R− is its
absolute value.

The open balls are of the form Bp(x, ε) = {y ∈ R+ : max{x, y} < ε} = (0, ε)
for all x ∈ R+ and ε > 0 with x ≤ −ε otherwise, if x > ε then Bp(x, ε) = ∅.
Suppose that y ∈ Bp(x, ε), then max{x, y} < ε which implies that y < ε.
Similarly, the open balls are of the form Bp(x, ε) = {y ∈ R− : −min{x, y} <
ε} = (−ε, 0) for all x ∈ R− and ε > 0 with x ≥ −ε otherwise, if x < −ε then
Bp(x, ε) = ∅. Suppose that y ∈ Bp(x, ε), then −min{x, y} < ε which implies
that min{x, y} > −ε, hence y > −ε.

Example 3.2 [10] Let X = [0, 1]∪ [2, 3] and de�ne the distance function p by

p(x, y) =

{
|x− y| , {x, y} ⊂ [0, 1],

max{x, y} , {x, y} ∩ [2, 3] 6= ∅,

It is easy to check that (X, p) is a complete partial metric space.

Example 3.3 [1] Let Pw denote the power set of the positive integers w = N1

with the subset ordering. The function p : Pw × Pw → [0, 1] such that

p(x, y) = 1−
∑
n∈x∩y

1

2n
for any x, y ∈ Pw

is a partial metric on Pw and the space Pw is complete with respect to its usual
partial metric.

Example 3.4 [1] Let X∞ be the set of �nite and in�nite sequences over a
non-empty set X, with the pre�x ordering (a0, a1, ..., an) ≤ (b0, b1, ..., bm) if
n ≤ m and ai = bi for i = 0, ..., n. Denote the length of a sequence x ∈ X∞
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by l(x) with l(∅) = 0, which is the index of the last term of x whose value is
de�ned. Then the function p : X∞ ×X∞ → R+ de�ned for any x, y ∈ X∞ by

p(x, y) = 2− sup{i∈N:i≤min{l(x),l(y)}},∀ 0≤j<i, xj=yj}

is a partial metric on X∞, called the Baire partial metric. The value of the
supremum is the �rst instance where the sequences di�er (taking care if one
sequence is shorter than the other).

Proposition 3.5 De�ne p∞ on the space γ(P ) by

p∞ : γ(P )× γ(P ) −→ R+

(x, y) 7−→ p∞(x, y) = sup
k∈N
{ps(xk, yk)},

where γ(P ) denotes any of the spaces `∞(P ), c(P ) and c0(P ), and x = (xk), y =
(yk) ∈ γ(P ). Then, (γ(P ), p∞) is complete partial metric space with respect to
the usual partial ordering in De�nition 2.5.

Proof. Since the proof is similar for the spaces c(P ) and c0(P ), we prove the
theorem only for the space `∞(P ). Let x = (xk), y = (yk) and z = (zk) ∈
`∞(P ). Then,

(i) By using the axiom (P1) in De�nition 2.2, it is trivial that

x = y ⇔ ps(xk, yk) = 2p(xk, yk)− p(xk, xk)− p(yk, yk) = 0

⇔ ps(xk, yk) = ps(xk, xk) = ps(yk, yk)

⇔ sup
k∈N
{ps(xk, yk) : k ∈ N} = sup

k∈N
{ps(xk, xk) : k ∈ N}

= sup
k∈N
{ps(yk, yk) : k ∈ N} ⇔ p∞(x, y) = p∞(x, x) = p∞(y, y).

(ii) By using the axiom (P2) in De�nition 2.2, it folllows that

p∞(x, x) = sup
k∈N
{2p(xk, xk)− p(xk, xk)− p(xk, xk)} ≥ 0,

p∞(x, y) = sup
k∈N
{ps(xk, yk)} = sup

k∈N
{2p(xk, yk)− p(xk, xk)− p(yk, yk)}

= sup
k∈N
{[p(xk, yk)− p(xk, xk)] + [p(xk, yk)− p(yk, yk)]}

≥ sup
k∈N
{ps(xk, xk)} ≥ 0⇒ 0 ≤ p∞(x, x) ≤ p∞(x, y).

(iii) By using the axiom (P3) in De�nition 2.2, it is clear that

p∞(x, y) = sup
k∈N
{ps(xk, yk) : k ∈ N} = sup

k∈N
{ps(yk, xk) : k ∈ N}

= p∞(y, x).
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(iv) By using the axiom (P4) in De�nition 2.2 with the inequality

ps(xk, zk) = 2p(xk, zk)− p(xk, xk)− p(zk, zk)
≤ 2[p(xk, yk) + p(yk, zk)− p(yk, yk)]− p(xk, xk)− p(zk, zk)
= ps(xk, yk) + ps(yk, zk)− ps(yk, yk),

we have

p∞(x, z) = sup
k∈N
{ps(xk, zk)} ≤ sup

k∈N

{
ps(xk, yk) + ps(yk, zk)− ps(yk, yk)

}
≤ sup

k∈N
{ps(xk, yk) : k ∈ N}+ sup

k∈N
{ps(yk, zk) : k ∈ N}

− sup
k∈N
{ps(yk, yk) : k ∈ N} ≤ p∞(x, y) + p∞(y, z)− p∞(y, y).

Therefore, one can conclude that (`∞(P ), p∞) is a partial metric space on
`∞(P ). It remains to prove the completeness of the space `∞(P ). Let xm ={
x

(m)
1 , x

(m)
2 , . . .

}
be any Cauchy sequence on `∞(P ). Then, for any ε > 0, there

exists m0 ∈ N for all m, r > m0 such that

p∞(xm, xr) = sup
k∈N

ps
(
x

(m)
k , x

(r)
k

)
< ε.

A fortiori, for every �xed k ∈ N and for m, r > m0{
ps
(
x

(m)
k , x

(r)
k

)
: k ∈ N

}
< ε. (1)

Hence for every �xed k ∈ N, by using completeness of R, we say that x(m)
k ={

x
(1)
k , x

(2)
k , . . .

}
is a Cauchy sequence and is convergent. Now, we suppose that

limm→∞ x
(m)
k = xk and x = (x1, x2, . . .). We must show that

lim
m→∞

p∞(xm, x) = 0 and x ∈ `∞(P ).

The constant m0 ∈ N for all m > m0, taking the limit as r → ∞ in (1), we
obtain

ps
[
x

(m)
k , xk

]
< ε (2)

for all k ∈ N. Since xm =
(
x

(m)
k

)
∈ `∞(P ), there exists M > 0 such that

ps
[
x

(m)
k , 0

]
≤ M for all k ∈ N. Thus, (2) gives together with the triangle

inequality for m > m0 that

ps(xk, 0) ≤ ps
[
xk, x

(m)
k

]
+ ps

[
x

(m)
k , 0

]
≤ ε+M. (3)
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It is clear that (3) holds for every k ∈ N whose right-hand side does not involve
k. This leads us to the consequence that x = (xk) ∈ `∞(P ). Also, from (2)
we obtain for m > m0 that p∞(xm, x) = supk∈N p

s(x
(m)
k , xk) ≤ ε. This shows

that p∞(xm, x) → 0 as m → ∞. Since (xm) is an arbitrary Cauchy sequence,
`∞(P ) is complete.

Proposition 3.6 De�ne the distance function pq by

pq : `q(P )× `q(P ) −→ R+

(x, y) 7−→ pq(x, y) =

[
∞∑
k=0

ps(xk, yk)
q

]1/q

, (1 ≤ q <∞)

where x = (xk), y = (yk) ∈ `q(P ). Then, (`q(P ), pq) is complete partial metric
space with respect to the usual partial ordering in De�nition 2.5.

Proof. It is obvious that pq satis�es the axioms (P1), (P2) and (P3). Let
x = (xk), y = (yk) and z = (zk) ∈ `q(P ). Then, we derive by applying the
Minkowski's inequality that

pq(x, z) =

{ ∞∑
k=0

[p(xk, zk)− p(xk, xk) + p(xk, zk)− p(zk, zk)]q
}1/q

≤
{ ∞∑

k=0

[p(xk, zk)− p(xk, xk)]q
}1/q

+

{ ∞∑
k=0

[p(xk, zk)− p(zk, zk)]q
}1/q

≤
{ ∞∑

k=0

[p(xk, yk) + p(yk, zk)− p(yk, yk)− p(xk, xk)]q
}1/q

+

+

{ ∞∑
k=0

[p(xk, yk) + p(yk, zk)− p(yk, yk)− p(zk, zk)]q
}1/q

≤
{ ∞∑

k=0

[p(xk, yk)− p(xk, xk)]q
}1/q

+

{ ∞∑
k=0

[p(yk, zk)− p(yk, yk)]q
}1/q

+

{ ∞∑
k=0

[p(xk, yk)− p(yk, yk)]q
}1/q

+

{ ∞∑
k=0

[p(yk, zk)− p(zk, zk)]q
}1/q

≤ pq(x, y) + pq(y, z)− pq(y, y).

This shows that the axiom (P4) also holds. Therefore, one can conclude that
(`q(P ), pq) is a partial metric space.

Since the proof is analogous for the cases q = 1 and q = ∞ we omit their
detailed proof and we consider only case 1 < q < ∞. It remains to prove the

completeness of the space `q(P ). Let xm =
{
x

(m)
1 , x

(m)
2 , . . .

}
be any Cauchy
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sequence on `q(P ). Then for every ε > 0, there exists m0 ∈ N such that

pq(xm, xr) =

{ ∞∑
k=0

ps
[
x

(m)
k , x

(r)
k

]q }1/q

< ε (4)

for all m, r > m0. We obtain for each �xed k ∈ N from (4) that

ps
[
x

(m)
k , x

(r)
k

]
< ε (5)

for all m, r > m0. By using the completeness of R, we say that the sequence

x
(m)
k =

{
x

(1)
k , x

(2)
k , . . .

}
is a Cauchy sequence and is convergent for each �xed

k ∈ N, say to xk ∈ R.
Now, we suppose that x(m)

k → xk as m→∞ and x = (xk). We must show
that

lim
m→∞

pq(xm, x) = 0 and x ∈ `q(P ).

We have from (5) for each j ∈ N and m, r > m0 that

j∑
k=0

ps
[
x

(m)
k , x

(r)
k

]q
< εq. (6)

Take any m > m0. Let us pass to limit �rstly r →∞ and next j →∞ in (6)
to obtain pq(xm, x) < ε. By using the inclusion (3) and Minkowski's inequality
for each j ∈ N that[ j∑
k=0

ps(xk, 0)q
]1/q

≤
{ j∑

k=0

ps
[
x

(m)
k , xk

]q }1/q

+

{ j∑
k=0

ps
[
x

(m)
k , 0

]q }1/q

<∞

which implies that x ∈ `q(P ). Since pq(xm, x) ≤ ε for all m > m0 it follows
that limm→∞ pq(xm, x) = 0. Since (xm) is an arbitrary Cauchy sequence, the
space (`q(P ), pq) is complete. This step concludes the proof.

Theorem 3.7 n-dimensional Euclidian space Rn consisting of all ordered n-
tuples of real numbers, is a partial metric space with the metric p with respect
to the usual partial ordering in De�nition 2.5, de�ned by

p(x, y) =

√√√√ n∑
k=1

ps(xk, yk)2; x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn. (7)

Proof. Let x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) and z = (z1, z2, . . . , zn) ∈
Rn. Then, (P1), (P2) and (P3) are obvious. To prove (P4), we use Minkowski's
inequality with q = 2 in Proposition 3.6. This step concludes the proof.
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De�nition 3.8 Let X be a vector space over the �eld R and ‖ ·‖ be a function
from X to R+ satisfying the following norm axioms: For x, y ∈ X and α ∈ R,

(N1) ‖x‖ = 0⇔ x = 0,

(N2) ‖αx‖ = |α|‖x‖,

(N3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Then, (X, ‖ · ‖) is said a normed space. It is trivial that a norm ‖ · ‖ on X
de�nes a metric ps, induced by the partial metric p with respect to the usual
partial ordering in De�nition 2.5, on X which is given by

ps(x, y) = ‖x− y‖; (x, y ∈ X).

Now, we can give the theorem on the completeness of the metric space
(Rn, p).

Theorem 3.9 (Rn, p) is complete.

Proof. It is known by Theorem 3.7 that p de�ned by (7) is a partial met-
ric on Rn. Suppose that (xm) =

{
x

(m)
k

}
is a Cauchy in Rn, where xm ={

x
(m)
1 , x

(m)
2 , x

(m)
3 , . . . , x

(m)
n

}
for each �xed m ∈ N. Since (xm) is Cauchy, for

every ε > 0 there is an n0 ∈ N such that

p(xm, xr) =

√√√√ n∑
k=1

ps(x
(m)
k , x

(r)
k )2 < ε (8)

with the partial ordering in De�nition 2.5, for allm, r > n0. We have ps(x(m)
k , x

(r)
k )

< ε for all m, r > n0. This shows for each �xed k ∈ {1, 2, . . . , n} that{
x

(1)
k , x

(2)
k , . . .

}
is a convergent sequence with x

(m)
k → xk, as m → ∞. Us-

ing these n limits, we de�ne x = (x1, x2, . . . , xn) in Rn. From (8), letting
r →∞ it is obtained that p(xm, x) ≤ ε for all m > n0 which shows that (xm)
converges in Rn. Consequently (Rn, p) is a complete metric space.

It is trivial that Rn is a vector space over R with respect to the algebraic
operations (+) addition and scalar multiplication (·) de�ned on Rn, as follows:

+ : Rn × Rn −→ Rn

(x, y) 7−→ x+ y = (x1 + y1, x2 + y2, . . . , xn + yn),

· : R× Rn −→ Rn

(α, x) 7−→ αx = (αx1, αx2, . . . , αxn),

where x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn and α ∈ R.
Since Rn is a complete metric space with the metric p de�ned by (7) induced

by the norm ‖ · ‖, as a direct consequence of Theorem 3.9, we have:
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Corollary 3.10 Rn is a Banach space with the norm ‖ · ‖2 de�ned by

‖x‖2 =

√√√√ n∑
k=1

ps(xk, 0)2; x = (x1, x2, . . . , xn) ∈ Rn.

Since it is known by Proposition 3.5 that the spaces `∞(P ), c(P ) and c0(P )
are complete metric spaces with the partial metric p∞ induced by the norm
‖ · ‖∞, de�ned by

‖x‖∞ = sup
k∈N

ps(xk, 0); x = (xk) ∈ γ, γ ∈ {`∞(P ), c(P ), c0(P )} (9)

we have:

Corollary 3.11 The spaces `∞(P ), c(P ) and c0(P ) are Banach spaces with
the norm ‖ · ‖∞ de�ned by (9).

Since it is known by Proposition 3.6 that the space `q(P ) is complete metric
spaces with the metric pq induced by the norm ‖ · ‖q, de�ned by

‖x‖q =

[
∞∑
k=0

ps(xk, 0)q

]1/q

; (x = (xk) ∈ `q(P ), q ≥ 1), (10)

we have:

Corollary 3.12 The space `q(P ) is a Banach space with the norm ‖·‖q de�ned
by (10).

Proposition 3.13 De�ne P∞ on the space µ(P ) by

P∞ : µ(P )× µ(P ) −→ R+

(x, y) 7−→ P∞(x, y) = sup
n∈N

ps
(

n∑
k=0

xk,
n∑
k=0

yk

)
,

where µ(P ) denotes any of the spaces bs(P ), cs(P ) and cs0(P ), and x =
(xk), y = (yk) ∈ µ(P ). Then, (µ(P ), P∞) is a complete partial metric space
with respect to the usual partial ordering in De�nition 2.5.

Proof. Since the proof is similar to Proposition 3.5, one can easily establish
that (µ(P ), P∞) is a complete partial metric space. So, we leave it to the
reader.
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Proposition 3.14 De�ne the distance functions P∆(x, y), P∆
q (x, y) and P∆

∞(x, y)
by

P∆(x, y) :=
∞∑
k=0

ps [(∆′x)k, (∆
′y)k] , (∆′x)k = xk − xk+1

P∆
q (x, y) :=

∞∑
k=0

{ps [(∆x)k, (∆y)k]
q}1/q

, (∆x)k = xk − xk−1 and x−1 = 0

P∆
∞(x, y) := sup

k∈N
ps [(∆x)k, (∆y)k] ,

where x = (xk), y = (yk) are the element of the spaces bv(P ), bvq(P ) or
bv∞(P ), respectively. Then, (bv(P ), P∆), (bvq(P ), P∆

q ) and (bv∞(P ), P∆
∞) are

complete metric spaces with respect to the usual partial ordering in De�nition
2.5.

Proof. Since the proof is similar for the spaces bv(P ) and bv∞(P ), we
prove the theorem only for the space bvq(P ). One can easily establish that
P∆
q de�nes a metric on bvq(P ) which is a routine veri�cation, so we leave it

to the reader. Also the proof is analogous for the cases q = 1 and q = ∞
we omit their detailed proof and we consider only the case 1 < q < ∞. Let
xi =

{
x

(i)
0 , x

(i)
1 , . . .

}
be any Cauchy sequence on bvq(P ). Then for every ε > 0,

there exists a positive integer n0(ε) ∈ N for all i, j > n0 such that

P∆
q (xi, xj) :=

∞∑
n=0

{
ps
[
(∆x)in, (∆x)jn

]q }1/q

< ε (11)

where (∆x)n = xn − xn−1 and x−1 = 0. We obtain for each �xed n ∈ N from
(11) that

ps
[
(∆x)in, (∆x)jn

]
< ε (12)

for all i, j > n0(ε) which leads us to the fact that the sequence {(∆x)in} is a
Cauchy sequence and is convergent. Now, we suppose that (∆x)in → (∆x)n as
n→∞. We have from (12) for each m ∈ N and i, j > n0(ε) that

m∑
k=0

ps
[
(∆x)ik, (∆x)jk

]q ≤ P∆
q (xi, xj)q < εq. (13)

Take any i > n0(ε). Let us pass to limit �rstly j → ∞ and next m → ∞ in
(13) to obtain P∆

q (xi, x) ≤ ε. Finally, by using Minkowski's inequality for each
m ∈ N that{ m∑

k=0

ps(∆x)k, 0)q
}1/q

≤ P∆
q (xi, x) + P∆

q (xi, 0) ≤ ε+ P∆
q (xi, 0) <∞



Some Partial Metric Spaces of... 29

which implies that x ∈ bvq(P ). Since P∆
q (xi, x) ≤ ε for all i > n0(ε), it follows

that xi → x as i→∞. Since (xi) is an arbitrary Cauchy sequence, the space
bvq(P ) is complete. This step concludes the proof.

Proposition 3.15 Let f, g ∈ B[a, b]. De�ne the distance function p1 by

p1 : B[a, b]×B[a, b] −→ R+

(f, g) 7−→ p1(f, g) := supt∈[a,b] p
s[f(t), g(t)].

Then, (B[a, b], p1) is a partial metric space with the partial order vp on B[a, b].

Proof. One can easily establish that p1 de�nes a partial metric on B[a, b] which
is a routine veri�cation, so we omit its details. Suppose that the sequence
{fn(t)} of bounded functions be any Cauchy sequence in the space B[a, b].
Then, for any ε > 0, there exists n0 ∈ N for all m,n > n0 such that

p1(fn, fm) = sup
t∈[a,b]

ps [fn(t), fm(t)] < ε.

A fortiori, for every �xed n ∈ N and for m,n > n0

ps [fn(t), fm(t)] < ε. (14)

By taking into account the completeness of R, we conclude that {fn(t)} is a
Cauchy sequence and is convergent. Now, we suppose that fn(t) → f(t) as
n→∞ for all t ∈ [a, b]. We must show that

lim
n→∞

p1(fn, f) = 0 and f ∈ B[a, b].

Let n0 ∈ N be �xed such that m > n0, taking the limit for m → ∞ in (14),
we obtain

ps [fn(t), f(t)] < ε (15)

for all t ∈ [a, b]. Since {fn(t)} ∈ B[a, b], there exists M > 0 such that
ps [fn(t), 0] ≤ M . Thus, (15) gives together with the triangle inequality of
De�nition 2.2 for m > n0 that

ps[f(t), 0] ≤ ps[f(t), fn(t)] + ps[fn(t), 0] ≤ ε+M.

That is to say that the sequence f ∈ B[a, b]. Other hand, using the inequality
(15) and De�nition 2.16, the sequence {fn(t)} of functions converges to f(t)
uniformly on [a, b]. Hence, the partial metric space (B[a, b], p1) is complete.

We give the following proposition without proof. Since the proof can also
be obtained in the similar way used in the proof of Proposition 3.15, we omit
the detail.
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Proposition 3.16 Let f, g ∈ C[a, b]. De�ne the distance functions p2 and p3

by

p2 : C[a, b]× C[a, b] −→ R+

(f, g) −→ p2(f, g) = max
t∈[a,b]

{ps(f(t), g(t))} ,

p3 : C[a, b]× C[a, b] −→ R+

(f, g) 7−→ p3(f, g) :=
∫ b
a
ps(f(t), g(t))dt.

Then, p2 and p3 are the partial metrics on C[a, b] with the partial order vp and
the space C[a, b] is complete with respect to the metric p2 while it is incomplete
with respect to the metric p3.

4 The Duals of the Sets of Sequence with the

Partial Metric

Firstly, we de�ne the alpha-, beta- and gamma-duals of a set µ(P ) ⊂ ω which
are respectively denoted by {µ(P )}α, {µ(P )}β and {µ(P )}γ, as follows:

{µ(P )}α :=

{
x = (xk) ∈ w : (xkyk) ∈ `1(P ) for all (yk) ∈ µ(P )

}
,

{µ(P )}β :=

{
x = (xk) ∈ w : (xkyk) ∈ cs(P ) for all (yk) ∈ µ(P )

}
,

{µ(P )}γ :=

{
x = (xk) ∈ w : (xkyk) ∈ bs(P ) for all (yk) ∈ µ(P )

}
.

Theorem 4.1 The following statements hold:

(i) {`∞(P )}α = {c(P )}α = {c0(P )}α = `1(P ).

(ii) {`1(P )}α = `∞(P ).

Proof. (i) Since one can prove in the similar way that {c(P )}α = {c0(P )}α =
`1(P ), we only show that {`∞(P )}α = `1(P ). Let y = (yk) ∈ `1(P ) and
x = (xk) ∈ `∞(P ). Then, supk∈N p

s(xk, 0) <∞. Therefore,

∞∑
k=0

ps(ykxk, 0) ≤
[

sup
k∈N

ps(xk, 0)

] ∞∑
k=0

ps(yk, 0) <∞, (16)

since y ∈ `1(P ) and this implies that y ∈ {`∞(P )}α. Hence, the inclusion
`1(P ) ⊆ {`∞(P )}α holds.
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Conversely, let y = (yk) ∈ {`∞(P )}α and x = (1, 1, . . . , 1, . . .) ∈ `∞(P ).
Then, using the inequality (16)

∞∑
k=0

ps(yk, 0) =
∞∑
k=0

ps(ykxk, 0) <∞,

since y ∈ {`∞(P )}α and this implies that y ∈ `1(P ). Hence, the inclusion
{`∞(P )}α ⊆ `1(P ) holds. Therefore, the inclusions `1(P ) ⊆ {`∞(P )}α and
{`∞(P )}α ⊆ `1(P ) give that {`∞(P )}α = `1(P ).

(ii) Let y = (yk) ∈ `∞(P ) and x = (xk) ∈ `1(P ). Then,
∑

k p
s(xk, 0) <∞.

Now,

∞∑
k=0

ps(xkyk, 0) ≤
[

sup
k∈N

ps(yk, 0)

] ∞∑
k=0

ps(xk, 0) <∞

and y ∈ {`1(P )}α. Therefore, the inclusion `∞(P ) ⊆ {`1(P )}α holds.
Conversely, suppose that y = (yk) ∈ {`1(P )}α and x = (1, 1, . . . , 1, 0, 0, . . .) ∈

`1(P ). Thus, it is immediate that

sup
k∈N

ps(yk, 0) = sup
k∈N

ps(xkyk, 0) ≤
∞∑
k=0

ps(xkyk, 0) <∞

which gives that y ∈ `∞(P ). This means that the inclusion {`∞(P )}α ⊆
`1(P ) holds. Therefore, by combining the inclusions `∞(P ) ⊆ {`1(P )}α and
{`1(P )}α ⊆ `∞(P ) we obtain the desired result {`1(P )}α = `∞(P ).

Theorem 4.2 Let 1 < q < ∞ with q−1 + r−1 = 1. Then, {`q(P )}α =
{`q(P )}β = `r(P ).

Proof. Suppose that 1 < q < ∞ with q−1 + r−1 = 1 and y = (yk) ∈
{`q(P )}α/`r(P ). Then,

∑
k p

s(ykxk, 0) <∞ for all x = (xk) ∈ `q(P ). Then, we
can �nd an increasing sequence (nk) of positive integers such that

[
ps(ynk

, 0)
]q
>

k2 for all k ∈ N1. De�ne the sequence x = (xn) by

xn =

{
1/ynk

, n = nk,
0 , n 6= nk,

where k ∈ N1. Then, x ∈ `q(P ) but

∞∑
k=0

ps(ykxk, 0) =
∞∑
k=0

ps(ynk
, 0) ps(ynk

, 0)−1 = 1 + 1 + · · · =∞

which is a contradiction. Therefore, y ∈ `r(P ) and we have {`q(P )}α ⊆ `r(P ).
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Conversely, suppose that x = (xk) ∈ `q(P ) and y = (yk) ∈ `r(P ). Then,
one can see by Holder's inequality

∞∑
k=0

ps(ykxk, 0) ≤
{ ∞∑

k=0

[ps(yk, 0)]r
}1/r{ ∞∑

k=0

[ps(xk, 0)]q
}1/q

<∞

which means that y ∈ {`q(P )}α. Hence, the inclusion `r(P ) ⊆ {`q(P )}α holds.

Lemma 4.3 [3] If X is solid, then Xα = Xβ = Xγ.

Although one can directly derive the beta- and gamma-duals of the spaces
`∞(P ), c0(P ) and `q(P ) which are solid, by combining the results of Theorem
4.1, Theorem 4.2 and Lemma 4.3, we give their detailed proof.

Theorem 4.4 The α−dual of the sets cs(P ), bs(P ) and bv1(P ) of sequences
is the set `1(P ).

Proof. We prove the case {cs(P )}α = `1(P ) and the rest can be obtained
similarly. Let x = (xk) ∈ cs(P ) and y = (yk) ∈ `1(P ). Then,

∑
k p

s(yk, 0) <∞
and we have

∞∑
k=0

ps(ykxk, 0) ≤

[
sup
n∈N

ps

(
n∑
k=1

xk, 0

)]
∞∑
k=0

ps(yk, 0) <∞.

Therefore, y ∈ {cs(P )}α which gives that `1(P ) ⊆ {cs(P )}α.
Conversely, let y = (yk) ∈ {cs(P )}α/`1(P ). Then to every natural number

i, we can �nd an odd ni with ni < ni+1 and
∑ni+1

k=ni+1 p
s(yk, 0) > 2i for all

i ∈ N. De�ne the sequence x = (xk) by

xk =

{
(−1)k2−i/2 , ni < k ≤ ni+1,

0 , otherwise,

where i ∈ N. Then, x = (xk) ∈ {cs(P )} but
∑

k

{
ps(ykxk, 0)

}
= ∞. This

contradicts that y ∈ {cs(P )}α, and so y = (yk) must be in `1(P ) which gives
the inclusion {cs(P )}α ⊆ `1(P ).

Theorem 4.5 The following statements hold:

(i) {cs(P )}β = bv1(P ).

(ii) {bv(P )}β = cs(P ).
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Proof. Since Part (ii) can be similarly proved, we consider only Part (i).
Let x = (xk) ∈ {cs(P )}β and w = (wk) ∈ c0(P ). De�ne the sequence y =
(yk) ∈ cs(P ) by yk = wk − wk+1 for all k ∈ N. Therefore,

∑
k xkyk converges,

but

n∑
k=1

(wk − wk+1)xk =
n−1∑
k=0

wk(xk − xk−1)− wn+1xn, (x−1 = 0)

and the inclusion `1(P ) ⊂ cs(P ) yields that (xk) ∈ {cs(P )}β ⊂ {`1(P )}β =
`∞(P ) which implies that∑

k

(wk − wk+1)xk =
∑
k

wk(xk − xk−1), (x−1 = 0).

Hence, (xk − xk−1) ∈ {c0(P )}β = {c0(P )}α = `1(P ), i.e., x ∈ bv1(P ). There-
fore, {cs(P )}β ⊆ bv1(P ).

Conversely, suppose that x = (xk) ∈ bv1(P ). Then, (xk − xk−1) ∈ `1(P ).
Further, if y = (yk) ∈ cs(P ), the sequence (wn) de�ned by wn =

∑n
k=1 yk for

all n ∈ N, is an element of the space c(P ). Since {c(P )}α = `1(P ), the series∑
k wk(xk − xk+1) is convergent. Also, we have

n∑
k=m

ps [(wk − wk−1)xk, 0] ≤
n−1∑
k=m

ps [wk(xk − xk+1), 0] + wnxn − wm−1xm. (17)

Since (wn) ∈ c(P ) and (xk) ∈ bv1(P ) ⊂ c(P ), second and third terms in the
right-hand side of the inequality (17) tend to zero, as m,n → ∞. Hence, the
series

∑
k(wk−wk−1)xk, that is,

∑
k xkyk converges and so, bv1(P ) ⊆ {cs(P )}β.

Thus, {cs(P )}β = bv1(P ) .

Theorem 4.6 The following statements hold:

(i) {bs(P )}γ = {cs(P )}γ = bv1(P ).

(ii) {bv1(P )}γ = bs(P ).

Proof. We prove only Part (i) for {cs(P )}γ, the rest can be proved along
similar lines.

By Theorem 4.5, we have bv1(P ) ⊆ {cs(P )}β and since {cs(P )}β ⊂ {cs(P )}γ,
so bv1(P ) ⊂ {cs(P )}γ. We need to show that {cs(P )}γ ⊂ bv1(P ). Let
x = (xn) ∈ {cs(P )}γ and y = (yn) ∈ c0(P ). Then, for the sequence,
(wn) ∈ cs(P ) de�ned by wn = yn − yn+1 for all n ∈ N, we can �nd a con-
stant K > 0 such that

∑n
k=1 p

s(xkwk, 0) ≤ K for all n ∈ N. Since (yn) ∈ c0(P )
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and (xn) ∈ {cs(P )}γ ⊂ `∞(P ), there exists a constant M > 0 such that
ps(xnyn, 0) ≤M for all n ∈ N. Now,

n∑
k=1

ps [yk(xk − xk−1), 0] ≤
n+1∑
k=0

ps [xk(yk − yk+1), 0] + yn+2xn+1 ≤ K +M.

Hence (xk − xk−1) ∈ {c0(P )}γ = `1(P ), i.e., (xk) ∈ bv1(P ). Therefore, since
the inclusion {cs(P )}γ ⊂ bv1(P ) holds we conclude that {cs(P )}γ = bv1(P ).

5 Concluding Remarks

Partial metrics are more �exible than metrics, they generate partial orders and
their topological properties are more general than the ones for metrics, argued
by the fact that the self distance of each point need not be zero. They are
enormously useful in partially de�ned information for the study of domains
and semantics in computer science.

We succeeded in developing the mathematical concepts of partial metrics
which are equivalent to weightable quasi-metrics in the sense that a partial met-
ric can be interpreted as a weightable quasi-metric and conversely a weighted
quasi-metric can be considered as a partial metric.

The partial metric spaces were assigned every property from their induced
metric spaces, allowing us to construct the completion of an incomplete partial
metric space by �rst completing their induced metric space, using the set of
all Cauchy sequences in the space of interest. The demonstration was similar
to the one for completing metric spaces, involving notions of isometry and
topological properties.

In this research some new sequence and function spaces are introduced
by using the notion of partial metric with respect to the partial order, and
shown that the given spaces were partially complete. In addition, this work
presents a new tool for the description and analysis of partial metric spaces.
The potential applications of the obtained results include the establishment
of new sequence and function spaces on partial metric which are interesting
topics for our future works. Of course, it will be meaningful to determine the
alpha-, beta- and gamma-duals of the partial metric sequence spaces `∞(P ),
c(P ) and `q(P ). We should record that one can study on the domain of some
triangle matrices in the partial metric sequence spaces `∞(P ), c(P ) and `q(P )
which is a new development on the theory of sequence spaces.

Furthermore our research has highlighted the merits of working with logic
and mathematics in contemporary computer science. Now we have an analo-
gous but even more ambitious task of �nding ways to have humans and ma-
chines think together as one new intelligent form, rather than trying to be the
ultimate largest automatic theorem prover.
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