

Gen. Math. Notes, Vol. 16, No. 2, June, 2013, pp.14-31 ISSN 2219-7184; Copyright ©ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

$g^{\star}b$ -Separation Axioms

Alias B. Khalaf¹ and Suzan N. Dawod²

¹Department of Mathematics, Faculty of Science University of Duhok, Kurdistan-Region, Iraq E-mail: aliasbkhalaf@gmail.com
²Department of Mathematics, Faculty of Science University of Zakho, Kurdistan-Region, Iraq E-mail: suzan.dawod@yahoo.com

(Received: 18-2-13 / Accepted: 1-4-13)

Abstract

In this paper, we define some new types of separation axioms in topological spaces by using g^*b -open set also the concept of g^*b - R_0 and g^*b - R_1 are introduced. Several properties of these spaces are investigated.

Keywords: g^*b -open set, g^*b - R_0 , g^*b - R_1 , g^*b - T_i (i=0,1,2).

1 Introduction

Mashhour et al [12] introduced and investigated the notion of preopen sets and precontinuity in topological spaces. Since then many separation axioms and mappings have been studied using preopen sets. In [[1], [9]], weak preseparation axioms, namely, pre- T_0 , pre- T_1 and pre- T_2 are introduced and studied. Further, the notion of preopen sets are used to introduce some more pre-separation axioms called pre- R_0 , pre- R_1 spaces. Caldas and Jafari [3], introduced and studied $b - T_0$, $b - T_1$, $b - T_2$, $b - D_0$, $b - D_1$ and $b - D_2$ via b-open sets after that Keskin and Noiri [10], introduced the notion of $b - T_{\frac{1}{2}}$. The aim of this paper is to introduce new types of separation axiom via g^*b open sets, and investigate the relations among these concepts.

Throughout this paper, (X, τ) and (Y, σ) (or simply X and Y) represents the non-empty topological spaces on which no separation axiom are assumed, unless otherwise mentioned. For a subset A of X, Cl(A) and Int(A) represents the closure of A and Interior of A respectively. A subset A is said to be preopen set [12] if $A \subseteq IntCl(A)$, b-open [2] or(γ -open) [6] if $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$. The family of all b-open sets in (X, τ) is denoted by $bO(X, \tau)$.

2 Preliminaries

Definition 2.1 A subset A of a topological space (X, τ) is called:

- 1. generalized closed set (briefly g-closed) [11], if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- 2. g^*b -closed [?], if $bCl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open in X.

Definition 2.2 [3] A subset A of a topological space X is called a bdifference set (briefly, bD-set) if there are $U, V \in bO(X, \tau)$ such that $U \neq X$ and $A = U \setminus V$.

Definition 2.3 [3] A space X is said to be:

- 1. $b T_0$ if for each pair of distinct points x and y in X, there exists a b-open set A containing x but not y or a b-open set B containing y but not x.
- 2. $b T_1$ if for each pair x; y in X, $x \neq y$, there exists a b-open set G containing x but not y and a b-open set B containing y but not x.
- b-D₀ (resp., b-D₁) if for any pair of distinct points x and y of X there exists a bD-set of X containing x but not y or (resp., and) a bD-set of X containing y but not x.
- b − D₂ if for any pair of distinct points x and y of X, there exist disjoint bD-sets G and H of X containing x and y, respectively.

Definition 2.4 [13] A space X is said to be $b - T_2$ if for any pair of distinct points x and y in X, there exist $U \in BO(X, x)$ and $V \in BO(X, y)$ such that $U \cap V = \phi$.

Definition 2.5 [10] A topological space X is called $b - T_{\frac{1}{2}}$ if every gb-closed set is b-closed.

Definition 2.6 [8] Let X be a topological space. A subset $S \subseteq X$ is called a pre-difference set (briefly pD-set), if there are two preopen sets A_1, A_2 in X such that $A_1 \neq X$ and $B = A_1 \setminus A_2$.

Definition 2.7 ([1], [9]) A space X is said to be:

- 1. pre- T_0 if for each pair of distinct points x, y of X, there exists a preopen set containing one but not the other.
- 2. pre- T_1 if for each pair of distinct points x, y of X, there exist a pair of preopen sets, one containing x but not y, and the other containing y but not x.
- 3. pre- T_2 if for each pair of distinct points x, y of X, there exist a pair of disjoint preopen sets, one containing x and the other containing y.

Definition 2.8 [8] A topological space X is said to be $pre-D_0$ (resp., $pre-D_1$) if for $x, y \in X$ with $x \neq y$, there exists an pD-set of X containing x but not y or (resp., and) an pD-set containing y but not x.

Definition 2.9 [8] A topological space X is said to be pre- D_2 if for each $x, y \in X$ and $x \neq y$, there exist disjoint pD-sets S_1 and S_2 such that $x \in S_1$ and $y \in S_2$.

Definition 2.10 [7] A space X is said to be:

- 1. pre-R₀ if for each preopen set G and $x \in G$ implies $Clx \subseteq G$.
- 2. pre- R_1 if for $x, y \in X$ with $Clx \neq Cly$, there exist disjoint preopen sets U and V such that $Clx \subseteq U$ and $Cly \subseteq V$.
- **Definition 2.11 ([4], [5])** 1. A topological space (X, τ) is called b- R_0 (or γR_0) if every b-open set contains the b-closure of each of its singletons.
 - 2. A topological space (X, τ) is called $b \cdot R_1$ (or γR_1) if for every x and y in X with $bCl(\{x\}) \neq bCl(\{y\})$, there exist disjoint b-open sets U and V such that $bCl(\{x\}) \subseteq U$ and $bCl(\{y\}) \subseteq V$.
- **3** $g^{\star}b$ - T_k **Space** $(k = 0, \frac{1}{2}, 1, 2)$

In this section, some new types of separation axioms are defined and studied in topological spaces called g^*b - T_k for $k = 0, \frac{1}{2}, 1, 2$ and g^*b - D_k for k = 0, 1, 2,and also some properties of these spaces are explained.

The following definitions are introduced via g^*b -open sets.

Definition 3.1 A topological space (X, τ) is said to be:

- 1. g^*b - T_0 if for each pair of distinct points x, y in X, there exists a g^*b -open set U such that either $x \in U$ and $y \notin U$ or $x \notin U$ and $y \in U$.
- 2. g^*b - T_1 if for each pair of distinct points x, y in X, there exist two g^*b -open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.

- 3. g^*b - T_2 if for each distinct points x, y in X, there exist two disjoint g^*b open sets U and V containing x and y respectively.
- 4. g^*b - $T_{\frac{1}{2}}$ if every g^*b -closed set is g-closed.
- 5. g^*b -space if every g^*b -open set of X is open in X.

The following result can be simply obtained from the definitions.

Proposition 3.2 For a topological space (X, τ) , the following properties hold:

- 1. If (X, τ) is b-T_k, then it is g^*b -T_k, for $k = 0, \frac{1}{2}, 1, 2$.
- 2. If (X, τ) is Pre- T_k , then it is g^*b - T_k , for k = 0, 1, 2.

The converse of Proposition 3.2 is not true in general as it is shown in the following examples.

Example 3.3 Consider $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, X\}$. Then the space X is g^*b - T_k but it is not pre- T_k for k = 1, 2.

Example 3.4 Consider $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, \{a, c\}, X\}$. Then the space X is g^*b - T_k but it is not b- T_k for k = 1, 2.

Proposition 3.5 A topological space (X, τ) is $g^*b - T_0$ if and only if for each pair of distinct points x, y of X, $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$.

Proof. Necessity. Let (X, τ) be a g^*b - T_0 space and x, y be any two distinct points of X. There exists a g^*b -open set U containing x or y, say x but not y. Then $X \setminus U$ is a g^*b -closed set which does not contain x but contains y. Since $g^*bCl(\{y\})$ is the smallest g^*b -closed set containing $y, g^*bCl(\{y\}) \subseteq X \setminus U$ and therefore $x \notin g^*bCl(\{y\})$. Consequently $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$.

Sufficiency. Suppose that $x, y \in X$, $x \neq y$ and $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$. Let z be a point of X such that $z \in g^*bCl(\{x\})$ but $z \notin g^*bCl(\{y\})$. We claim that $x \notin g^*bCl(\{y\})$. For, if $x \in g^*bCl(\{y\})$ then $g^*bCl(\{x\}) \subseteq g^*bCl(\{y\})$. This contradicts the fact that $z \notin g^*bCl(\{y\})$. Consequently x belongs to the g^*b -open set $X \setminus g^*bCl(\{y\})$ to which y does not belong.

Proposition 3.6 A topological space (X, τ) is g^*b - T_1 if and only if the singletons are g^*b -closed sets.

Proof. Let (X, τ) be g^*b - T_1 and x any point of X. Suppose $y \in X \setminus \{x\}$, then $x \neq y$ and so there exists a g^*b -open set U such that $y \in U$ but $x \notin U$. Consequently $y \in U \subseteq X \setminus \{x\}$, that is $X \setminus \{x\} = \cup \{U : y \in X \setminus \{x\}\}$ which is g^*b -open.

Conversely, suppose $\{p\}$ is g^*b -closed for every $p \in X$. Let $x, y \in X$ with $x \neq y$. Now $x \neq y$ implies $y \in X \setminus \{x\}$. Hence $X \setminus \{x\}$ is a g^*b -open set contains y but not x. Similarly $X \setminus \{y\}$ is a g^*b -open set contains x but not y. Accordingly X is a g^*b - T_1 space.

Proposition 3.7 A topological space (X, τ) is $g^*b T_{\frac{1}{2}}$ if each singleton $\{x\}$ of X is either g-open or g-closed.

Proof. Suppose $\{x\}$ is not g-closed, then it is obvious that $(X \setminus \{x\})$ is g^*b -closed. Since (X, τ) is g^*b - $T_{\frac{1}{2}}$, so $(X \setminus \{x\})$ is g-closed, that is $\{x\}$ is g-open.

Proposition 3.8 The following statements are equivalent for a topological space (X, τ) :

- 1. X is g^*b -T₂.
- 2. Let $x \in X$. For each $y \neq x$, there exists a g^*b -open set U containing x such that $y \notin g^*bCl(U)$.
- 3. For each $x \in X$, $\cap \{g^*bCl(U) : U \in g^*bO(X) \text{ and } x \in U\} = \{x\}.$

Proof. (1) \Rightarrow (2). Since X is g^*b - T_2 , there exist disjoint g^*b -open sets U and V containing x and y respectively. So, $U \subseteq X \setminus V$. Therefore, $g^*bCl(U) \subseteq X \setminus V$. So $y \notin g^*bCl(U)$.

 $(2) \Rightarrow (3)$. If possible for some $y \neq x$, we have $y \in g^*bCl(U)$ for every g^*b -open set U containing x, which contradicts (2).

(3) \Rightarrow (1). Let $x, y \in X$ and $x \neq y$. Then there exists a g^*b -open set U containing x such that $y \notin g^*bCl(U)$. Let $V = X \setminus g^*bCl(U)$, then $y \in V$ and $x \in U$ and also $U \cap V = \phi$.

Proposition 3.9 Let (X, τ) be a topological space, then the following statements are true:

- 1. Every g^*b - T_2 space is g^*b - T_1 .
- 2. Every g^*b -space is g^*b - $T_{\frac{1}{2}}$.
- 3. Every g^*b - T_1 space is g^*b - $T_{\frac{1}{2}}$.

Proof. The proof is straightforward from the definitions and proposition 3.6.

Definition 3.10 A subset A of a topological space X is called a g^*b difference set (briefly, g^*bD -set) if there are $U, V \in g^*bO(X, \tau)$ such that $U \neq X$ and $A = U \setminus V$.

It is true that every g^*b -open set U different from X is a g^*bD -set if A = U and $V = \phi$. So, we can observe the following.

Remark 3.11 Every proper g^*b -open set is a g^*bD -set. But, the converse is not true in general as the next example shows.

Example 3.12 Consider $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$. So, $g^*bO(X, \tau) = \{\phi, \{a, b, d\}, \{a, c, d\}, \{b, c, d\}, \{c, d\}, \{b, d\}, \{a, d\}, \{d\}, X\}$, then $U = \{a, b, d\} \neq X$ and $V = \{a, c, d\}$ are g^*b -open sets in X and $A = U \setminus V = \{a, b, d\} \setminus \{a, c, d\} = \{b\}$, then we have $A = \{b\}$ is a g^*bD -set but it is not g^*b -open.

Now we define another set of separation axioms called $g^*b D_k$, for k = 0, 1, 2, by using the g^*b -sets.

Definition 3.13 A topological space (X, τ) is said to be:

- g*b-D₀ if for any pair of distinct points x and y of X there exists a g*bDset of X containing x but not y or a g*bD-set of X containing y but not x.
- 2. g^*b-D_1 if for any pair of distinct points x and y of X there exists a g^*bD set of X containing x but not y and a g^*bD -set of X containing y but not x.
- 3. g^*b-D_2 if for any pair of distinct points x and y of X there exist disjoint g^*bD -set G and E of X containing x and y, respectively.

Remark 3.14 For a topological space (X, τ) , the following properties hold:

- 1. If (X, τ) is $g^*b T_k$, then it is $g^*b D_k$, for k = 0, 1, 2.
- 2. If (X, τ) is $g^*b D_k$, then it is $g^*b D_{k-1}$, for k = 1, 2.
- 3. If (X, τ) is Pre-D_k, then it is g^*b -D_k, for k = 0, 1, 2.

Proof. Obvious.

Proposition 3.15 A space X is $g^*b \cdot D_0$ if and only if it is $g^*b \cdot T_0$.

Proof. Suppose that X is g^*b-D_0 . Then for each distinct pair $x, y \in X$, at least one of x, y, say x, belongs to a g^*bD -set G but $y \notin G$. Let $G = U_1 \setminus U_2$ where $U_1 \neq X$ and $U_1, U_2 \in g^*bO(X, \tau)$. Then $x \in U_1$, and for $y \notin G$ we have two cases: (a) $y \notin U_1$, (b) $y \in U_1$ and $y \in U_2$. In case (a), $x \in U_1$ but $y \notin U_1$. In case (b), $y \in U_2$ but $x \notin U_2$. Thus in both the cases, we obtain that X is g^*b-T_0 . **Conversely,** if X is g^*b-T_0 , by Remark 3.14 (1), X is g^*b-D_0 .

Proposition 3.16 A space X is g^*b - D_1 if and only if it is g^*b - D_2 .

Proof. Necessity. Let $x, y \in X$, $x \neq y$. Then there exist g^*bD -sets G_1, G_2 in X such that $x \in G_1$, $y \notin G_1$ and $y \in G_2$, $x \notin G_2$. Let $G_1 = U_1 \setminus U_2$ and $G_2 = U_3 \setminus U_4$, where U_1, U_2, U_3 and U_4 are g^*b -open sets in X. From $x \notin G_2$, it follows that either $x \notin U_3$ or $x \in U_3$ and $x \in U_4$. We discuss the two cases separately.

(i) $x \notin U_3$. By $y \notin G_1$ we have two sub-cases:

(a) $y \notin U_1$. Since $x \in U_1 \setminus U_2$, it follows that $x \in U_1 \setminus (U_2 \cup U_3)$, and since $y \in U_3 \setminus U_4$ we have $y \in U_3 \setminus (U_1 \cup U_4)$. Therefore $(U_1 \setminus (U_2 \cup U_3)) \cap (U_3 \setminus (U_1 \cup U_4)) = \phi$. (b) $y \in U_1$ and $y \in U_2$. We have $x \in U_1 \setminus U_2$, and $y \in U_2$. Therefore $(U_1 \setminus U_2) \cap U_2 = \phi$.

(*ii*) $x \in U_3$ and $x \in U_4$. We have $y \in U_3 \setminus U_4$ and $x \in U_4$. Hence $(U_3 \setminus U_4) \cap U_4 = \phi$. Therefore X is $g^*b - D_2$.

sufficiency. Follows from Remark 3.14 (2).

Corollary 3.17 If (X, τ) is $g^*b - D_1$, then it is $g^*b - T_0$.

Proof. Follows from Remark 3.14 (2) and Proposition 3.15.

Here is an example which shows that the converse of Corollary 3.17 is not true in general.

Example 3.18 Consider $X = \{a, b\}$ with the topology $\tau = \{\phi, \{a\}, X\}$. Then (X, τ) is g^*b-T_0 , but not g^*b-D_1 , since there is no g^*bD -set containing b but not a.

From Proposition 3.9, Remark 3.14, and Proposition 3.2 we obtain the following diagram of implications:

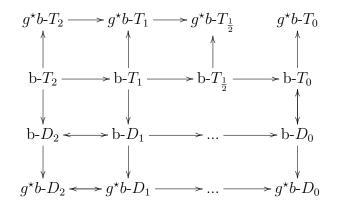


Diagram 3

The following examples show that implications in Diagram 3, are not reversible. **Example 3.19** Consider $X = \{a, b, c, d\}$ with the topology $\tau = \{\phi, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{a, b, c\}, X\}$. Then (X, τ) is $g^*b^-T_0$ but not $g^*b^-T_{\frac{1}{2}}$.

Example 3.20 Consider $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{c\}, \{a, c\}, \{b, c\}, X\}$. Then (X, τ) is $g^*b - T_{\frac{1}{2}}$ but not $g^*b - T_1$.

Remark 3.21 From Example 3.18, it is clear that X is g^*b-D_0 but not g^*b-D_1 . And from Example 3.4, the space X is g^*b-D_k but it is not $b-D_k$ for k = 0, 1, 2. In Example 3.3, the space X is g^*b-D_k but it is not pre- D_k for k = 0, 1, 2.

Definition 3.22 A point $x \in X$ which has only X as the g^*b -neighbourhood is called a g^*b -neat point.

Proposition 3.23 For a g^*b - T_0 topological space (X, τ) the following are equivalent:

- 1. (X, τ) is $g^*b D_1$.
- 2. (X, τ) has no g^*b -neat point.

Proof. (1) \Rightarrow (2). Since (X, τ) is $g^*b \cdot D_1$, then each point x of X is contained in a g^*bD -set $A = U \setminus V$ and thus in U. By definition $U \neq X$. This implies that x is not a g^*b -neat point.

 $(2) \Rightarrow (1)$. If X is g^*b - T_0 , then for each distinct pair of points $x, y \in X$, at least one of them, x (say) has a g^*b -neighbourhood U containing x and not y. Thus U which is different from X is a g^*b -neighbourhood U containing x and not y. Thus is not a g^*b -neat point. This means that there exists a g^*b -neighbourhood V of y such that $V \neq X$. Thus $y \in V \setminus U$ but not x and $V \setminus U$ is a g^*b -set. Hence X is g^*b - D_1 .

Corollary 3.24 A g^*b - T_0 space X is not g^*b - D_1 if and only if there is a unique g^*b -neat point in X.

Proof. We only prove the uniqueness of the g^*b -neat point. If x and y are two g^*b -neat points in X, then since X is g^*b - T_0 , at least one of x and y, say x, has a g^*b -neighbourhood U containing x but not y. Hence $U \neq X$. Therefore x is not a g^*b -neat point which is a contradiction.

Definition 3.25 A topological space (X, τ) is said to be g^*b -symmetric if for x and y in X, $x \in g^*bCl(\{y\})$ implies $y \in g^*bCl(\{x\})$.

Proposition 3.26 If (X, τ) is a topological space, then the following are equivalent:

- 1. (X, τ) is a g*b-symmetric space.
- 2. $\{x\}$ is g^*b -closed, for each $x \in X$.

Proof. (1) \Rightarrow (2). Assume that $\{x\} \subseteq U \in g^*bO(X)$, but $g^*bCl(\{x\}) \not\subseteq U$. Then $g^*bCl(\{x\}) \cap X \setminus U \neq \phi$. Now, we take $y \in g^*bCl(\{x\}) \cap X \setminus U$, then by hypothesis $x \in g^*bCl(\{y\}) \subseteq X \setminus U$ and $x \notin U$, which is a contradiction. Therefore $\{x\}$ is g^*b -closed, for each $x \in X$.

 $(2) \Rightarrow (1)$. Assume that $x \in g^*bCl(\{y\})$, but $y \notin g^*bCl(\{x\})$. Then $\{y\} \subseteq X \setminus g^*bCl(\{x\})$ and hence $g^*bCl(\{y\}) \subseteq X \setminus g^*bCl(\{x\})$. Therefore $x \in X \setminus g^*bCl(\{x\})$, which is a contradiction and hence $y \in g^*bCl(\{x\})$.

Corollary 3.27 If a topological space (X, τ) is a g^*b - T_1 space, then it is g^*b -symmetric.

Proof. In a g^*b - T_1 space, every singleton is g^*b -closed (Proposition 3.6) and therefore is by Proposition 3.26, (X, τ) is g^*b -symmetric.

Corollary 3.28 If a topological space (X, τ) is g^*b -symmetric and g^*b - T_0 , then (X, τ) is g^*b - T_1 .

Proof. Let $x \neq y$ and as (X, τ) is $g^*b \cdot T_0$, we may assume that $x \in U \subseteq X \setminus \{y\}$ for some $U \in g^*bO(X)$. Then $x \notin g^*bCl(\{y\})$ and hence $y \notin g^*bCl(\{x\})$. There exists a g^*b -open set V such that $y \in V \subseteq X \setminus \{x\}$ and thus (X, τ) is a $g^*b \cdot T_1$ space.

Corollary 3.29 If a topological space (X, τ) is g^*b - T_1 , then (X, τ) is g^*b -symmetric and g^*b - $T_{\frac{1}{2}}$.

Proof. By Corollary 3.27 and Proposition 3.9, it is true.

Corollary 3.30 For a g^*b -symmetric space (X, τ) , the following are equivalent:

- 1. (X, τ) is g^*b - T_0 .
- 2. (X, τ) is $g^*b D_1$.
- 3. (X, τ) is g^*b - T_1 .

Proof. (1) \Rightarrow (3). Follows from Corollary 3.28. (3) \Rightarrow (2) \Rightarrow (1). Follows from Remark 3.14 and Corollary 3.17.

Definition 3.31 Let A be a subset of a topological space (X, τ) . The g^*b -kernel of A, denoted by $g^*bker(A)$ is defined to be the set

 g^*b -Separation Axioms

$$g^{\star}bker(A) = \cap \{ U \in g^{\star}bO(X) \colon A \subseteq U \}.$$

Proposition 3.32 Let (X, τ) be a topological space and $x \in X$. Then $y \in g^*bker(\{x\})$ if and only if $x \in g^*bCl(\{y\})$.

Proof. Suppose that $y \notin g^*bker(\{x\})$. Then there exists a g^*b -open set V containing x such that $y \notin V$. Therefore, we have $x \notin g^*bCl(\{y\})$. The proof of the converse case can be done similarly.

Proposition 3.33 Let (X, τ) be a topological space and A be a subset of X. Then, $g^*bker(A) = \{x \in X : g^*bCl(\{x\}) \cap A \neq \phi\}.$

Proof. Let $x \in g^*bker(A)$ and suppose $g^*bCl(\{x\}) \cap A = \phi$. Hence $x \notin X \setminus g^*bCl(\{x\})$ which is a g^*b -open set containing A. This is impossible, since $x \in g^*bker(A)$. Consequently, $g^*bCl(\{x\}) \cap A \neq \phi$. Next, let $x \in X$ such that $g^*bCl(\{x\}) \cap A \neq \phi$ and suppose that $x \notin g^*bker(A)$. Then, there exists a g^*b -open set V containing A and $x \notin V$. Let $y \in g^*bCl(\{x\}) \cap A$. Hence, V is a g^*b -neighbourhood of y which does not contain x. By this contradiction $x \in g^*bker(A)$ and the claim.

Proposition 3.34 The following properties hold for the subsets A, B of a topological space (X, τ) :

- 1. $A \subseteq g^*bker(A)$.
- 2. $A \subseteq B$ implies that $g^*bker(A) \subseteq g^*bker(B)$.
- 3. If A is g^*b -open in (X, τ) , then $A = g^*bker(A)$.
- 4. $g^*bker(g^*bker(A)) = g^*bker(A).$

Proof. (1), (2) and (3) are immediate consequences of Definition 3.31. To prove (4), first observe that by (1) and (2), we have $g^*bker(A) \subseteq g^*bker(g^*bker(A))$. If $x \notin g^*bker(A)$, then there exists $U \in g^*bO(X, \tau)$ such that $A \subseteq U$ and $x \notin U$. Hence $g^*bker(A) \subseteq U$, and so we have $x \notin g^*bker(g^*bker(A))$. Thus $g^*bker(g^*bker(A)) = g^*bker(A)$.

Proposition 3.35 If a singleton $\{x\}$ is a g^*bD -set of (X, τ) , then $g^*bker(\{x\}) \neq X$.

Proof. Since $\{x\}$ is a g^*bD -set of (X, τ) , then there exist two subsets $U_1, U_2 \in g^*bO(X, \tau)$ such that $\{x\} = U_1 \setminus U_2, \{x\} \subseteq U_1$ and $U_1 \neq X$. Thus, we have that $g^*bker(\{x\}) \subseteq U_1 \neq X$ and so $g^*bker(\{x\}) \neq X$.

4 g^*b - R_k Space (k = 0, 1)

In this section, new classes of topological spaces called g^*b - R_0 and g^*b - R_1 spaces are introduced.

Definition 4.1 A topological space (X, τ) is said to be g^*b - R_0 if U is a g^*b -open set and $x \in U$ then $g^*bCl(\{x\}) \subseteq U$.

Proposition 4.2 For a topological space (X, τ) the following properties are equivalent:

- 1. (X, τ) is g^*b-R_0 .
- 2. For any $F \in g^*bC(X)$, $x \notin F$ implies $F \subseteq U$ and $x \notin U$ for some $U \in g^*bO(X)$.
- 3. For any $F \in g^*bC(X)$, $x \notin F$ implies $F \cap g^*bCl(\{x\}) = \phi$.
- 4. For any distinct points x and y of X, either $g^*bCl(\{x\}) = g^*bCl(\{y\})$ or $g^*bCl(\{x\}) \cap g^*bCl(\{y\}) = \phi$.

Proof. (1) \Rightarrow (2). Let $F \in g^*bC(X)$ and $x \notin F$. Then by (1), $g^*bCl(\{x\}) \subseteq X \setminus F$. Set $U = X \setminus g^*bCl(\{x\})$, then U is a g^*b -open set such that $F \subseteq U$ and $x \notin U$.

(2) \Rightarrow (3). Let $F \in g^*bC(X)$ and $x \notin F$. There exists $U \in g^*bO(X)$ such that $F \subseteq U$ and $x \notin U$. Since $U \in g^*bO(X)$, $U \cap g^*bCl(\{x\}) = \phi$ and $F \cap g^*bCl(\{x\}) = \phi$.

 $(3) \Rightarrow (4)$. Suppose that $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$ for distinct points $x, y \in X$. There exists $z \in g^*bCl(\{x\})$ such that $z \notin g^*bCl(\{y\})$ (or $z \in g^*bCl(\{y\})$) such that $z \notin g^*bCl(\{x\})$). There exists $V \in g^*bO(X)$ such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, we have $x \notin g^*bCl(\{y\})$. By (3), we obtain $g^*bCl(\{x\}) \cap g^*bCl(\{y\}) = \phi$.

 $(4) \Rightarrow (1).$ let $V \in g^*bO(X)$ and $x \in V$. For each $y \notin V$, $x \neq y$ and $x \notin g^*bCl(\{y\})$. This shows that $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$. By (4), $g^*bCl(\{x\}) \cap g^*bCl(\{y\}) = \phi$ for each $y \in X \setminus V$ and hence $g^*bCl(\{x\}) \cap (\bigcup_{y \in X \setminus V} g^*bCl(\{y\})) = \phi$. On other hand, since $V \in g^*bO(X)$ and $y \in X \setminus V$, we have $g^*bCl(\{y\}) \subseteq X \setminus V$ and hence $X \setminus V = \bigcup_{y \in X \setminus V} g^*bCl(\{y\})$. Therefore, we obtain $(X \setminus V) \cap g^*bCl(\{x\}) = \phi$ and $g^*bCl(\{x\}) \subseteq V$. This shows that (X, τ) is a g^*b - R_0 space.

Remark 4.3 Every pre- R_0 and b- R_0 spaces is g^*b - R_0 space but converse is not true in general.

Example 4.4 $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}$, is g^*b - R_0 but not pre- R_0 and b- R_0 , since for preopen (b-open) set $\{a\}, a \in \{a\}$, then $Cl\{a\}(bCl\{a\}) = X \not\subseteq \{a\}$

 g^*b -Separation Axioms

Proposition 4.5 If a topological space (X, τ) is g^*b - T_0 and a g^*b - R_0 space then it is g^*b - T_1 .

Proof. Let x and y be any distinct points of X. Since X is g^*b - T_0 , there exists a g^*b -open set U such that $x \in U$ and $y \notin U$. As $x \in U$ implies that $g^*bCl(\{x\}) \subseteq U$. Since $y \notin U$, so $y \notin g^*bCl(\{x\})$. Hence $y \in V = X \setminus g^*bCl(\{x\})$ and it is clear that $x \notin V$. Hence it follows that there exist g^*b -open sets U and V containing x and y respectively, such that $y \notin U$ and $x \notin V$. This implies that X is g^*b - T_1 .

Proposition 4.6 For a topological space (X, τ) the following properties are equivalent:

- 1. (X, τ) is g^*b-R_0 .
- 2. $x \in g^*bCl(\{y\})$ if and only if $y \in g^*bCl(\{x\})$, for any points x and y in X.

Proof. (1) \Rightarrow (2). Assume that X is g^*b - R_0 . Let $x \in g^*bCl(\{y\})$ and V be any g^*b -open set such that $y \in V$. Now by hypothesis, $x \in V$. Therefore, every g^*b -open set which contain y contains x. Hence $y \in g^*bCl(\{x\})$.

 $(2) \Rightarrow (1)$. Let U be a g^*b -open set and $x \in U$. If $y \notin U$, then $x \notin g^*bCl(\{y\})$ and hence $y \notin g^*bCl(\{x\})$. This implies that $g^*bCl(\{x\}) \subseteq U$. Hence (X, τ) is g^*b-R_0 .

From Definition 3.25 and Proposition 4.6, the notions of g^*b -symmetric and g^*b - R_0 are equivalent.

Proposition 4.7 The following statements are equivalent for any points x and y in a topological space (X, τ) :

- 1. $g^{*}bker(\{x\}) \neq g^{*}bker(\{y\}).$
- 2. $g^*bCl(\{x\}) \neq g^*bCl(\{y\}).$

Proof. (1) \Rightarrow (2). Suppose that $g^*bker(\{x\}) \neq g^*bker(\{y\})$, then there exists a point z in X such that $z \in g^*bker(\{x\})$ and $z \notin g^*bker(\{y\})$. From $z \in g^*bker(\{x\})$ it follows that $\{x\} \cap g^*bCl(\{z\}) \neq \phi$ which implies $x \in g^*bCl(\{z\})$. By $z \notin g^*bker(\{y\})$, we have $\{y\} \cap g^*bCl(\{z\}) = \phi$. Since $x \in g^*bCl(\{z\})$, $g^*bCl(\{x\}) \subseteq g^*bCl(\{z\})$ and $\{y\} \cap g^*bCl(\{x\}) = \phi$. Therefore, it follows that $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$. Now $g^*bker(\{x\}) \neq g^*bker(\{y\})$ implies that $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$.

 $(2) \Rightarrow (1)$. Suppose that $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$. Then there exists a point z in X such that $z \in g^*bCl(\{x\})$ and $z \notin g^*bCl(\{y\})$. Then, there exists a g^*b -open set containing z and therefore x but not y, namely, $y \notin g^*bker(\{x\})$ and thus $g^*bker(\{x\}) \neq g^*bker(\{y\})$.

Proposition 4.8 Let (X, τ) be a topological space. Then $\cap \{g^*bCl(\{x\}) : x \in X\} = \phi$ if and only if $g^*bker(\{x\}) \neq X$ for every $x \in X$.

Proof. Necessity. Suppose that $\cap \{g^*bCl(\{x\}) : x \in X\} = \phi$. Assume that there is a point y in X such that $g^*bker(\{y\}) = X$. Let x be any point of X. Then $x \in V$ for every g^*b -open set V containing y and hence $y \in g^*bCl(\{x\})$ for any $x \in X$. This implies that $y \in \cap \{g^*bCl(\{x\}) : x \in X\}$. But this is a contradiction.

Sufficiency. Assume that $g^*bker(\{x\}) \neq X$ for every $x \in X$. If there exists a point y in X such that $y \in \cap \{g^*bCl(\{x\}) : x \in X\}$, then every g^*b -open set containing y must contain every point of X. This implies that the space X is the unique g^*b -open set containing y. Hence $g^*bker(\{y\}) = X$ which is a contradiction. Therefore, $\cap \{g^*bCl(\{x\}) : x \in X\} = \phi$.

Proposition 4.9 A topological space (X, τ) is $g^*b \cdot R_0$ if and only if for every x and y in X, $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$ implies $g^*bCl(\{x\}) \cap g^*bCl(\{y\}) = \phi$.

Proof. Necessity. Suppose that (X, τ) is $g^*b - R_0$ and $x, y \in X$ such that $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$. Then, there exists $z \in g^*bCl(\{x\})$ such that $z \notin g^*bCl(\{y\})$ (or $z \in g^*bCl(\{y\})$ such that $z \notin g^*bCl(\{x\})$). There exists $V \in g^*bO(X)$ such that $y \notin V$ and $z \in V$, hence $x \in V$. Therefore, we have $x \notin g^*bCl(\{y\})$. Thus $x \in [X \setminus g^*bCl(\{y\})] \in g^*bO(X)$, which implies $g^*bCl(\{x\}) \subseteq [X \setminus g^*bCl(\{y\})]$ and $g^*bCl(\{x\}) \cap g^*bCl(\{y\}) = \phi$.

Sufficiency. Let $V \in g^*bO(X)$ and let $x \in V$. We still show that $g^*bCl(\{x\}) \subseteq V$. Let $y \notin V$, that is $y \in X \setminus V$. Then $x \neq y$ and $x \notin g^*bCl(\{y\})$. This shows that $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$. By assumption, $g^*bCl(\{x\}) \cap g^*bCl(\{y\}) = \phi$. Hence $y \notin g^*bCl(\{x\})$ and therefore $g^*bCl(\{x\}) \subseteq V$.

Proposition 4.10 A topological space (X, τ) is $g^*b \cdot R_0$ if and only if for any points x and y in X, $g^*bker(\{x\}) \neq g^*bker(\{y\})$ implies $g^*bker(\{x\}) \cap g^*bker(\{y\}) = \phi$.

Proof. Suppose that (X, τ) is a $g^*b \cdot R_0$ space. Thus by Proposition 4.7, for any points x and y in X if $g^*bker(\{x\}) \neq g^*bker(\{y\})$ then $g^*bCl(\{x\}) \neq$ $g^*bCl(\{y\})$. Now we prove that $g^*bker(\{x\}) \cap g^*bker(\{y\}) = \phi$. Assume that $z \in g^*bker(\{x\}) \cap g^*bker(\{y\})$. By $z \in g^*bker(\{x\})$ and Proposition 3.32, it follows that $x \in g^*bCl(\{z\})$. Since $x \in g^*bCl(\{x\})$, by Proposition 4.2, $g^*bCl(\{x\}) = g^*bCl(\{z\})$. Similarly, we have $g^*bCl(\{y\}) = g^*bCl(\{z\}) =$ $g^*bCl(\{x\})$. This is a contradiction. Therefore, we have $g^*bker(\{x\}) \cap g^*bker(\{y\})$ $= \phi$.

Conversely, let (X, τ) be a topological space such that for any points x and y in X, $g^*bker(\{x\}) \neq g^*bker(\{y\})$ implies $g^*bker(\{x\}) \cap g^*bker(\{y\}) = \phi$. If $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$, then by Proposition 4.7, $g^*bker(\{x\}) \neq g^*bker(\{x\}) \neq g^*b$

 $g^*bker(\{y\})$. Hence, $g^*bker(\{x\}) \cap g^*bker(\{y\}) = \phi$ which implies $g^*bCl(\{x\}) \cap g^*bCl(\{y\}) = \phi$. Because $z \in g^*bCl(\{x\})$ implies that $x \in g^*bker(\{z\})$ and therefore $g^*bker(\{x\}) \cap g^*bker(\{z\}) \neq \phi$. By hypothesis, we have $g^*bker(\{x\}) = g^*bker(\{z\})$. Then $z \in g^*bCl(\{x\}) \cap g^*bCl(\{y\})$ implies that $g^*bker(\{x\}) = g^*bker(\{z\}) = g^*bker(\{z\}) = g^*bker(\{y\})$. This is a contradiction. Therefore, $g^*bCl(\{x\}) \cap g^*bCl(\{y\}) = g^*bCl(\{y\}) = \phi$ and by Proposition 4.2, (X, τ) is a g^*b-R_0 space.

Proposition 4.11 For a topological space (X, τ) the following properties are equivalent:

- 1. (X, τ) is a g^*b - R_0 space.
- 2. For any non-empty set A and $G \in g^*bO(X)$ such that $A \cap G \neq \phi$, there exists $F \in g^*bC(X)$ such that $A \cap F \neq \phi$ and $F \subseteq G$.
- 3. For any $G \in g^*bO(X)$, we have $G = \bigcup \{F \in g^*bC(X) \colon F \subseteq G\}$.
- 4. For any $F \in g^*bC(X)$, we have $F = \cap \{G \in g^*bO(X) \colon F \subseteq G\}$.
- 5. For every $x \in X$, $g^*bCl(\{x\}) \subseteq g^*bker(\{x\})$.

Proof. (1) \Rightarrow (2). Let A be a non-empty subset of X and $G \in g^*bO(X)$ such that $A \cap G \neq \phi$. There exists $x \in A \cap G$. Since $x \in G \in g^*bO(X)$, $g^*bCl(\{x\}) \subseteq G$. Set $F = g^*bCl(\{x\})$, then $F \in g^*bC(X)$, $F \subseteq G$ and $A \cap F \neq \phi$.

(2) \Rightarrow (3). Let $G \in g^*bO(X)$, then $G \supseteq \cup \{F \in g^*bC(X): F \subseteq G\}$. Let x be any point of G. There exists $F \in g^*bC(X)$ such that $x \in F$ and $F \subseteq G$. Therefore, we have $x \in F \subseteq \cup \{F \in g^*bC(X): F \subseteq G\}$ and hence $G = \cup \{F \in g^*bC(X): F \subseteq G\}$.

 $(3) \Rightarrow (4)$. Obvious.

 $(4) \Rightarrow (5).$ Let x be any point of X and $y \notin g^*bker(\{x\})$. There exists $V \in g^*bO(X)$ such that $x \in V$ and $y \notin V$, hence $g^*bCl(\{y\}) \cap V = \phi$. By (4), $(\cap\{G \in g^*bO(X): g^*bCl(\{y\}) \subseteq G\}) \cap V = \phi$ and there exists $G \in g^*bO(X)$ such that $x \notin G$ and $g^*bCl(\{y\}) \subseteq G$. Therefore $g^*bCl(\{x\}) \cap G = \phi$ and $y \notin g^*bCl(\{x\})$. Consequently, we obtain $g^*bCl(\{x\}) \subseteq g^*bker(\{x\})$.

 $(5) \Rightarrow (1)$. Let $G \in g^*bO(X)$ and $x \in G$. Let $y \in g^*bker(\{x\})$, then $x \in g^*bCl(\{y\})$ and $y \in G$. This implies that $g^*bker(\{x\}) \subseteq G$. Therefore, we obtain $x \in g^*bCl(\{x\}) \subseteq g^*bker(\{x\}) \subseteq G$. This shows that (X, τ) is a g^*b-R_0 space.

Corollary 4.12 For a topological space (X, τ) the following properties are equivalent:

1. (X, τ) is a g^*b - R_0 space.

2. $g^{\star}bCl(\{x\}) = g^{\star}bker(\{x\})$ for all $x \in X$.

Proof. (1) \Rightarrow (2). Suppose that (X, τ) is a $g^*b \cdot R_0$ space. By Proposition 4.11, $g^*bCl(\{x\}) \subseteq g^*bker(\{x\})$ for each $x \in X$. Let $y \in g^*bker(\{x\})$, then $x \in g^*bCl(\{y\})$ and by Proposition 4.2, $g^*bCl(\{x\}) = g^*bCl(\{y\})$. Therefore, $y \in g^*bCl(\{x\})$ and hence $g^*bker(\{x\}) \subseteq g^*bCl(\{x\})$. This shows that $g^*bCl(\{x\}) = g^*bker(\{x\})$.

 $(2) \Rightarrow (1)$. Follows from Proposition 4.11.

Proposition 4.13 For a topological space (X, τ) the following properties are equivalent:

- 1. (X, τ) is a g^*b - R_0 space.
- 2. If F is g^*b -closed, then $F = g^*bker(F)$.
- 3. If F is g^*b -closed and $x \in F$, then $g^*bker(\{x\}) \subseteq F$.
- 4. If $x \in X$, then $g^*bker(\{x\}) \subseteq g^*bCl(\{x\})$.

Proof. (1) \Rightarrow (2). Let F be a g^*b -closed and $x \notin F$. Thus $(X \setminus F)$ is a g^*b -open set containing x. Since (X, τ) is g^*b - R_0 , $g^*bCl(\{x\}) \subseteq (X \setminus F)$. Thus $g^*bCl(\{x\}) \cap F = \phi$ and by Proposition 3.33, $x \notin g^*bker(F)$. Therefore $g^*bker(F) = F$.

 $(2) \Rightarrow (3)$. In general, $A \subseteq B$ implies $g^*bker(A) \subseteq g^*bker(B)$. Therefore, it follows from (2), that $g^*bker(\{x\}) \subseteq g^*bker(F) = F$.

 $(3) \Rightarrow (4)$. Since $x \in g^*bCl(\{x\})$ and $g^*bCl(\{x\})$ is g^*b -closed, by $(3), g^*bker(\{x\}) \subseteq g^*bCl(\{x\})$.

 $(4) \Rightarrow (1)$. We show the implication by using Proposition 4.6. Let $x \in g^*bCl(\{y\})$. Then by Proposition 3.32, $y \in g^*bker(\{x\})$. Since $x \in g^*bCl(\{x\})$ and $g^*bCl(\{x\})$ is g^*b -closed, by (4), we obtain $y \in g^*bker(\{x\}) \subseteq g^*bCl(\{x\})$. Therefore $x \in g^*bCl(\{y\})$ implies $y \in g^*bCl(\{x\})$. The converse is obvious and (X, τ) is g^*b - R_0 .

Definition 4.14 A topological space (X, τ) is said to be g^*b - R_1 if for x, y in X with $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$, there exist disjoint g^*b -open sets U and V such that $g^*bCl(\{x\}) \subseteq U$ and $g^*bCl(\{y\}) \subseteq V$.

Remark 4.15 Every pre- R_1 and b- R_1 space is g^*b - R_1 space but converse is not true in general.

Example 4.16 $X = \{a, b, c\}, \tau = \{\phi, \{a\}, X\}, \text{ is } g^*b \cdot R_1 \text{ but not } pre \cdot R_1$ and $b \cdot R_1$, since for $b, c \in X$, $pCl\{b\} = bCl\{b\} = \{b\} \neq \{c\} = pCl\{c\} = bCl\{c\}, \text{ there do not exist disjoint preopen (resp. b-open) sets containing <math>pCl\{b\}, bCl\{b\}$ and $pCl\{c\}, bCl\{c\}$ resp. g^*b -Separation Axioms

Proposition 4.17 A topological space (X, τ) is g^*b - R_1 if it is g^*b - T_2 .

Proof. Let x and y be any points of X such that $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$. By Proposition 3.9 (1), every $g^*b^-T_2$ space is $g^*b^-T_1$. Therefore, by Proposition 3.6, $g^*bCl(\{x\}) = \{x\}, g^*bCl(\{y\}) = \{y\}$ and hence $\{x\} \neq \{y\}$. Since (X, τ) is $g^*b^-T_2$, there exist disjoint g^*b -open sets U and V such that $g^*bCl(\{x\}) = \{x\} \subseteq U$ and $g^*bCl(\{y\}) = \{y\} \subseteq V$. This shows that (X, τ) is $g^*b^-R_1$.

Proposition 4.18 If a topological space (X, τ) is g^*b -symmetric, then the following are equivalent:

- 1. (X, τ) is g^*b - T_2 .
- 2. (X, τ) is g^*b - R_1 and g^*b - T_1 .
- 3. (X, τ) is $g^*b R_1$ and $g^*b T_0$.

Proof. Straightforward.

Proposition 4.19 For a topological space (X, τ) the following statements are equivalent:

- 1. (X, τ) is g^*b-R_1 .
- 2. If $x, y \in X$ such that $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$, then there exist $g^*b-closed$ sets F_1 and F_2 such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$.

Proof. Obvious.

Proposition 4.20 If (X, τ) is $g^*b \cdot R_1$, then (X, τ) is $g^*b \cdot R_0$.

Proof. Let U be g^*b -open such that $x \in U$. If $y \notin U$, since $x \notin g^*bCl(\{y\})$, we have $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$. So, there exists a g^*b -open set V such that $g^*bCl(\{y\}) \subseteq V$ and $x \notin V$, which implies $y \notin g^*bCl(\{x\})$. Hence $g^*bCl(\{x\}) \subseteq U$. Therefore, (X, τ) is g^*b - R_0 .

Corollary 4.21 A topological space (X, τ) is g^*b - R_1 if and only if for $x, y \in X$, $g^*bker(\{x\}) \neq g^*bker(\{y\})$, there exist disjoint g^*b -open sets U and V such that $g^*bCl(\{x\}) \subseteq U$ and $g^*bCl(\{y\}) \subseteq V$.

Proof. Follows from Proposition 4.7.

Proposition 4.22 A topological space (X, τ) is g^*b - R_1 if and only if $x \in X \setminus g^*bCl(\{y\})$ implies that x and y have disjoint g^*b -open neighbourhoods.

Proof. Necessity. Let $x \in X \setminus g^*bCl(\{y\})$. Then $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$, so, x and y have disjoint g^*b -open neighbourhoods.

Sufficiency. First, we show that (X, τ) is $g^*b \cdot R_0$. Let U be a g^*b -open set and $x \in U$. Suppose that $y \notin U$. Then, $g^*bCl(\{y\}) \cap U = \phi$ and $x \notin g^*bCl(\{y\})$. There exist g^*b -open sets U_x and U_y such that $x \in U_x$, $y \in U_y$ and $U_x \cap U_y = \phi$. Hence, $g^*bCl(\{x\}) \subseteq g^*bCl(U_x)$ and $g^*bCl(\{x\}) \cap U_y \subseteq g^*bCl(U_x) \cap U_y = \phi$. Therefore, $y \notin g^*bCl(\{x\})$. Consequently, $g^*bCl(\{x\}) \subseteq U$ and (X, τ) is $g^*b \cdot R_0$. Next, we show that (X, τ) is $g^*b \cdot R_1$. Suppose that $g^*bCl(\{x\}) \neq g^*bCl(\{y\})$. Then, we can assume that there exists $z \in g^*bCl(\{x\})$ such that $z \notin g^*bCl(\{y\})$. There exist g^*b -open sets V_z and V_y such that $z \in V_z$, $y \in V_y$ and $V_z \cap V_y = \phi$. Since $z \in g^*bCl(\{x\})$, $x \in V_z$. Since (X, τ) is $g^*b \cdot R_0$, we obtain $g^*bCl(\{x\}) \subseteq V_z$, $g^*bCl(\{y\}) \subseteq V_y$ and $V_z \cap V_y = \phi$. This shows that (X, τ) is $g^*b \cdot R_1$.

References

- [1] A. Chattopadhyay, $\operatorname{Pre-}T_0$ and $\operatorname{pre-}T_1$ topological spaces, J. Indian Acad.Math., 17(2) (1995), 156-159.
- [2] D. Andrijevic, On b-open set, Mat. Vesink, 48(1996), 59-64.
- [3] M. Caldas and S. Jafari, On some applications of b-open sets in topological spaces, *Kochi J. Math.*, 2(2007), 11-19.
- [4] E. Ekici, On γ -US spaces, Indian J. Math., 47(2-3) (2005), 131-138.
- [5] E. Ekici, On R spaces, Int. J. Pure Appl. Math., 25(2) (2005), 163-172.
- [6] A.A. El-Atik, A study on some types of mappings on topological spaces, Masters Thesis, Tanta University, Egypt, (1997).
- [7] G. Navalagi, Further properties of pre- T_0 , pre- T_1 and pre- T_2 spaces, International Journal of Mathematics and Computing Applications, 3(1-2) (2011), 67-75.
- [8] S. Jafari, On a weak separation axiom, Far East J. Math. Sci., 3(5) (2001), 779-787.
- [9] A. Kar and P. Bhattacharyya, Some weak separation axioms, Bull. Cal. Math. Soc., 82(1990), 415-422.
- [10] A. Keskin and T. Noiri, On bD-sets and associated separation axioms, Bulletin of the Iranian Math. Soc., 35(1) (2009), 179-198.

- [11] N. Levine, Strong continuity in topology, Amer. Math. Monthly, 67(1960), 269.
- [12] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb, On precontinuous and week precontinuous mappings, *Proc. Math. Phys. So.*, Egypt, 53(1982), 47-53.
- [13] J.H. Park, Strongly θ -b-continuous functions, Acta Math. Hungar, 110(4) (2006), 347-359.
- [14] D. Vidhya and R. Parimelazhagan, g*b-closed sets in topological spaces, Int. J. Contemp. Math. Sciences, 7(2012), 1305 -1312.