

Gen. Math. Notes, Vol. 15, No. 2, April, 2013, pp.14-31 ISSN 2219-7184; Copyright ©ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

On Some Separation Axioms via β - γ -Open Sets

Alias B. Khalaf¹ and Hariwan Z. Ibrahim²

¹Department of Mathematics, Faculty of Science University of Duhok, Kurdistan-Region, Iraq E-mail: aliasbkhalaf@gmail.com
²Department of Mathematics, Faculty of Science University of Zakho, Kurdistan-Region, Iraq E-mail: hariwan_math@yahoo.com

(Received: 3-2-13 / Accepted: 19-3-13)

Abstract

In this paper, we introduce and investigate some weak separation axioms by using the notion of β - γ -open sets.

Keywords: β - γ -open; β - γ -closure; β - γ -generalized closed.

1 Introduction

The notion of R_0 topological spaces is introduced by Shanin [6] in 1943. Later, Davis [3] rediscovered it and studied some properties of this weak separation axiom. In the same paper, Davis also introduced the notion of R_1 topological space which are independent of both T_0 and T_1 but strictly weaker than T_2 . The notion of γ -open sets was introduced by Ogata [5]. In this paper, we offer some new separation axioms by utilizing β - γ -open sets and β - γ -closure operator. We also characterize their fundamental properties.

2 Preliminaries

Throughout the present paper, (X, τ) and (Y, σ) (or simply X and Y) denotes a topological spaces on which no separation axioms is assumed unless explicitly stated. Let A be a subset of a topological space X. The closure of A is denoted

by Cl(A). A subset A of a topological space (X, τ) is said to be β -open [2] if $A \subseteq Cl(Int(Cl(A)))$. The complement of a β -open set is said to be β -closed.

Definition 2.1 [1] Let (X, τ) be a topological space. An operation γ on the topology τ is a mapping from τ into the power set P(X) of X such that $V \subseteq \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V.

Definition 2.2 [5] A subset A of a topological space (X, τ) is called γ -open set if for each $x \in A$ there exists an open set U such that $x \in U$ and $\gamma(U) \subseteq A$. The Complement of a γ -open set is called γ -closed.

In the remainder of this section all the definitions, results and notations are from [4].

Definition 2.3 Let $\gamma : \beta O(X) \to P(X)$ be a mapping satisfying the following property, $V \subseteq \gamma(V)$ for each non-empty subset $V \in \beta O(X)$ and $\gamma(\phi) = \phi$. The mapping γ is called an operation on $\beta O(X)$.

Definition 2.4 Let (X, τ) be a topological space and $\gamma : \beta O(X) \to P(X)$ an operation on $\beta O(X)$. A non-empty set A of X is called a β - γ -open set of (X, τ) if for each point $x \in A$, there exists a β -open set U containing x such that $\gamma(U) \subseteq A$.

The complement of a β - γ -open set is called β - γ -closed in (X, τ) and the family of all β - γ -open (resp., β - γ -closed) sets of (X, τ) is denoted by $\beta O(X)_{\gamma}$ (resp., $\beta C(X)_{\gamma}$).

Definition 2.5 A point $x \in X$ is in β - γ -closure of a set $A \subseteq X$, if $\gamma(U) \cap A \neq \phi$ for each β -open set U containing x. Following [4], the β - γ -closure of A is denoted by $\beta O(X)_{\gamma}$ -Cl(A).

Theorem 2.6 For a point $x \in X$, $x \in \beta O(X)_{\gamma}$ -Cl(A) if and only if for every β - γ -open set V of X containing x such that $A \cap V \neq \phi$.

Definition 2.7 A topological space (X, τ) with an operation γ on $\beta O(X)$ is said to be

- 1. β - γ - T'_0 if for any pair of distinct points x and y of X there exists a β - γ -open set U in X containing x but not y or a β - γ -open set V in X containing y but not x.
- 2. $\beta \gamma T'_1$ if for any pair of distinct points x and y of X there exists a $\beta \gamma$ -open set U in X containing x but not y and a $\beta \gamma$ -open set V in X containing y but not x.
- 3. β - γ - T'_2 if for any pair of distinct points x and y of X there exist disjoint β - γ -open sets U and V in X containing x and y, respectively.

Theorem 2.8 A topological space (X, τ) with an operation γ on $\beta O(X)$ is $\beta - \gamma - T'_1$ if and only if the singletons are $\beta - \gamma$ -closed sets.

3 β - γ -Generalized Closed Sets

In this section, we introduce the concept of β - γ -generalized closed set and give some properties of this set. In the end of this section, we define the concept of β - γ - $T'_{\frac{1}{2}}$.

Definition 3.1 A subset A of the space (X, τ) is said to be β - γ -generalized closed (Briefly. β - γ -g.closed) if $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is a β - γ -open set in (X, τ) . The complement of a β - γ -g.closed set is called a β - γ -g.open set.

It is clear that every β - γ -closed subset of X is also a β - γ -g.closed set. The following example shows that a β - γ -g.closed set need not be β - γ -closed.

Example 3.2 Consider $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$. Define an operation γ on $\beta O(X)$ by

$$\gamma(A) = \begin{cases} A & if A = \{b\} \ or \ \{a, c\} \\ X & otherwise \end{cases}$$

Now, if we let $A = \{a\}$, since the only β - γ -open supersets of A are $\{a, c\}$ and X, then A is β - γ -g.closed. But it is easy to see that A is not β - γ -closed.

Theorem 3.3 A subset A of (X, τ) is β - γ -g.closed if and only if $\beta O(X)_{\gamma}$ -Cl($\{x\}$) $\cap A \neq \phi$, holds for every $x \in \beta O(X)_{\gamma}$ -Cl(A).

Proof. Let U be a β - γ -open set such that $A \subseteq U$ and let $x \in \beta O(X)_{\gamma}$ -Cl(A). By assumption, there exists a $z \in \beta O(X)_{\gamma}$ - $Cl(\{x\})$ and $z \in A \subseteq U$. It follows from Theorem 2.6, that $U \cap \{x\} \neq \phi$, hence $x \in U$, this implies $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq U$. Therefore A is β - γ -g.closed.

Conversely, suppose that $x \in \beta O(X)_{\gamma}-Cl(A)$ such that $\beta O(X)_{\gamma}-Cl(\{x\}) \cap A = \phi$. Since, $\beta O(X)_{\gamma}-Cl(\{x\})$ is β - γ -closed, therefore $X \setminus \beta O(X)_{\gamma}-Cl(\{x\})$ is a β - γ -open set in X. Since $A \subseteq X \setminus (\beta O(X)_{\gamma}-Cl(\{x\}))$ and A is β - γ -g.closed implies that $\beta O(X)_{\gamma}-Cl(A) \subseteq X \setminus \beta O(X)_{\gamma}-Cl(\{x\})$ holds, and hence $x \notin \beta O(X)_{\gamma}-Cl(A)$. This is a contradiction. Therefore $\beta O(X)_{\gamma}-Cl(\{x\}) \cap A \neq \phi$.

Theorem 3.4 A set A of a space X is β - γ -g.closed if and only if $\beta O(X)_{\gamma}$ -Cl(A) \ A does not contain any non-empty β - γ -closed set.

Proof. Necessity. Suppose that A is β - γ -g.closed set in X. We prove the result by contradiction. Let F be a β - γ -closed set such that $F \subseteq \beta O(X)_{\gamma}$ - $Cl(A) \setminus A$ and $F \neq \phi$. Then $F \subseteq X \setminus A$ which implies $A \subseteq X \setminus F$. Since A is β - γ -g.closed and $X \setminus F$ is β - γ -open, therefore $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq X \setminus F$,

that is $F \subseteq X \setminus \beta O(X)_{\gamma} - Cl(A)$. Hence $F \subseteq \beta O(X)_{\gamma} - Cl(A) \cap (X \setminus \beta O(X)_{\gamma} - Cl(A)) = \phi$. This shows that, $F = \phi$ which is a contradiction. Hence $\beta O(X)_{\gamma} - Cl(A) \setminus A$ does not contains any non-empty β - γ -closed set in X. Sufficiency. Let $A \subseteq U$, where U is β - γ -open in (X, τ) . If $\beta O(X)_{\gamma} - Cl(A)$ is not contained in U, then $\beta O(X)_{\gamma} - Cl(A) \cap X \setminus U \neq \phi$. Now, since $\beta O(X)_{\gamma} - Cl(A) \cap X \setminus U \subseteq \beta O(X)_{\gamma} - Cl(A) \setminus A$ and $\beta O(X)_{\gamma} - Cl(A) \cap X \setminus U$ is a non-empty β - γ -closed set, then we obtain a contradication and therefore A is β - γ -g.closed.

Corollary 3.5 If a subset A of X is β - γ -g.closed set in X, then $\beta O(X)_{\gamma}$ - $Cl(A) \setminus A$ dose not contain any non-empty γ -closed set in X.

Proof. Follows from that every γ -open set is β - γ -open. The converse of the above corollary is not true in general as it is shown in the following example.

Example 3.6 Consider $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{c\}, X\}$. Define an operation γ on $\beta O(X)$ by $\gamma(A) = A$. If we let $A = \{a, c\}$ then A is not β - γ -g.closed, since $A \subseteq \{a, c\} \in \beta O(X)_{\gamma}$ and $\beta O(X)_{\gamma}$ - $Cl(A) = X \not\subseteq \{a, c\}$, where $\beta O(X)_{\gamma}$ - $Cl(A) \setminus A = \{b\}$ dose not contain any non-empty γ -closed set in X.

Theorem 3.7 If A is a β - γ -g.closed set of a space X, then the following are equivalent:

- 1. A is β - γ -closed.
- 2. $\beta O(X)_{\gamma}$ -Cl(A) \ A is β - γ -closed.

Proof. (1) \Rightarrow (2). If A is a β - γ -g.closed set which is also β - γ -closed, then by Theorem 3.4, $\beta O(X)_{\gamma}$ - $Cl(A) \setminus A = \phi$ which is β - γ -closed.

(2) \Rightarrow (1). Let $\beta O(X)_{\gamma}$ - $Cl(A) \setminus A$ be β - γ -closed set and A be β - γ -g.closed. Then by Theorem 3.4, $\beta O(X)_{\gamma}$ - $Cl(A) \setminus A$ does not contain any non-empty β - γ -closed subset. Since $\beta O(X)_{\gamma}$ - $Cl(A) \setminus A$ is β - γ -closed and $\beta O(X)_{\gamma}$ - $Cl(A) \setminus A = \phi$, this shows that A is β - γ -closed.

Theorem 3.8 For a space (X, τ) , the following are equivalent:

- 1. Every subset of X is β - γ -g.closed.
- 2. $\beta O(X)_{\gamma} = \beta C(X)_{\gamma}$.

Proof. (1) \Rightarrow (2). Let $U \in \beta O(X)_{\gamma}$. Then by hypothesis, U is β - γ -g.closed which implies that $\beta O(X)_{\gamma}$ - $Cl(U) \subseteq U$, so, $\beta O(X)_{\gamma}$ -Cl(U) = U, therefore $U \in \beta C(X)_{\gamma}$. Also let $V \in \beta C(X)_{\gamma}$. Then $X \setminus V \in \beta O(X)_{\gamma}$, hence by hypothesis $X \setminus V$ is β - γ -g.closed and then $X \setminus V \in \beta C(X)_{\gamma}$, thus $V \in \beta O(X)_{\gamma}$ according above we have $\beta O(X)_{\gamma} = \beta C(X)_{\gamma}$.

 $(2) \Rightarrow (1)$. If A is a subset of a space X such that $A \subseteq U$ where $U \in \beta O(X)_{\gamma}$, then $U \in \beta C(X)_{\gamma}$ and therefore $\beta O(X)_{\gamma}$ - $Cl(U) \subseteq U$ which shows that A is β - γ -g.closed. **Proposition 3.9** If A is γ -open and β - γ -g.closed then A is β - γ -closed.

Proof.Suppose that A is γ -open and β - γ -g.closed. As every γ -open is β - γ -open and $A \subseteq A$, we have $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq A$, also $A \subseteq \beta O(X)_{\gamma}$ -Cl(A), therefore $\beta O(X)_{\gamma}$ -Cl(A) = A. That is A is β - γ -closed.

Theorem 3.10 If a subset A of X is β - γ -g.closed and $A \subseteq B \subseteq \beta O(X)_{\gamma}$ -Cl(A), then B is a β - γ -g.closed set in X.

Proof. Let A be β - γ -g.closed set such that $A \subseteq B \subseteq \beta O(X)_{\gamma}$ -Cl(A). Let U be a β - γ -open set of X such that $B \subseteq U$. Since A is β - γ -g.closed, we have $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq U$. Now $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq \beta O(X)_{\gamma}$ - $Cl(B) \subseteq \beta O(X)_{\gamma}$ - $Cl[\beta O(X)_{\gamma}$ - $Cl(A)] = \beta O(X)_{\gamma}$ - $Cl(A) \subseteq U$. That is $\beta O(X)_{\gamma}$ - $Cl(B) \subseteq U$, where U is β - γ -open. Therefore B is a β - γ -g.closed set in X. The converse of the above theorem is not true in general as it is seen from the following example.

Example 3.11 Consider $X = \{a, b, c\}$ with the topology $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, \{b, c\}, X\}$. Define an operation γ on $\beta O(X)$ by $\gamma(A) = A$. Let $A = \{b\}$ and $B = \{b, c\}$. Then A and B are β - γ -g.closed sets in (X, τ) . But $A \subseteq B \not\subseteq \beta O(X)_{\gamma}$ -Cl(A).

Proposition 3.12 Let γ be an operation on $\beta O(X)$. Then for each $x \in X$, $\{x\}$ is β - γ -closed or $X \setminus \{x\}$ is β - γ -g.closed in (X, τ) .

Proof. Suppose that $\{x\}$ is not β - γ -closed, then $X \setminus \{x\}$ is not β - γ -open. Let U be any β - γ -open set such that $X \setminus \{x\} \subseteq U$, implies U = X. Therefore $\beta O(X)_{\gamma}$ - $Cl(X \setminus \{x\}) \subseteq U$. Hence $X \setminus \{x\}$ is β - γ -g.closed.

Definition 3.13 A space (X, τ) is said to be $\beta - \gamma - T'_{\frac{1}{2}}$ if every $\beta - \gamma - g.$ closed set is $\beta - \gamma$ -closed.

Theorem 3.14 The following statements are equivalent for a topological space (X, τ) with an operation γ on $\beta O(X)$:

- 1. (X, τ) is $\beta \gamma T'_{\frac{1}{2}}$.
- 2. Each singleton $\{x\}$ of X is either β - γ -closed or β - γ -open.

Proof. (1) \Rightarrow (2). Suppose $\{x\}$ is not β - γ -closed. Then by Proposition 3.12, $X \setminus \{x\}$ is β - γ -g.closed. Now since (X, τ) is β - γ - $T'_{\frac{1}{2}}, X \setminus \{x\}$ is β - γ -closed i.e. $\{x\}$ is β - γ -open.

(2) \Rightarrow (1). Let A be any β - γ -g.closed set in (X, τ) and $x \in \beta O(X)_{\gamma}$ -Cl(A). By (2) we have $\{x\}$ is β - γ -closed or β - γ -open. If $\{x\}$ is β - γ -closed then $x \notin A$ will imply $x \in \beta O(X)_{\gamma}$ - $Cl(A) \setminus A$, which is not possible by Theorem 3.4. Hence $x \in A$. Therefore, $\beta O(X)_{\gamma}$ -Cl(A) = A, i.e. A is β - γ -closed. So, (X, τ) is β - γ - $T'_{\frac{1}{2}}$. On the other hand, if $\{x\}$ is β - γ -open then as $x \in \beta O(X)_{\gamma}$ -Cl(A), $\{x\} \cap A \neq \phi$. Hence $x \in A$. So A is β - γ -closed.

Definition 3.15 Let A be a subset of a topological space (X, τ) and γ an operation on $\beta O(X, \tau)$. The union of all β - γ -open sets contained in A is called the β - γ -interior of A and denoted by $\beta O(X)_{\gamma}$ -Int(A).

Proposition 3.16 A subset A of X is β - γ -g.open if and only if $F \subseteq \beta O(X)_{\gamma}$ -Int(A) whenever $F \subseteq A$ and F is β - γ -closed in (X, τ) .

Proof. Obvious.

4 β - γ -Regular and β - γ -Normal Spaces

Definition 4.1 A topological space (X, τ) with an operation γ on $\beta O(X)$ is called β - γ -regular if for each β - γ -closed set F of X not containing x, there exist disjoint β - γ -open sets U and V such that $x \in U$ and $F \subseteq V$. A β - γ -regular β - γ - T'_1 space is called a β - γ - T'_3 space.

Remark 4.2 Every $\beta - \gamma - T'_3$ space is $\beta - \gamma - T'_2$.

The following result contains some characterizations of β - γ -regular spaces.

Proposition 4.3 The following are equivalent for a topological space (X, τ) with an operation γ on $\beta O(X)$:

- 1. X is β - γ -regular.
- 2. For each $x \in X$ and each β - γ -open set U containing x, there exists a β - γ -open set V containing x such that $x \in V \subseteq \beta O(X)_{\gamma}$ - $Cl(V) \subseteq U$.
- 3. For each β - γ -closed set F of X, $\cap \{\beta O(X)_{\gamma}$ - $Cl(V): F \subseteq V, V \in \beta O(X)_{\gamma}\} = F$.
- 4. For each A subset of X and each $U \in \beta O(X)_{\gamma}$ with $A \cap U \neq \phi$, there exists a $V \in \beta O(X)_{\gamma}$ such that $A \cap V \neq \phi$ and $\beta O(X)_{\gamma}$ - $Cl(V) \subseteq U$.
- 5. For each nonempty subset A of X and each β - γ -closed subset F of X with $A \cap F = \phi$, there exists $V, W \in \beta O(X)_{\gamma}$ such that $A \cap V \neq \phi$, $F \subseteq W$ and $W \cap V = \phi$.
- 6. For each β - γ -closed set F and $x \in F$, there exists $U \in \beta O(X)_{\gamma}$ and a β - γ -g.open set V such that $x \in U, F \subseteq V$ and $U \cap V = \phi$.
- 7. For each $A \subseteq X$ and each β - γ -closed set F with $A \cap F = \phi$, there exists $U \in \beta O(X)_{\gamma}$ and a β - γ -g.open set V such that $A \cap U \neq \phi$, $F \subseteq V$ and $U \cap V = \phi$.

8. For each β - γ -closed set F of X, $F = \cap \{\beta O(X)_{\gamma} - Cl(V) : F \subseteq V, V \text{ is } \beta - \gamma - g. open\}.$

Proof. (1) \Rightarrow (2). Let $x \notin X \setminus U$, where U is any β - γ -open set containing x. Then there exists $G, V \in \beta O(X)_{\gamma}$ such that $(X \setminus U) \subseteq G, x \in V$ and $G \cap V = \phi$. Therefore $V \subseteq (X \setminus G)$ and so $x \in V \subseteq \beta O(X)_{\gamma}$ - $Cl(V) \subseteq (X \setminus G) \subseteq U$.

(2) \Rightarrow (3). Let $X \setminus F$ be any β - γ -open set containing x. Then by (2) there exists a β - γ -open set U containing x such that $x \in U \subseteq \beta O(X)_{\gamma}$ - $Cl(U) \subseteq (X \setminus F)$. So, $F \subseteq X \setminus \beta O(X)_{\gamma}$ -Cl(U) = V, $V \in \beta O(X)_{\gamma}$ and $V \cap U = \phi$. Then by Theorem 2.6, $x \notin \beta O(X)_{\gamma}$ -Cl(V). Thus $F \supseteq \cap \{\beta O(X)_{\gamma}$ -Cl(V): $F \subseteq V, V \in \beta O(X)_{\gamma}\}$.

(3) \Rightarrow (4). Let $U \in \beta O(X)_{\gamma}$ with $x \in U \cap A$. Then $x \notin (X \setminus U)$ and hence by (3) there exists a β - γ -open set W such that $X \setminus U \subseteq W$ and $x \notin \beta O(X)_{\gamma}$ -Cl(W). We put $V = X \setminus \beta O(X)_{\gamma}$ -Cl(W), which is a β - γ -open set containing x and hence $V \cap A \neq \phi$. Now $V \subseteq (X \setminus W)$ and so $\beta O(X)_{\gamma}$ - $Cl(V) \subseteq (X \setminus W) \subseteq U$. (4) \Rightarrow (5). Let F be a set as in the hypothesis of (5). Then $(X \setminus F)$ is β - γ -open and $(X \setminus F) \cap A \neq \phi$. Then there exists $V \in \beta O(X)_{\gamma}$ such that $A \cap V \neq \phi$ and $\beta O(X)_{\gamma}$ - $Cl(V) \subseteq (X \setminus F)$. If we put $W = X \setminus \beta O(X)_{\gamma}$ -Cl(V), then $F \subseteq W$ and $W \cap V = \phi$.

 $(5) \Rightarrow (1)$ Let F be a β - γ -closed set not containing x. Then by (5), there exist $W, V \in \beta O(X)_{\gamma}$ such that $F \subseteq W$ and $x \in V$ and $W \cap V = \phi$. (1) \Rightarrow (6). Obvious.

(6) \Rightarrow (7). For $a \in A$, $a \notin F$ and hence by (6) there exists $U \in \beta O(X)_{\gamma}$ and a β - γ -g.open set V such that $a \in U$, $F \subseteq V$ and $U \cap V = \phi$. So, $A \cap U \neq \phi$.

(7) \Rightarrow (1) Let $x \notin F$, where F is β - γ -closed. Since $\{x\} \cap F = \phi$, by (7) there exists $U \in \beta O(X)_{\gamma}$ and a β - γ -g.open set W such that $x \in U, F \subseteq W$ and $U \cap W = \phi$. Now put $V = \beta O(X)_{\gamma}$ -Int(W). Using Proposition 3.16 of β - γ -g.open sets we get $F \subseteq V$ and $V \cap U = \phi$.

(3) \Rightarrow (8). We have $F \subseteq \bigcap \{\beta O(X)_{\gamma} - Cl(V): F \subseteq V \text{ and } V \text{ is } \beta - \gamma \text{-g.open} \} \subseteq \bigcap \{\beta O(X)_{\gamma} - Cl(V): F \subseteq V \text{ and } V \text{ is } \beta - \gamma \text{-open} \} = F.$

(8) \Rightarrow (1). Let F be a β - γ -closed set in X not containing x. Then by (8) there exists a β - γ -g.open set W such that $F \subseteq W$ and $x \in X \setminus \beta O(X)_{\gamma}$ -Cl(W). Since F is β - γ -closed and W is β - γ -g.open, $F \subseteq \beta O(X)_{\gamma}$ -Int(W). If $V = \beta O(X)_{\gamma}$ -Int(W), then $F \subseteq V$, $x \in U = X \setminus \beta O(X)_{\gamma}$ -Cl(V) and $U \cap V = \phi$.

Definition 4.4 A topological space (X, τ) with an operation γ on $\beta O(X)$, is said to be β - γ -normal if for any pair of disjoint β - γ -closed sets A, B of X, there exist disjoint β - γ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$. A β - γ -normal β - γ - T'_1 space is called a β - γ - T'_4 space.

We give several characterizations of β - γ -normal spaces in the following proposition.

Proposition 4.5 For a topological space (X, τ) with an operation γ on $\beta O(X)$, the following are equivalent:

- 1. X is β - γ -normal.
- 2. For each pair of disjoint β - γ -closed sets A, B of X, there exist disjoint β - γ -g.open sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- 3. For each β - γ -closed A and any β - γ -open set V containing A, there exists a β - γ -g.open set U such that $A \subseteq U \subseteq \beta O(X)_{\gamma}$ - $Cl(U) \subseteq V$.
- 4. For each β - γ -closed set A and any β - γ -g.open set B containing A, there exists a β - γ -g.open set U such that $A \subseteq U \subseteq \beta O(X)_{\gamma}$ - $Cl(U) \subseteq \beta O(X)_{\gamma}$ -Int(B).
- 5. For each β - γ -closed set A and any β - γ -g.open set B containing A, there exists a β - γ -open set G such that $A \subseteq G \subseteq \beta O(X)_{\gamma}$ - $Cl(G) \subseteq \beta O(X)_{\gamma}$ -Int(B).
- 6. For each β - γ -g.closed set A and any β - γ -open set B containing A, there exists a β - γ -open set U such that $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq U \subseteq \beta O(X)_{\gamma}$ - $Cl(U) \subseteq B$.
- 7. For each β - γ -g.closed set A and any β - γ -open set B containing A, there exists a β - γ -g.open set G such that $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq G \subseteq \beta O(X)_{\gamma}$ - $Cl(G) \subseteq B$.

Proof. (1) \Rightarrow (2). Follows from the fact that every β - γ -open set is β - γ -g.open.

(2) \Rightarrow (3). Let A be a β - γ -closed set and V any β - γ -open set containing A. Since A and $(X \setminus V)$ are disjoint β - γ -closed sets, there exist β - γ -g.open sets U and W such that $A \subseteq U$, $(X \setminus V) \subseteq W$ and $U \cap W = \phi$. By Proposition 3.16, we get $(X \setminus V) \subseteq \beta O(X)_{\gamma}$ -Int(W). Since $U \cap \beta O(X)_{\gamma}$ -Int $(W) = \phi$, we have $\beta O(X)_{\gamma}$ -Cl $(U) \cap \beta O(X)_{\gamma}$ -Int $(W) = \phi$, and hence $\beta O(X)_{\gamma}$ -Cl $(U) \subseteq X \setminus \beta O(X)_{\gamma}$ -Int $(W) \subseteq V$. Therefore $A \subseteq U \subseteq \beta O(X)_{\gamma}$ -Cl $(U) \subseteq V$.

(3) \Rightarrow (1). Let A and B be any two disjoint β - γ -closed sets of X. Since $(X \setminus B)$ is a β - γ -open set containing A, there exists a β - γ -g.open set G such that $A \subseteq G \subseteq \beta O(X)_{\gamma}$ - $Cl(G) \subseteq (X \setminus B)$. Since G is a β - γ -g.open set, using Proposition 3.16, we have $A \subseteq \beta O(X)_{\gamma}$ -Int(G). Taking $U = \beta O(X)_{\gamma}$ -Int(G) and $V = X \setminus \beta O(X)_{\gamma}$ -Cl(G), we have two disjoint β - γ -open sets U and V such that $A \subseteq U$ and $B \subseteq V$. Hence X is β - γ -normal.

$$(5) \Rightarrow (4)$$
. Obvious.

 $(4) \Rightarrow (3)$. Obvious.

(5) \Rightarrow (3). Let A be any β - γ -closed set and V any β - γ -open set containing

A. Since every β - γ -open set is β - γ -g.open, there exists a β - γ -open set G such that $A \subseteq G \subseteq \beta O(X)_{\gamma}$ - $Cl(G) \subseteq \beta O(X)_{\gamma}$ -Int(V). Also we have a β - γ -g.open set G such that $A \subseteq G \subseteq \beta O(X)_{\gamma}$ - $Cl(G) \subseteq \beta O(X)_{\gamma}$ - $Int(V) \subseteq V$.

- $(6) \Rightarrow (7)$. Obvious.
- $(7) \Rightarrow (3)$. Obvious.

(3) \Rightarrow (5). Let A be a β - γ -closed set and B any β - γ -g.open set containing A. Using Proposition 3.16, of a β - γ -g.open set we get $A \subseteq \beta O(X)_{\gamma}$ -Int(B) = V, say. Then applying (3), we get a β - γ -g.open set U such that $A = \beta O(X)_{\gamma}$ - $Cl(A) \subseteq U \subseteq \beta O(X)_{\gamma}$ - $Cl(U) \subseteq V$. Again, using the same Proposition 3.16, we get $A \subseteq \beta O(X)_{\gamma}$ -Int(U), and hence $A \subseteq \beta O(X)_{\gamma}$ - $Int(U) \subseteq U \subseteq \beta O(X)_{\gamma}$ - $Cl(U) \subseteq V$, which implies $A \subseteq \beta O(X)_{\gamma}$ - $Int(U) \subseteq \beta O(X)_{\gamma}$ - $Cl(\beta O(X)_{\gamma}$ - $Int(U)) \subseteq \beta O(X)_{\gamma}$ - $Cl(U) \subseteq V$, i.e.

 $A \subseteq G \subseteq \beta O(X)_{\gamma}$ - $Cl(G) \subseteq \beta O(X)_{\gamma}$ -Int(B), where $G = \beta O(X)_{\gamma}$ -Int(U).

(3) \Rightarrow (7). Let A be a β - γ -g.closed set and B any β - γ -open set containing A. Since A is a β - γ -g.closed set, we have $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq B$, therefore by (3) we can find a β - γ -g.open set U such that $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq U \subseteq \beta O(X)_{\gamma}$ - $Cl(U) \subseteq B$.

 $(7) \Rightarrow (6)$. Let A be a β - γ -g.closed set and B any β - γ -open set containing A, then by (7) there exists a β - γ -g.open set G such that $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq G \subseteq \beta O(X)_{\gamma}$ - $Cl(G) \subseteq B$. Since G is a β - γ -g.open set, then by Proposition 3.16, we get $\beta O(X)_{\gamma}$ - $Cl(A) \subseteq \beta O(X)_{\gamma}$ -Int(G). If we take $U = \beta O(X)_{\gamma}$ -Int(G), the proof follows.

Every $\beta - \gamma - T'_4$ space is clearly a $\beta - \gamma - T'_3$ space, but it should not be surprising that $\beta - \gamma$ -normal spaces need not be $\beta - \gamma$ -regular.

Example 4.6 Consider $X = \{a, b, c\}$ with the discrete topology on X. Define an operation γ on $\beta O(X)$ by

$$\gamma(A) = \begin{cases} A & \text{if } A = \{a\} \\ A \cup \{c\} & \text{if } A \neq \{a\} \end{cases}$$

Then X is β - γ -normal but not β - γ -regular.

Definition 4.7 A topological space (X, τ) with an operation γ on $\beta O(X)$, is said to be β - γ -symmetric if for x and y in X, $x \in \beta O(X)_{\gamma}$ - $Cl(\{y\})$ implies $y \in \beta O(X)_{\gamma}$ - $Cl(\{x\})$.

Proposition 4.8 If (X, τ) is a topological space with an operation γ on $\beta O(X)$, then the following are equivalent:

- 1. (X, τ) is β - γ -symmetric space.
- 2. Every singleton is β - γ -g.closed, for each $x \in X$.

Proof. (1) \Rightarrow (2). Assume that $\{x\} \subseteq U \in \beta O(X)_{\gamma}$, but $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \not\subseteq U$. Then $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \cap X \setminus U \neq \phi$. Now, we take $y \in \beta O(X)_{\gamma}$ - $Cl(\{x\}) \cap X \setminus U$, then by hypothesis $x \in \beta O(X)_{\gamma}$ - $Cl(\{y\}) \subseteq X \setminus U$ and $x \notin U$, which is a contradiction. Therefore $\{x\}$ is β - γ -g.closed, for each $x \in X$. (2) \Rightarrow (1). Assume that $x \in \beta O(X)_{\gamma}$ - $Cl(\{y\})$, but $y \notin \beta O(X)_{\gamma}$ - $Cl(\{x\})$. Then $\{y\} \subseteq X \setminus \beta O(X)_{\gamma}$ - $Cl(\{x\})$ and hence $\beta O(X)_{\gamma}$ - $Cl(\{y\}) \subseteq X \setminus \beta O(X)_{\gamma}$ - $Cl(\{x\})$. Therefore $x \in X \setminus \beta O(X)_{\gamma}$ - $Cl(\{x\})$, which is a contradiction and hence $y \in \beta O(X)_{\gamma}$ - $Cl(\{x\})$.

Corollary 4.9 If a topological space (X, τ) with an operation γ on $\beta O(X)$ is a $\beta - \gamma - T'_1$ space, then it is $\beta - \gamma$ -symmetric.

Proof. In a β - γ - T'_1 space, every singleton is β - γ -closed (Theorem 2.8) and therefore is β - γ -g.closed. Then by Proposition 4.8, (X, τ) is β - γ -symmetric.

Corollary 4.10 For a topological space (X, τ) with an operation γ on $\beta O(X)$, the following statements are equivalent:

- 1. (X, τ) is β - γ -symmetric and β - γ - T'_0 .
- 2. (X, τ) is $\beta \gamma T'_1$.

Proof. (1) \Rightarrow (2). Let $x \neq y$ and by $\beta - \gamma - T'_0$, we may assume that $x \in U \subseteq X \setminus \{y\}$ for some $U \in \beta O(X)_{\gamma}$. Then $x \notin \beta O(X)_{\gamma} - Cl(\{y\})$ and hence $y \notin \beta O(X)_{\gamma} - Cl(\{x\})$. There exists a $\beta - \gamma$ -open set V such that $y \in V \subseteq X \setminus \{x\}$ and thus (X, τ) is a $\beta - \gamma - T'_1$ space. (2) \Rightarrow (1). Follows from Corollary 4.9.

Proposition 4.11 If (X, τ) is a β - γ -symmetric space with an operation γ on $\beta O(X)$, then the following statements are equivalent:

- 1. (X, τ) is a $\beta \gamma T'_0$ space. 2. (X, τ) is a $\beta - \gamma - T'_{\frac{1}{2}}$ space.
- 3. (X, τ) is a β - γ - T'_1 space.

Proof. (1) \Leftrightarrow (3). Follows from Corollary 4.10. (3) \Rightarrow (2) and (2) \Rightarrow (1) are obvious.

5 β - γ - R_0 and β - γ - R_1 Spaces

Definition 5.1 [4] Let A be a subset of a topological space (X, τ) and γ be an operation on $\beta O(X)$. The β - γ -kernel of A, denoted by $\beta O(X)_{\gamma}$ -Ker(A) is defined to be the set

$$\beta O(X)_{\gamma} \text{-} Ker(A) = \cap \{ U \in \beta O(X)_{\gamma} \colon A \subseteq U \}.$$

Lemma 5.2 Let (X, τ) be a topological space with an operation γ on τ and $x \in X$. Then $y \in \beta O(X)_{\gamma}$ -Ker $(\{x\})$ if and only if $x \in \beta O(X)_{\gamma}$ -Cl $(\{y\})$.

Proof. Suppose that $y \notin \beta O(X)_{\gamma}$ -Ker($\{x\}$). Then there exists a β - γ -open set V containing x such that $y \notin V$. Therefore, we have $x \notin \beta O(X)_{\gamma}$ -Cl($\{y\}$). The proof of the converse case can be done similarly.

Theorem 5.3 Let (X, τ) be a topological space with an operation γ on τ and A be a subset of X. Then, $\beta O(X)_{\gamma}$ -Ker $(A) = \{x \in X : \beta O(X)_{\gamma}$ -Cl $(\{x\}) \cap A \neq \phi\}$.

Proof. Let $x \in \beta O(X)_{\gamma}$ -Ker(A) and suppose $\beta O(X)_{\gamma}$ -Cl $(\{x\}) \cap A = \phi$. Hence $x \notin X \setminus \beta O(X)_{\gamma}$ -Cl $(\{x\})$ which is a β - γ -open set containing A. This is impossible, since $x \in \beta O(X)_{\gamma}$ -Ker(A). Consequently, $\beta O(X)_{\gamma}$ -Cl $(\{x\}) \cap A \neq \phi$. Next, let $x \in X$ such that $\beta O(X)_{\gamma}$ -Cl $(\{x\}) \cap A \neq \phi$ and suppose that $x \notin \beta O(X)_{\gamma}$ -Ker(A). Then, there exists a β - γ -open set V containing A and $x \notin V$. Let $y \in \beta O(X)_{\gamma}$ -Cl $(\{x\}) \cap A$. Hence, V is a β - γ -nbd of y which does not contain x. By this contradiction $x \in \beta O(X)_{\gamma}$ -Ker(A) and the claim.

Theorem 5.4 The following properties hold for the subsets A, B of a topological space (X, τ) with an operation γ on τ :

- 1. $A \subseteq \beta O(X)_{\gamma}$ -Ker(A).
- 2. $A \subseteq B$ implies that $\beta O(X)_{\gamma}$ -Ker $(A) \subseteq \beta O(X)_{\gamma}$ -Ker(B).
- 3. If A is β - γ -open in (X, τ) , then $A = \beta O(X)_{\gamma}$ -Ker(A).

4.
$$\beta O(X)_{\gamma}$$
-Ker $(\beta O(X)_{\gamma}$ -Ker $(A)) = \beta O(X)_{\gamma}$ -Ker (A) .

Proof. (1), (2) and (3) are immediate consequences of Definition 5.1. To prove (4), first observe that by (1) and (2), we have $\beta O(X)_{\gamma}$ - $Ker(A) \subseteq \beta O(X)_{\gamma}$ - $Ker(\beta O(X)_{\gamma}$ -Ker(A)). If $x \notin \beta O(X)_{\gamma}$ -Ker(A), then there exists $U \in \beta O(X)_{\gamma}$ such that $A \subseteq U$ and $x \notin U$. Hence $\beta O(X)_{\gamma}$ - $Ker(A) \subseteq U$, and so we have $x \notin \beta O(X)_{\gamma}$ - $Ker(\beta O(X)_{\gamma}$ -Ker(A)). Thus $\beta O(X)_{\gamma}$ - $Ker(\beta O(X)_{\gamma}$ -Ker(A).

Definition 5.5 A topological space (X, τ) with an operation γ on τ , is said to be $\beta - \gamma - R_0$ if U is a $\beta - \gamma$ -open set and $x \in U$ then $\beta O(X)_{\gamma} - Cl(\{x\}) \subseteq U$.

Theorem 5.6 For a topological space (X, τ) with an operation γ on τ , the following properties are equivalent:

- 1. (X, τ) is $\beta \gamma R_0$.
- 2. For any $F \in \beta C(X)_{\gamma}$, $x \notin F$ implies $F \subseteq U$ and $x \notin U$ for some $U \in \beta O(X)_{\gamma}$.
- 3. For any $F \in \beta C(X)_{\gamma}$, $x \notin F$ implies $F \cap \beta O(X)_{\gamma}$ - $Cl(\{x\}) = \phi$.
- 4. For any distinct points x and y of X, either $\beta O(X)_{\gamma}$ - $Cl(\{x\}) = \beta O(X)_{\gamma}$ - $Cl(\{y\})$ or $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \cap \beta O(X)_{\gamma}$ - $Cl(\{y\}) = \phi$.

Proof. (1) \Rightarrow (2). Let $F \in \beta C(X)_{\gamma}$ and $x \notin F$. Then by (1), $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \subseteq X \setminus F$. Set $U = X \setminus \beta O(X)_{\gamma}$ - $Cl(\{x\})$, then U is a β - γ -open set such that $F \subseteq U$ and $x \notin U$.

 $(2) \Rightarrow (3)$. Let $F \in \beta C(X)_{\gamma}$ and $x \notin F$. There exists $U \in \beta O(X)_{\gamma}$ such that $F \subseteq U$ and $x \notin U$. Since $U \in \beta O(X)_{\gamma}, U \cap \beta O(X)_{\gamma}$ - $Cl(\{x\}) = \phi$ and $F \cap \beta O(X)_{\gamma}$ - $Cl(\{x\}) = \phi$.

(3) \Rightarrow (4). Suppose that $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{y\})$ for distinct points $x, y \in X$. There exists $z \in \beta O(X)_{\gamma}$ - $Cl(\{x\})$ such that $z \notin \beta O(X)_{\gamma}$ - $Cl(\{y\})$ (or $z \in \beta O(X)_{\gamma}$ - $Cl(\{y\})$ such that $z \notin \beta O(X)_{\gamma}$ - $Cl(\{x\})$). There exists $V \in \beta O(X)_{\gamma}$ such that $y \notin V$ and $z \in V$; hence $x \in V$. Therefore, we have $x \notin \beta O(X)_{\gamma}$ - $Cl(\{y\})$. By (3), we obtain $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \cap \beta O(X)_{\gamma}$ - $Cl(\{y\}) = \phi$.

(4) \Rightarrow (1). let $V \in \beta O(X)_{\gamma}$ and $x \in V$. For each $y \notin V$, $x \neq y$ and $x \notin \beta O(X)_{\gamma}$ - $Cl(\{y\})$. This shows that $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{y\})$. By (4), $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \cap \beta O(X)_{\gamma}$ - $Cl(\{y\}) = \phi$ for each $y \in X \setminus V$ and hence $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \cap (\bigcup_{y \in X \setminus V} \beta O(X)_{\gamma}$ - $Cl(\{y\})) = \phi$. On other hand, since $V \in \beta O(X)_{\gamma}$ and $y \in X \setminus V$, we have $\beta O(X)_{\gamma}$ - $Cl(\{y\}) \subseteq X \setminus V$ and hence $X \setminus V = \bigcup_{y \in X \setminus V} \beta O(X)_{\gamma}$ - $Cl(\{y\})$. Therefore, we obtain $(X \setminus V) \cap \beta O(X)_{\gamma}$ - $Cl(\{x\}) = \phi$ and $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \subseteq V$. This shows that (X, τ) is a β - γ - R_0 space.

Theorem 5.7 For a topological space (X, τ) with an operation γ on τ , the following properties are equivalent:

- 1. (X, τ) is $\beta \gamma R_0$.
- 2. $x \in \beta O(X)_{\gamma}$ -Cl({y}) if and only if $y \in \beta O(X)_{\gamma}$ -Cl({x}), for any points x and y in X.

Proof. (1) \Rightarrow (2). Assume that X is β - γ - R_0 . Let $x \in \beta O(X)_{\gamma}$ - $Cl(\{y\})$ and V be any β - γ -open set such that $y \in V$. Now by hypothesis, $x \in V$. Therefore, every β - γ -open set which contain y contains x. Hence $y \in \beta O(X)_{\gamma}$ - $Cl(\{x\})$. (2) \Rightarrow (1). Let U be a β - γ -open set and $x \in U$. If $y \notin U$, then $x \notin \beta O(X)_{\gamma}$ - $Cl(\{y\})$ and hence $y \notin \beta O(X)_{\gamma}$ - $Cl(\{x\})$. This implies that $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \subseteq U$. Hence (X, τ) is β - γ - R_0 .

Theorem 5.8 The following statements are equivalent for any points x and y in a topological space (X, τ) with an operation γ on τ :

- 1. $\beta O(X)_{\gamma}$ -Ker({x}) $\neq \beta O(X)_{\gamma}$ -Ker({y}).
- 2. $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{y\})$.

Proof. (1) \Rightarrow (2). Suppose that $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \neq \beta O(X)_{\gamma}$ - $Ker(\{y\})$, then there exists a point z in X such that $z \in \beta O(X)_{\gamma}$ - $Ker(\{x\})$ and $z \notin \beta O(X)_{\gamma}$ - $Ker(\{y\})$. From $z \in \beta O(X)_{\gamma}$ - $Ker(\{x\})$ it follows that $\{x\} \cap \beta O(X)_{\gamma}$ - $Cl(\{z\}) \neq \phi$ which implies $x \in \beta O(X)_{\gamma}$ - $Cl(\{z\})$. By $z \notin \beta O(X)_{\gamma}$ - $Ker(\{y\})$, we have $\{y\} \cap \beta O(X)_{\gamma}$ - $Cl(\{z\}) = \phi$. Since $x \in \beta O(X)_{\gamma}$ - $Cl(\{z\}), \beta O(X)_{\gamma}$ - $Cl(\{x\}) \subseteq \beta O(X)_{\gamma}$ - $Cl(\{z\})$ and $\{y\} \cap \beta O(X)_{\gamma}$ - $Cl(\{x\}) = \phi$. Therefore, it follows that $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{y\})$. Now $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{y\})$. Then there exists a point z in X such that $z \in \beta O(X)_{\gamma}$ - $Cl(\{x\})$ and $z \notin \beta O(X)_{\gamma}$ - $Cl(\{y\})$. Then, there exists a β - γ -open set containing z and therefore x but not y, namely, $y \notin \beta O(X)_{\gamma}$ - $Ker(\{x\})$ and thus $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \neq \beta O(X)_{\gamma}$ - $Ker(\{y\})$.

Theorem 5.9 Let (X, τ) be a topological space and γ be an operation on $\beta O(X)$. Then $\cap \{\beta O(X)_{\gamma} \text{-} Cl(\{x\}) : x \in X\} = \phi$ if and only if $\beta O(X)_{\gamma} \text{-} Ker(\{x\}) \neq X$ for every $x \in X$.

Proof. Necessity. Suppose that $\cap \{\beta O(X)_{\gamma} - Cl(\{x\}) : x \in X\} = \phi$. Assume that there is a point y in X such that $\beta O(X)_{\gamma}$ - $Ker(\{y\}) = X$. Let x be any point of X. Then $x \in V$ for every β - γ -open set V containing y and hence $y \in \beta O(X)_{\gamma}$ - $Cl(\{x\})$ for any $x \in X$. This implies that $y \in \cap \{\beta O(X)_{\gamma} - Cl(\{x\}) : x \in X\}$. But this is a contradiction.

Sufficiency. Assume that $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \neq X$ for every $x \in X$. If there exists a point y in X such that $y \in \cap \{\beta O(X)_{\gamma} - Cl(\{x\}) : x \in X\}$, then every β - γ -open set containing y must contain every point of X. This implies that the space X is the unique β - γ -open set containing y. Hence $\beta O(X)_{\gamma}$ - $Ker(\{y\}) = X$ which is a contradiction. Therefore, $\cap \{\beta O(X)_{\gamma} - Cl(\{x\}) : x \in X\} = \phi$.

Theorem 5.10 A topological space (X, τ) with an operation γ on τ is β - γ - R_0 if and only if for every x and y in X, $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{y\})$ implies $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \cap \beta O(X)_{\gamma}$ - $Cl(\{y\}) = \phi$.

Proof. Necessity. Suppose that (X, τ) is $\beta - \gamma - R_0$ and $x, y \in X$ such that $\beta O(X)_{\gamma} - Cl(\{x\}) \neq \beta O(X)_{\gamma} - Cl(\{y\})$. Then, there exists $z \in \beta O(X)_{\gamma} - Cl(\{x\})$ such that $z \notin \beta O(X)_{\gamma} - Cl(\{y\})$ (or $z \in \beta O(X)_{\gamma} - Cl(\{y\})$ such that $z \notin \beta O(X)_{\gamma} - Cl(\{x\})$). There exists $V \in \beta O(X)_{\gamma}$ such that $y \notin V$ and $z \in V$, hence $x \in V$. Therefore, we have $x \notin \beta O(X)_{\gamma} - Cl(\{y\})$. Thus $x \in [X \setminus \beta O(X)_{\gamma} - Cl(\{y\})] \in \beta O(X)_{\gamma}$, which implies $\beta O(X)_{\gamma} - Cl(\{x\}) \subseteq [X \setminus \beta O(X)_{\gamma} - Cl(\{y\})]$ and $\beta O(X)_{\gamma} - Cl(\{x\}) \cap \beta O(X)_{\gamma} - Cl(\{y\}) = \phi$.

Sufficiency. Let $V \in \beta O(X)_{\gamma}$ and let $x \in V$. We still show that $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \subseteq V$. Let $y \notin V$, that is $y \in X \setminus V$. Then $x \neq y$ and $x \notin \beta O(X)_{\gamma}$ - $Cl(\{y\})$. This shows that $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{y\})$. By assumption, $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \cap \beta O(X)_{\gamma}$ - $Cl(\{y\}) = \phi$. Hence $y \notin \beta O(X)_{\gamma}$ - $Cl(\{x\})$ and therefore $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \subseteq V$.

Theorem 5.11 A topological space (X, τ) with an operation γ on τ is β - γ - R_0 if and only if for any points x and y in X, $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \neq \beta O(X)_{\gamma}$ - $Ker(\{y\})$ implies $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \cap \beta O(X)_{\gamma}$ - $Ker(\{y\}) = \phi$.

Proof. Suppose that (X, τ) is a $\beta - \gamma - R_0$ space. Thus by Theorem 5.8, for any points x and y in X if $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \neq \beta O(X)_{\gamma}$ - $Ker(\{y\})$ then $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{y\})$. Now we prove that $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \cap \beta O(X)_{\gamma}$ - $Ker(\{y\}) = \phi$. Assume that $z \in \beta O(X)_{\gamma}$ - $Ker(\{x\}) \cap \beta O(X)_{\gamma}$ - $Ker(\{y\})$. By $z \in \beta O(X)_{\gamma}$ - $Ker(\{x\})$ and Lemma 5.2, it follows that $x \in \beta O(X)_{\gamma}$ - $Cl(\{z\})$. Since $x \in \beta O(X)_{\gamma}$ - $Cl(\{x\})$, by Theorem 5.6, $\beta O(X)_{\gamma}$ - $Cl(\{x\}) = \beta O(X)_{\gamma}$ - $Cl(\{z\})$. Similarly, we have $\beta O(X)_{\gamma}$ - $Cl(\{y\}) = \beta O(X)_{\gamma}$ - $Cl(\{z\}) = \beta O(X)_{\gamma}$ - $Cl(\{x\})$. This is a contradiction. Therefore, we have $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \cap \beta O(X)_{\gamma}$ - $Ker(\{y\}) = \phi$.

Conversely, let (X, τ) be a topological space such that for any points x and y in X, $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \neq \beta O(X)_{\gamma}$ - $Ker(\{y\})$ implies $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \cap$ $\beta O(X)_{\gamma}$ - $Ker(\{y\}) = \phi$. If $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{y\})$, then by Theorem 5.8, $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \neq \beta O(X)_{\gamma}$ - $Ker(\{y\})$. Hence, $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \cap$ $\beta O(X)_{\gamma}$ - $Ker(\{y\}) = \phi$ which implies $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \cap \beta O(X)_{\gamma}$ - $Cl(\{y\}) =$ ϕ . Because $z \in \beta O(X)_{\gamma}$ - $Cl(\{x\})$ implies that $x \in \beta O(X)_{\gamma}$ - $Ker(\{z\})$ and therefore $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \cap \beta O(X)_{\gamma}$ - $Ker(\{z\}) \neq \phi$. By hypothesis, we have $\beta O(X)_{\gamma}$ - $Ker(\{x\}) = \beta O(X)_{\gamma}$ - $Ker(\{z\})$. Then $z \in \beta O(X)_{\gamma}$ - $Cl(\{x\}) \cap$ $\beta O(X)_{\gamma}$ - $Cl(\{y\})$ implies that $\beta O(X)_{\gamma}$ - $Ker(\{x\}) = \beta O(X)_{\gamma}$ - $Ker(\{z\}) = \beta O(X)_{\gamma}$ - $Ker(\{z\}) = \beta O(X)_{\gamma}$ - $Ker(\{y\})$. This is a contradiction. Therefore, $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \cap \beta O(X)_{\gamma}$ - $Cl(\{y\}) = \phi$ and by Theorem 5.6, (X, τ) is a β - γ - R_0 space.

Theorem 5.12 For a topological space (X, τ) with an operation γ on τ , the following properties are equivalent:

- 1. (X, τ) is a β - γ - R_0 space.
- 2. For any non-empty set A and $G \in \beta O(X)_{\gamma}$ such that $A \cap G \neq \phi$, there exists $F \in \beta C(X)_{\gamma}$ such that $A \cap F \neq \phi$ and $F \subseteq G$.
- 3. For any $G \in \beta O(X)_{\gamma}$, we have $G = \bigcup \{F \in \beta C(X)_{\gamma} \colon F \subseteq G\}$.
- 4. For any $F \in \beta C(X)_{\gamma}$, we have $F = \cap \{G \in \beta O(X)_{\gamma} \colon F \subseteq G\}$.
- 5. For every $x \in X$, $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \subseteq \beta O(X)_{\gamma}$ - $Ker(\{x\})$.

Proof. (1) \Rightarrow (2). Let A be a non-empty subset of X and $G \in \beta O(X)_{\gamma}$ such that $A \cap G \neq \phi$. There exists $x \in A \cap G$. Since $x \in G \in \beta O(X)_{\gamma}, \beta O(X)_{\gamma}$ - $Cl(\{x\}) \subseteq G$. Set $F = \beta O(X)_{\gamma}$ - $Cl(\{x\})$, then $F \in \beta C(X)_{\gamma}, F \subseteq G$ and $A \cap F \neq \phi$.

 $(2) \Rightarrow (3).$ Let $G \in \beta O(X)_{\gamma}$, then $G \supseteq \cup \{F \in \beta C(X)_{\gamma} : F \subseteq G\}$. Let x be any point of G. There exists $F \in \beta C(X)_{\gamma}$ such that $x \in F$ and $F \subseteq G$. Therefore, we have $x \in F \subseteq \cup \{F \in \beta C(X)_{\gamma} : F \subseteq G\}$ and hence $G = \cup \{F \in \beta C(X)_{\gamma} : F \subseteq G\}$.

 $(3) \Rightarrow (4)$. Obvious.

 $(4) \Rightarrow (5). Let x be any point of X and <math>y \notin \beta O(X)_{\gamma} \text{-}Ker(\{x\}). \text{ There exists} \\ V \in \beta O(X)_{\gamma} \text{ such that } x \in V \text{ and } y \notin V, \text{ hence } \beta O(X)_{\gamma} \text{-}Cl(\{y\}) \cap V = \phi. \\ By (4), (\cap \{G \in \beta O(X)_{\gamma}: \beta O(X)_{\gamma} \text{-}Cl(\{y\}) \subseteq G\}) \cap V = \phi \text{ and there exists} \\ G \in \beta O(X)_{\gamma} \text{ such that } x \notin G \text{ and } \beta O(X)_{\gamma} \text{-}Cl(\{y\}) \subseteq G. \text{ Therefore } \beta O(X)_{\gamma} \text{-}Cl(\{x\}) \cap G = \phi \text{ and } y \notin \beta O(X)_{\gamma} \text{-}Cl(\{x\}). \\ Cl(\{x\}) \subseteq \beta O(X)_{\gamma} \text{-}Ker(\{x\}). \end{aligned}$

(5) \Rightarrow (1). Let $G \in \beta O(X)_{\gamma}$ and $x \in G$. Let $y \in \beta O(X)_{\gamma}$ -Ker($\{x\}$), then $x \in \beta O(X)_{\gamma}$ -Cl($\{y\}$) and $y \in G$. This implies that $\beta O(X)_{\gamma}$ -Ker($\{x\}$) $\subseteq G$. Therefore, we obtain $x \in \beta O(X)_{\gamma}$ -Cl($\{x\}$) $\subseteq \beta O(X)_{\gamma}$ -Ker($\{x\}$) $\subseteq G$. This shows that (X, τ) is a β - γ - R_0 space.

Corollary 5.13 For a topological space (X, τ) with an operation γ on τ , the following properties are equivalent:

- 1. (X, τ) is a β - γ - R_0 space.
- 2. $\beta O(X)_{\gamma}$ - $Cl(\{x\}) = \beta O(X)_{\gamma}$ - $Ker(\{x\})$ for all $x \in X$.

Proof. (1) \Rightarrow (2). Suppose that (X, τ) is a $\beta - \gamma - R_0$ space. By Theorem 5.12, $\beta O(X)_{\gamma} - Cl(\{x\}) \subseteq \beta O(X)_{\gamma} - Ker(\{x\})$ for each $x \in X$. Let $y \in \beta O(X)_{\gamma} - Ker(\{x\})$, then $x \in \beta O(X)_{\gamma} - Cl(\{y\})$ and by Theorem 5.6, $\beta O(X)_{\gamma} - Cl(\{x\}) = \beta O(X)_{\gamma} - Cl(\{y\})$. Therefore, $y \in \beta O(X)_{\gamma} - Cl(\{x\})$ and hence $\beta O(X)_{\gamma} - Ker(\{x\}) \subseteq \beta O(X)_{\gamma} - Cl(\{x\})$. This shows that $\beta O(X)_{\gamma} - Cl(\{x\}) = \beta O(X)_{\gamma} - Ker(\{x\})$. (2) \Rightarrow (1). Follows from Theorem 5.12.

Theorem 5.14 For a topological space (X, τ) with an operation γ on τ , the following properties are equivalent:

- 1. (X, τ) is a β - γ - R_0 space.
- 2. If F is β - γ -closed, then $F = \beta O(X)_{\gamma}$ -Ker(F).
- 3. If F is β - γ -closed and $x \in F$, then $\beta O(X)_{\gamma}$ -Ker $(\{x\}) \subseteq F$.
- 4. If $x \in X$, then $\beta O(X)_{\gamma}$ -Ker $(\{x\}) \subseteq \beta O(X)_{\gamma}$ -Cl $(\{x\})$.

Proof. (1) \Rightarrow (2). Let F be a β - γ -closed and $x \notin F$. Thus $(X \setminus F)$ is a β - γ -open set containing x. Since (X, τ) is β - γ - R_0 , $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \subseteq (X \setminus F)$. Thus $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \cap F = \phi$ and by Theorem 5.3, $x \notin \beta O(X)_{\gamma}$ -Ker(F). Therefore $\beta O(X)_{\gamma}$ -Ker(F) = F. (2) \Rightarrow (3). In general, $A \subseteq B$ implies $\beta O(X)_{\gamma}$ - $Ker(A) \subseteq \beta O(X)_{\gamma}$ -Ker(B). Therefore, it follows from (2), that $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \subseteq \beta O(X)_{\gamma}$ -Ker(F) = F. (3) \Rightarrow (4). Since $x \in \beta O(X)_{\gamma}$ - $Cl(\{x\})$ and $\beta O(X)_{\gamma}$ - $Cl(\{x\})$ is β - γ -closed, by (3), $\beta O(X)_{\gamma}$ - $Ker(\{x\})$. (4) \Rightarrow (1). We show the implication by using Theorem 5.7. Let $x \in \beta O(X)_{\gamma}$ -

(4) \Rightarrow (1). We show the implication by using Theorem 5.7. Let $x \in \beta O(X)_{\gamma}$ - $Cl(\{y\})$. Then by Lemma 5.2, $y \in \beta O(X)_{\gamma}$ - $Ker(\{x\})$. Since $x \in \beta O(X)_{\gamma}$ - $Cl(\{x\})$ and $\beta O(X)_{\gamma}$ - $Cl(\{x\})$ is β - γ -closed, by (4), we obtain $y \in \beta O(X)_{\gamma}$ - $Ker(\{x\}) \subseteq \beta O(X)_{\gamma}$ - $Cl(\{x\})$. Therefore $x \in \beta O(X)_{\gamma}$ - $Cl(\{y\})$ implies $y \in \beta O(X)_{\gamma}$ - $Cl(\{x\})$. The converse is obvious and (X, τ) is β - γ - R_0 .

Definition 5.15 A topological space (X, τ) with an operation γ on τ , is said to be β - γ - R_1 if for x, y in X with $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{y\})$, there exist disjoint β - γ -open sets U and V such that $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \subseteq U$ and $\beta O(X)_{\gamma}$ - $Cl(\{y\}) \subseteq V$.

Theorem 5.16 For a topological space (X, τ) with an operation γ on τ , the following statements are equivalent:

- 1. (X, τ) is $\beta \gamma R_1$.
- 2. If $x, y \in X$ such that $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{y\})$, then there exist β - γ -closed sets F_1 and F_2 such that $x \in F_1$, $y \notin F_1$, $y \in F_2$, $x \notin F_2$ and $X = F_1 \cup F_2$.

Proof. Obvious.

Theorem 5.17 If (X, τ) is β - γ - R_1 , then (X, τ) is β - γ - R_0 .

Proof. Let U be β - γ -open such that $x \in U$. If $y \notin U$, since $x \notin \beta O(X)_{\gamma}$ - $Cl(\{y\})$, we have $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{y\})$. So, there exists a β - γ -open set V such that $\beta O(X)_{\gamma}$ - $Cl(\{y\}) \subseteq V$ and $x \notin V$, which implies $y \notin \beta O(X)_{\gamma}$ - $Cl(\{x\})$. Hence $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \subseteq U$. Therefore, (X, τ) is β - γ - R_0 .

The converse of the above Theorem need not be ture in general as shown in the following example.

Example 5.18 Consider $X = \{a, b, c\}$ with the discrete topology on X. Define an operation γ on $\beta O(X)$ by

$$\gamma(A) = \begin{cases} A & \text{if } A = \{a, b\} \text{ or } \{a, c\} \text{ or } \{b, c\} \\ X & \text{otherwise} \end{cases}$$

Then X is a β - γ - R_0 space but not a β - γ - R_1 space.

Corollary 5.19 A topological space (X, τ) with an operation γ on τ is β - γ - R_1 if and only if for $x, y \in X$, $\beta O(X)_{\gamma}$ - $Ker(\{x\}) \neq \beta O(X)_{\gamma}$ - $Ker(\{y\})$, there exist disjoint β - γ -open sets U and V such that $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \subseteq U$ and $\beta O(X)_{\gamma}$ - $Cl(\{y\}) \subseteq V$.

Proof. Follows from Theorem 5.8.

Theorem 5.20 A topological space (X, τ) is $\beta - \gamma - R_1$ if and only if $x \in X \setminus \beta O(X)_{\gamma} - Cl(\{y\})$ implies that x and y have disjoint $\beta - \gamma - nbds$.

Proof. Necessity. Let $x \in X \setminus \beta O(X)_{\gamma}$ - $Cl(\{y\})$. Then $\beta O(X)_{\gamma}$ - $Cl(\{x\}) \neq \beta O(X)_{\gamma}$ - $Cl(\{y\})$, so, x and y have disjoint β - γ -nbds.

Sufficiency. First, we show that (X, τ) is $\beta - \gamma - R_0$. Let U be a $\beta - \gamma$ -open set and $x \in U$. Suppose that $y \notin U$. Then, $\beta O(X)_{\gamma} - Cl(\{y\}) \cap U = \phi$ and $x \notin \beta O(X)_{\gamma} - Cl(\{y\})$. There exist $\beta - \gamma$ -open sets U_x and U_y such that $x \in U_x$, $y \in U_y$ and $U_x \cap U_y = \phi$. Hence, $\beta O(X)_{\gamma} - Cl(\{x\}) \subseteq \beta O(X)_{\gamma} - Cl(U_x)$ and $\beta O(X)_{\gamma} - Cl(\{x\}) \cap U_y \subseteq \beta O(X)_{\gamma} - Cl(U_x) \cap U_y = \phi$. Therefore, $y \notin \beta O(X)_{\gamma} Cl(\{x\})$. Consequently, $\beta O(X)_{\gamma} - Cl(\{x\}) \subseteq U$ and (X, τ) is $\beta - \gamma - R_0$. Next, we show that (X, τ) is $\beta - \gamma - R_1$. Suppose that $\beta O(X)_{\gamma} - Cl(\{x\}) \neq \beta O(X)_{\gamma} Cl(\{y\})$. Then, we can assume that there exists $z \in \beta O(X)_{\gamma} - Cl(\{x\})$ such that $z \notin \beta O(X)_{\gamma} - Cl(\{y\})$. There exist $\beta - \gamma$ -open sets V_z and V_y such that $z \in V_z$, $y \in V_y$ and $V_z \cap V_y = \phi$. Since $z \in \beta O(X)_{\gamma} - Cl(\{x\})$, $x \in V_z$. Since (X, τ) is $\beta - \gamma - R_0$, we obtain $\beta O(X)_{\gamma} - Cl(\{x\}) \subseteq V_z$, $\beta O(X)_{\gamma} - Cl(\{y\}) \subseteq V_y$ and $V_z \cap V_y = \phi$. This shows that (X, τ) is $\beta - \gamma - R_1$.

References

- S. Kasahara, Operation-compact spaces, Math. Japonica., 24(1979), 97-105.
- [2] M.E.A. El-Monsef, S.N. El-Deeb and R.A. Mahmoud, β-Open sets and β-continuous mappings, Bull. Fac. Sci. Assuit. Univ., 12(1) (1983), 77-90.
- [3] A.S. Davis, Indexed systems of neighborhoods for general topological spaces, *Amer. Math. Monthly*, 68(1961), 886-893.
- [4] S. Tahiliani, Operation approach to β -open sets and applications, *Math.* Commun., 16(2011), 577-591.
- [5] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36(1) (1991), 175-184.
- [6] N.A. Shanin, On separation in topological spaces, Dokl. Akad. Nauk. SSSR, 38(1943), 110-113.