Gen. Math. Notes, Vol. 14, No. 2, February 2013, pp.10-22
ISSN 2219-7184; Copyright ©ICSRS Publication, 2013
www.i-csrs.org
Available free online at http://www.geman.in

On $S_{\gamma_{1}}$-Open Sets and $S_{\gamma_{1}}$-Continuous in Bitopological Spaces

Hariwan Z. Ibrahim ${ }^{1}$ and Alan M. Omar ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq
E-mail: hariwan_math@yahoo.com
${ }^{2}$ Department of Mathematics, Faculty of Science, University of Duhok, Kurdistan-Region, Iraq
E-mail: alan.m.omer@gmail.com

(Received: 16-11-12 / Accepted: 14-1-13)

Abstract

In this paper, we introduce and study the notions of $S_{\gamma_{1}}$-open sets, $S_{\gamma_{1}}$ continuous and 12-almost $S_{\gamma_{1}}$-continuous functions in bitopological space. We also investigated the fundamental properties of such functions.

Keywords: γ-open, $S_{\gamma_{1}}$-open, $S_{\gamma_{1}}$-continuous, 12-almost $S_{\gamma_{1}}$-continuous.

1 Introduction

Throughout this paper, (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed unless otherwise stated. For a subset A of X, the closure of A and the interior of A will be denoted by $C l(A)$ and $\operatorname{Int}(A)$, respectively. Let (X, τ) be a space and A a subset of X. An operation $\gamma[10]$ on a topology τ is a mapping from τ in to power set $P(X)$ of X such that $V \subset \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V. A subset A of X with an operation γ on τ is called γ-open [5] if for each $x \in A$, there exists an open set U such that $x \in U$ and $\gamma(U) \subset A$. Then, τ_{γ} denotes the set of all γ-open set in X. Clearly $\tau_{\gamma} \subset \tau$. Complements of γ-open sets are called γ-closed. The τ_{γ}-interior [9] of A is denoted by τ_{γ} - $\operatorname{Int}(A)$ and defined to be the union of all γ-open sets of X contained in A. A topological X with an operation γ on τ is said to be γ-regular [5] if for each $x \in X$ and for each
open neighborhood V of x ，there exists an open neighborhood U of x such that $\gamma(U)$ contained in V ．It is also to be noted that $\tau=\tau_{\gamma}$ if and only if X is a γ－regular space［5］．

A subset A of X is said to be \imath－semi open［8］（resp．，\imath－pre open［6］， $\imath \jmath$－α－open［7］，っ〕－semi－preopen［11］，っ〕－regular open［12］）if $A \subseteq \jmath \operatorname{Cl}(\imath \operatorname{Int}(A))$ （resp．，$A \subseteq \imath \operatorname{Int}(\jmath \operatorname{Cl}(A)), A \subseteq \imath \operatorname{Int}(\jmath \operatorname{Cl}(\imath \operatorname{Int}(A))), A \subseteq \jmath \operatorname{Cl}(\imath \operatorname{Int}(\jmath C l(A)))$ ， $A=\imath \operatorname{Int}(\jmath C l(A)))$ ．

A point x of X is said to be $\imath \jmath$－δ－cluster point［4］of A if $A \cap U \neq \varphi$ for every $\imath \jmath$－reguler open set U containing x ，the set of all $\imath \jmath-\delta$－cluster points of A is called $\imath \jmath-\delta$－closure of A ，a subset A of X is said to be $\imath \jmath-\delta$－closed if $\imath \jmath-\delta$－cluster points of $A \subseteq A$ ，the complement of $\imath \jmath-\delta$－closed set is $\imath \jmath-\delta$－open．A point $x \in X$ is in the $\imath \jmath$－θ－closure［3］of A ，denoted by $\imath \jmath-C l_{\theta}(A)$ ，if $A \cap \jmath C l(U) \neq \varphi$ for every \imath－open set U containing x ．A subset A of X is said to be $\imath \jmath$－θ－closed if $A=\imath \jmath-C l_{\theta}(A)$ ．A subset A of X is said to be $\imath \jmath-\theta$－open if $X \backslash A$ is $\imath \jmath-\theta$－closed．

The complement of an $\imath \jmath$－semi open（resp．，$\imath \jmath$－pre open，$\imath \jmath$－α－open，$\imath \jmath$－semi－ preopen，$\imath \jmath$－regular open）set is said to be $\imath \jmath$－semi closed（resp．，$\imath \jmath$－pre closed， $\imath \jmath$－α－closed，$\imath \jmath$－semi－preclosed，$\imath \jmath$－regular closed）．

Proposition 1．1 Let Y be a subspace of a space $\left(X, \tau_{1}, \tau_{2}\right)$ ．If A is a 21－ semi closed subset in Y and Y is 21－semi closed in X ，then A is a 21－semi closed in X ．

Remark 1.2 ［8］It is clear that the intersection of two \jmath 亿－semi closed sets is \jmath－semi closed，and also every \imath－closed set is 七〕－semi closed．

Remark 1．3［5］If $\left(X, \tau_{1}\right)$ is a $\gamma_{1}-T_{1}$ space，then every singlton is γ_{1}－closed
Proposition 1．4［5］Lel $\gamma: \tau \rightarrow p(X)$ be a regular operation on τ ．If A and B are γ－open，then $A \cap B$ is γ－open．

$2 \quad S_{\gamma_{1}}$－Open Sets

Definition 2．1 An γ_{1}－open subset A of a space X is called $S_{\gamma_{1}}$－open if for each $x \in A$ ，there exists a 21－semi closed set F such that $x \in F \subseteq A$ ．

The family of all $S_{\gamma_{1}}$－open subsets of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is denoted by $S_{\gamma_{1}} O\left(X, \tau_{1}, \tau_{2}\right)$ or $S_{\gamma_{1}} O(X)$ ．

A subset B of a space X is called $S_{\gamma_{1}}$－closed if $X \backslash B$ is $S_{\gamma_{1}}$－open．The family of all $S_{\gamma_{1}}$－closed subsets of a bitopological space（ X, τ_{1}, τ_{2} ）is denoted by $S_{\gamma_{1}} C\left(X, \tau_{1}, \tau_{2}\right)$ or $S_{\gamma_{1}} C(X)$ ．

Proposition 2．2 A subset A of a space X is $S_{\gamma_{1} \text {－open if and only if } A \text { is }}$ γ_{1}－open and it is a union of 21－semi closed sets．That is，$A=\bigcup F_{\alpha}$ where A is γ_{1}－open and F_{α} is a 21－semi closed set for each α ．

Proof. Obvious.
It is clear from the definition that every $S_{\gamma_{1}}$-open subset of a space X is γ_{1}-open, but the converse is not true in general as shown by the following example.

Example 2.3 Let $X=\{x, y, z\}$ with $\tau_{1}=\{X, \varphi,\{x\},\{x, y\},\{x, z\}\}$ and $\tau_{2}=\{X, \varphi,\{y\},\{y, z\}\}$, define γ_{1} on τ_{1} by $\gamma_{1}(A)=A$ for all $A \in \tau_{1}$, the $S_{\gamma_{1}-o p e n ~ s e t s ~}$ are $\{X, \varphi,\{x\},\{x, z\}\}$ then $\{x, y\}$ is γ_{1}-open but not $S_{\gamma_{1}}$-open.

Proposition 2.4 Let $\left\{A_{\alpha}: \alpha \in \Delta\right\}$ be a collection of $S_{\gamma_{1}}$-open sets in a bitopological space X. Then $\bigcup\left\{A_{\alpha}: \alpha \in \Delta\right\}$ is also $S_{\gamma_{1}}$-open.

Proof. Since A_{α} is a $S_{\gamma_{1}}$-open set for each α, then A_{α} is γ_{1}-open and $\bigcup\left\{A_{\alpha}: \alpha \in \Delta\right\}$ is γ_{1}-open [5], so for all $x \in A_{\alpha}$, there exists a 21 -semi closed set F such that $x \in F \subseteq A_{\alpha}$ this implies that $x \in F \subseteq A_{\alpha} \subseteq \bigcup\left\{A_{\alpha}: \alpha \in \Delta\right\}$, then $x \in F \subseteq \bigcup\left\{A_{\alpha}: \alpha \in \Delta\right\}$, and hence $\bigcup\left\{A_{\alpha}: \alpha \in \Delta\right\}$ is a $S_{\gamma_{1}}$-open set.

Remark 2.5 The intersection of two $S_{\gamma_{1}}$-open sets need not be $S_{\gamma_{1}}$-open as can be seen from the following example:

Example 2.6 Let $X=\{x, y, z\}$ and $\tau_{1}=\tau_{2}=P(X)$. Define an operation γ_{1} on τ_{1} by

$$
\gamma_{1}(A)= \begin{cases}A & \text { if } A=\{x, y\} \text { or }\{x, z\} \text { or }\{y, z\} \\ X & \text { otherwise }\end{cases}
$$

Clearly, $\tau_{\gamma_{1}}=\{\phi,\{x, y\},\{x, z\},\{y, z\}, X\}$. Let $A=\{x, y\}$ and $B=\{x, z\}$, then A and B are $S_{\gamma_{1}}$-open, but $A \cap B=\{x\}$ which is not $S_{\gamma_{1}}$-open.

Proposition 2.7 If γ_{1} is a regular operation on τ_{1}, then the intersection of two $S_{\gamma_{1}}$-open sets is $S_{\gamma_{1} \text {-open. }}$

Proof. Let A and B be two $S_{\gamma_{1}}$-open sets, then A and B are γ_{1}-open sets. Since, γ_{1} is regular this implies that $A \cap B$ is also an γ_{1}-open set, we have to prove that $A \cap B$ is $S_{\gamma_{1}}$-open, let $x \in A \cap B$ then $x \in A$ and $x \in B$, for all $x \in A$ there exists a 21 -semi closed set F such that $x \in F \subseteq A$ and for all $x \in B$ there exists a 21 -semi closed set E such that $x \in E \subseteq B$, and so that $x \in F \cap E \subseteq A \cap B$. Since the intersection of two 21-semi closed sets is 21-semi closed (by Remark 1.2), this shows that $A \cap B$ is $S_{\gamma_{1}}$-open set.

From propositions 2.4 and 2.7 for γ_{1} is a regular operation on τ_{1} we conclude that the family of all $S_{\gamma_{1}}$-open subsets of a space X is a topology on X.

Proposition 2.8 A subset A of a space $\left(X, \tau_{1}, \tau_{2}\right)$ is $S_{\gamma_{1}}$-open if and only

Proof. Assume that A is a $S_{\gamma_{1}}$-open set in $\left(X, \tau_{1}, \tau_{2}\right)$, let $x \in A$. If we put $B=A$ then B is a $S_{\gamma_{1}}$-open set containing x such that $x \in B \subseteq A$.
Conversely, suppose that for each $x \in A$, there exists a $S_{\gamma_{1}}$-open set B_{x} such that $x \in B_{x} \subseteq A$, thus $A=\bigcup B_{x}$ where $B_{x} \in S_{\gamma_{1}} O(X)$ for each x, therefore A is $S_{\gamma_{1}}$-open.

Proposition 2.9 If $\left(X, \tau_{1}\right)$ is a $\gamma_{1}-T_{1}$ space, then $S_{\gamma_{2}} O(X)=\tau_{\gamma_{2}}$, where γ_{2} is an operation on τ_{2}.

Proof. Let A be any subset of a space X and $A \in \tau_{\gamma_{2}}$, if $A=\varphi$, then $A \in S_{\gamma_{2}} O(X)$. If $A \neq \varphi$, let $x \in A$, since $\left(X, \tau_{1}\right)$ is a $\gamma_{1}-T_{1}$ space, then every singlton is γ_{1}-closed by Remark 1.2, implies that every singlton is 12semi closed and hence $x \in\{x\} \subseteq A$. Therefore, $A \in S_{\gamma_{2}} O(X)$. Hence, $\tau_{\gamma_{2}} \subseteq S_{\gamma_{2}} O(X)$, but from definition of $S_{\gamma_{2}}$-open sets we have $S_{\gamma_{2}} O(X) \subseteq \tau_{\gamma_{2}}$. Thus $S_{\gamma_{2}} O(X)=\tau_{\gamma_{2}}$.

Remark 2.10 Every $S_{\gamma_{1}}$-open set is S_{1}-open [1].
The converse of the above Remark is not true in general as shown in the following example.

Example 2.11 Let $X=\{x, y, z\}$ with $\tau_{1}=\{X, \varphi,\{y\},\{x, y\},\{y, z\}\}$ and $\tau_{2}=\{X, \varphi,\{y\},\{y, z\}\}$, define γ_{1} on τ_{1} by $\gamma_{1}(A)=X$ for all $A \in \tau_{1}$, then $\{y\}$ is S_{1}-open set but not $S_{\gamma_{1}}$-open.

Remark 2.12 Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a space and $x \in X$. If $\{x\}$ is $S_{\gamma_{1}-o p e n, ~}$ then $\{x\}$ is 21-semi closed.

Proposition 2.13 Let $\left(Y, \sigma_{1}, \sigma_{2}\right)$ be a subspace of a space $\left(X, \tau_{1}, \tau_{2}\right)$. If $A \in S_{\gamma_{1}} O(Y)$ and $Y \in 21-S C(X)$, then for each $x \in A$, there exists a 21-semi closed set F in X such that $x \in F \subseteq A$.

Proof. Let $A \in S_{\gamma_{1}} O(Y)$, then $A \in \sigma_{1}$ and for each $x \in A$, there exists a 21-semi closed set F in Y such that $x \in F \subseteq A$. Since $Y \in 21-S C(X)$, by Proposition 1.1, $F \in 21-S C(X)$, which completes the proof.

Proposition 2.14 A subset B of a space X is $S_{\gamma_{1}}$-closed if and only if B is an γ_{1}-closed set and it is an intersection of 21-semi open sets.

Proof. Obvious.
Proposition 2.15 Let $\left\{B_{\alpha}: \alpha \in \Delta\right\}$ be a collection of $S_{\gamma_{1}}$-closed sets in a bitopological space X. Then $\bigcap\left\{B_{\alpha}: \alpha \in \Delta\right\}$ is $S_{\gamma_{1}}$-closed set.

Proof. Follows from Proposition 2.4.
Definition 2.16 Let $\left(X, \tau_{1}, \tau_{2}\right)$ be a bitopological space and $x \in X$. A subset N of X is said to be $S_{\gamma_{1}}$-neighborhood of x if there exists a $S_{\gamma_{1}}$-open set U in X such that $x \in U \subseteq N$.

Theorem 2.17 A subset A of a bitopological space $\left(X, \tau_{1}, \tau_{2}\right)$ is $S_{\gamma_{1}-\text { open if }}$ and only if it is a $S_{\gamma_{1}}$-neighborhood of each of its points.

Proof. Let $A \subseteq X$ be a $S_{\gamma_{1}}$-open set, since for every $x \in A, x \in A \subseteq A$ and A is $S_{\gamma_{1}}$-open. This shows that A is $S_{\gamma_{1}}$-neighborhood of each of its points. Conversely, suppose that A is a $S_{\gamma_{1}}$-neighborhood of each of its points, then for each $x \in A$, there exists $B_{x} \in S_{\gamma_{1}} O(X)$ such that $x \in B_{x} \subseteq A$. Therefore $A=\bigcup\left\{B_{x}: x \in A\right\}$. Since each B_{x} is $S_{\gamma_{1}}$-open, it follows that A is a $S_{\gamma_{1}}$-open set.

Definition 2.18 For any subset A in a space X, the $S_{\gamma_{1}}$-interior of A, denoted by $S_{\gamma_{1}} \operatorname{Int}(A)$, is defined by the union of all $S_{\gamma_{1}}$-open sets which are contained in A.

Remark 2.19 Let A be any subset of a bitopological space. A point $x \in A$ is belongs to $S_{\gamma_{1}} \operatorname{Int}(A)$ if and only if there exists an $S_{\gamma_{1}}$-open set G such that $x \in G \subset A$.

Proposition 2.20 Let A be any subset of a space X. If a point x is in the $S_{\gamma_{1}}$-interior of A, then there exists a 21-semi closed set F of X containing x such that $F \subseteq A$.

Proof. Suppose that $x \in S_{\gamma_{1}} \operatorname{Int}(A)$, then there exists a $S_{\gamma_{1}}$-open set U of X containing x such that $U \subseteq A$. Since U is a $S_{\gamma_{1}}$-open set, so there exists a 21-semi closed set F containing x such that $x \in F \subseteq U \subseteq A$. Hence, $x \in F \subseteq A$.

Definition 2.21 For any subset A in a space X, the $S_{\gamma_{1}}$-closure of A, denoted by $S_{\gamma_{1}} C l(A)$, is defined by the intersection of all $S_{\gamma_{1}}$-closed sets containing A.

Corollary 2.22 Let A be a set in a space X. A point $x \in X$ is in the $S_{\gamma_{1}}$-closure of A if and only if $A \cap U \neq \varphi$ for every $S_{\gamma_{1}}$-open set U containing x.

Proof. Let $x \notin S_{\gamma_{1}} C l(A)$. Then $x \notin \bigcap F$, where F is $S_{\gamma_{1}}$-closed with $A \subseteq F$. So $x \in X \backslash \bigcap F$ and $X \backslash \bigcap F$ is a $S_{\gamma_{1}-\text { open set containing } x \text { and hence, }}^{\text {- }}$ $(X \backslash \cap F) \cap A \subseteq(X \backslash \cap F) \cap(\bigcap F)=\varphi$.
Conversely, suppose that there exists a $S_{\gamma_{1}}$-open set containing x with $A \cap U=$ φ, then $A \subseteq X \backslash U$ and $X \backslash U$ is a $S_{\gamma_{1}}$-closed with $x \notin X \backslash U$. Hence, $x \notin S_{\gamma_{1}} C l(A)$.

Proposition 2.23 Let A be any subset of a space X and x is a point of X. If $A \cap F \neq \varphi$ for every 21 -semi closed set F of X containing x, then the point x is in the $S_{\gamma_{1}}$-closure of A.

Proof. Suppose that U is any $S_{\gamma_{1}}$-open set containing x, then by Definition 2.1, there exists a 21 -semi closed set F such that $x \in F \subseteq U$. So by hypothesis $A \cap F \neq \varphi$ which implies that $A \cap U \neq \varphi$ for every $S_{\gamma_{1}}$-open set U containing x. Therefore, by Corollary $2.22, x \in S_{\gamma_{1}} C l(A)$.

$3 \quad S_{\gamma_{1}}$-Continuous and 12-Almost $S_{\gamma_{1}}$-Continuous

Definition 3.1 A function $f: X \rightarrow Y$ is called $S_{\gamma_{1}}$-continuous at a point $x \in X$ if for each 1-open set V of Y containing $f(x)$, there exists a $S_{\gamma_{1}-o p e n ~}$ set U of X containing x such that $f(U) \subseteq V$. If f is $S_{\gamma_{1}}$-continuous at every point x of X, then it is called $S_{\gamma_{1}}$-continuous.

Definition 3.2 A function $f: X \rightarrow Y$ is called 12-almost $S_{\gamma_{1}}$-continuous at a point $x \in X$ if for each 1-open set V of Y containing $f(x)$, there exists a $S_{\gamma_{1}}$-open set U of X containing x such that $f(U) \subseteq 1 \operatorname{Int}(2 C l V)$. If f is 12-almost $S_{\gamma_{1}}$-continuous at every point x of X, then it is called 12-almost $S_{\gamma_{1}}$-continuous.

It is obvious from the definition that $S_{\gamma_{1}}$-continuity implies 12 -almost $S_{\gamma_{1}}$ continuity. However, the converse is not true in general as it is shown in the following example.

Example 3.3 Let $X=\{x, y, z\}, \tau_{1}=\{X, \varphi,\{x\},\{x, y\}\}, \tau_{2}=\{X, \varphi$, $\{z\},\{y, z\}\}, \sigma_{1}=\{X, \varphi,\{x\},\{z\},\{x, z\}\}, \sigma_{2}=\{X, \varphi,\{y, z\}\}$, and γ_{1} defined on τ_{1} by $\gamma_{1}(A)=A$ for all $A \in \tau_{1}$. Then the identity function f : $\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(X, \sigma_{1}, \sigma_{2}\right) f$ is 12-almost $S_{\gamma_{1}}$-continuous but not $S_{\gamma_{1}}$-continuous at z, because $\{z\}$ is a 1 -open set in $\left(X, \sigma_{1}, \sigma_{2}\right.$) containing $f(z)=z$, there exists no $S_{\gamma_{1}}$-open set U in $\left(X, \tau_{1}, \tau_{2}\right)$ containing z such that $x \in f(U) \subseteq\{z\}$.

Proposition 3.4 Let X and Y be bitopological spaces. A function $f: X \rightarrow$ Y is $S_{\gamma_{1}}$-continuous if and only if the inverse image under f of every 1-open set in Y is a $S_{\gamma_{1}}$-open in X.

Proof. Assume that f is $S_{\gamma_{1}}$-continuous and let V be any 1-open set in Y. We have to show that $f^{-1}(V)$ is $S_{\gamma_{1}}$-open in X.
If $f^{-1}(V)=\varphi$, there is nothing to prove. So let $f^{-1}(V) \neq \varphi$ and let $x \in f^{-1}(V)$ so that $f(x) \in V$. By $S_{\gamma_{1}}$-continuity of f, there exists an $S_{\gamma_{1}}$-open set U in X containing x such that $f(U) \subseteq V$, that is $x \in U \subseteq f^{-1}(V)$, so $f^{-1}(V)$ is a $S_{\gamma_{1}}$-open set.

Conversely, let $f^{-1}(V)$ be $S_{\gamma_{1}}$-open in X for every 1-open set V in Y. To show that f is $S_{\gamma_{1}}$-continuous at $x \in X$, let V be any 1-open set in Y such that $f(x) \in V$ so that $x \in f^{-1}(V)$. By hypothesis $f^{-1}(V)$ is $S_{\gamma_{1}}$-open in X. If $f^{-1}(V)=U$, then U is a $S_{\gamma_{1}}$-open set in X containing x such that

$$
f(U)=f\left(f^{-1}(V)\right) \subseteq V
$$

Hence f is a $S_{\gamma_{1}}$-continuous function. This completes the proof.
The proof of the following corollary follows directly from their definitions.

Corollary 3.5

1. Every $S_{\gamma_{1}}$-continuous function is γ_{1}-continuous [2].
2. Every $S_{\gamma_{1}}$-continuous function is S_{1}-continuous [1].
3. Every 12-almost $S_{\gamma_{1}}$-continuous function is 12-almost S_{1}-continuous.
4. Every 12-almost $S_{\gamma_{1}}$-continuous function is 12-almost continuous.

By Definition 3.1, Definition 3.2 and corollary 3.5, we obtain the following diagram.

In the sequel, it will be shown that none of the implications concerning $S_{\gamma_{1}}$-continuity and 12-almost $S_{\gamma_{1}}$-continuity is reversible.

Example 3.6 Let $X=\{x, y, z, w\}$ with four topologies $\tau_{1}=\{X, \varphi,\{z\}$, $\{x, w\},\{x, z, w\}\}, \tau_{2}=\{X, \varphi,\{y\},\{x, y, w\}\}, \sigma_{1}=\{X, \varphi,\{x\},\{y, z\}$, $\{x, y, z\}\}$ and $\sigma_{2}=\{X, \varphi,\{w\},\{x, y, z\}\}$, and γ_{1} defined on τ_{1} by $\gamma_{1}(A)=A$ for all $A \in \tau_{1}$. Then the family of $S_{\gamma_{1}}$-open subsets of X with respect to τ_{1} and τ_{2} is:
$S_{\gamma_{1}} O(X)=\{X, \varphi,\{z\},\{x, z, w\}\}$. We defined the function $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow$ $\left(X, \sigma_{1}, \sigma_{2}\right)$ as follows $f(x)=y, f(y)=w, f(z)=x, f(w)=z$. Then f is γ_{1-} continuous but not $S_{\gamma_{1}}$-continuous, because $\{y, z\}$ is 1-open set in ($X, \sigma_{1}, \sigma_{2}$) containing $f(x)=y$, there exists no $S_{\gamma_{1}}$-open set U in $\left(X, \tau_{1}, \tau_{2}\right)$ containing x such that $x \in f(U) \subseteq\{y, z\}$.

Example 3.7 In Example 3.6, if we have $f:\left(X, \tau_{1}, \tau_{2}\right) \rightarrow\left(X, \sigma_{1}, \sigma_{2}\right)$ is a function defined as follows $f(x)=x, f(y)=f(z)=w, f(w)=y$, then f is 12-almost continuous but not 12-almost $S_{\gamma_{1}}$-continuous, because $\{x\}$ is a 1 -open set in $\left(X, \sigma_{1}, \sigma_{2}\right)$ containing $f(x)=x$, there exists no $S_{\gamma_{1}}$-open set U in $\left(X, \tau_{1}, \tau_{2}\right)$ containing x such that $x \in f(U) \subseteq 1$-Int (2-Cl $\left.\{x\}\right)$ implies that $f(U) \subseteq\{x, y, z\}$.

Proposition 3.8 For a function $f: X \rightarrow Y$, the following statements are equivalent:

1. f is $S_{\gamma_{1}}$-continuous.
2. $f^{-1}(V)$ is a $S_{\gamma_{1}}$-open set in X, for each 1-open set V in Y.
3. $f^{-1}(F)$ is a $S_{\gamma_{1}}$-closed set in X, for each 1-closed set F in Y.
4. $f\left(S_{\gamma_{1}} C l(A)\right) \subseteq 1 C l(f(A))$, for each subset A of X.
5. $S_{\gamma_{1}} C l\left(f^{-1}(B)\right) \subseteq f^{-1}(1 C l(B))$, for each subset B of Y.
6. $f^{-1}(1 \operatorname{Int}(B)) \subseteq S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(B)\right)$, for each subset B of Y.
7. $1 \operatorname{Int}(f(A)) \subseteq f\left(S_{\gamma_{1}} \operatorname{Int}(A)\right)$, for each subset A of X.

Proof. $(1) \Rightarrow(2)$. Directly from Proposition 3.4.
$(2) \Rightarrow(3)$. Let F be any 1-closed set of Y. Then $Y \backslash F$ is an 1-open set of Y. By $(2), f^{-1}(Y \backslash F)=X \backslash f^{-1}(F)$ is $S_{\gamma_{1}}$-open set in X and hence $f^{-1}(F)$ is $S_{\gamma_{1}}$-closed set in X.
$(3) \Rightarrow(4)$. Let A be any subset of X. Then $f(A) \subseteq 1 C l(f(A))$ and $1 C l(f(A))$ is 1-closed in Y. Hence $A \subseteq f^{-1}(1 C l(f(A)))$. By (3), we have $f^{-1}(1 C l(f(A)))$ is a $S_{\gamma_{1}}$-closed set in X. Therefore, $S_{\gamma_{1}} C l(A) \subseteq f^{-1}(1 C l(f(A)))$. Hence $f\left(S_{\gamma_{1}} C l(A)\right) \subseteq 1 C l(f(A))$.
$(4) \Rightarrow(5)$. Let B be any subset of Y. Then $f^{-1}(B)$ is a subset of X. By (4), we have $f\left(S_{\gamma_{1}} C l\left(f^{-1}(B)\right)\right) \subseteq 1 C l\left(f\left(f^{-1}(B)\right)\right)=1 C l(B)$. Hence $S_{\gamma_{1}} C l\left(f^{-1}(B)\right) \subseteq f^{-1}(1 C l(B))$.
(5) \Rightarrow (6). Let B be any subset of Y. Then apply (5) to $Y \backslash B$ is obtained $S_{\gamma_{1}} C l\left(f^{-1}(Y \backslash B)\right) \subseteq f^{-1}(1 C l(Y \backslash B)) \Leftrightarrow S_{\gamma_{1}} C l\left(X \backslash f^{-1}(B)\right) \subseteq f^{-1}(Y \backslash$ $1 \operatorname{Int}(B)) \Leftrightarrow X \backslash S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(B)\right) \subseteq X \backslash f^{-1}(1 \operatorname{Int}(B)) \Leftrightarrow f^{-1}(1 \operatorname{Int}(B)) \subseteq$ $S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(B)\right)$. Therefore, $f^{-1}(1 \operatorname{Int}(B)) \subseteq S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(B)\right)$.
$(6) \Rightarrow(7)$. Let A be any subset of X. Then $f(A)$ is a subset of Y. By (6), we have $f^{-1}(1 \operatorname{Int}(f(A))) \subseteq S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(f(A))\right)=S_{\gamma_{1}} \operatorname{Int}(A)$. Therefore, $1 \operatorname{Int}(f(A)) \subseteq f\left(S_{\gamma_{1}} \operatorname{Int}(A)\right)$.
(7) $\Rightarrow(1)$. Let $x \in X$ and let V be any 1-open set of Y containing $f(x)$. Then $x \in f^{-1}(V)$ and $f^{-1}(V)$ is a subset of X. By (7), we have $1 \operatorname{Int}\left(f\left(f^{-1}(V)\right)\right) \subseteq$ $f\left(S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(V)\right)\right)$. Then $1 \operatorname{Int}(V) \subseteq f\left(S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(V)\right)\right)$. Since V is an 1open set. Then $V \subseteq f\left(S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(V)\right)\right)$ implies that $f^{-1}(V) \subseteq S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(V)\right)$. Therefore, $f^{-1}(V)$ is a $S_{\gamma_{1}}$-open set in X which contains x and clearly $f\left(f^{-1}(V)\right) \subseteq$ V. Hence f is $S_{\gamma_{1}}$-continuous.

Proposition 3.9 For a function $f: X \rightarrow Y$, the following statements are equivalent:

1. f is 12-almost $S_{\gamma_{1}}$-continuous.
2. For each $x \in X$ and each 12-regular open set V of Y containing $f(x)$,

3. For each $x \in X$ and each 12- δ-open set V of Y containing $f(x)$, there exists a $S_{\gamma_{1}}$-open U in X containing x such that $f(U) \subseteq V$.

Proof. (1) \Rightarrow (2). Let $x \in X$ and let V be any 12 -regular open set of Y containing $f(x)$. By (1), there exists a $S_{\gamma_{1}}$-open set U of X containing x such that $f(U) \subseteq 1 \operatorname{Int}(2 C l(V))$. since V is 12 -regular open, then $1 \operatorname{Int}(2 C l(V))=$ V. Therefore, $f(U) \subseteq V$.
$(2) \Rightarrow(3)$. Let $x \in X$ and let V be any $12-\delta$-open set of Y containing $f(x)$. Then for each $f(x) \in V$, there exists an 1-open set G containing $f(x)$ such that $G \subseteq 1 \operatorname{Int}(2 C l(G)) \subseteq V$. Since $1 \operatorname{Int}(2 C l(G))$ is 12 -regular open set of Y containing $f(x)$. By (2), there exists a $S_{\gamma_{1}}$-open set U in X containing x such that $f(U) \subseteq 1 \operatorname{Int}(2 C l(G)) \subseteq V$. This completes the proof.
$(3) \Rightarrow(1)$. Let $x \in X$ and let V be any 1-open set of Y containing $f(x)$. Then $1 \operatorname{Int}\left(2 C l(V)\right.$ is $12-\delta$-open set of Y containing $f(x)$. By (3), there exists a $S_{\gamma_{1}}-$ open set U in X containing x such that $f(U) \subseteq 1 \operatorname{Int}(2 C l(V))$. Therefore, f is 12 -almost $S_{\gamma_{1}}$-continuous.

Proposition 3.10 For a function $f: X \rightarrow Y$, the following statements are equivalent:

1. f is 12-almost $S_{\gamma_{1}}$-continuous.
2. $f^{-1}(1 \operatorname{Int}(2 C l(V)))$ is a $S_{\gamma_{1}}$-open set in X, for each 1-open set V in Y.
3. $f^{-1}(1 C l(2 \operatorname{Int}(F)))$ is a $S_{\gamma_{1}}$-closed set in X, for each 1-closed set F in Y.
4. $f^{-1}(F)$ is a $S_{\gamma_{1}}$-closed set in X, for each 12 -regular closed set F of Y.
5. $f^{-1}(V)$ is a $S_{\gamma_{1}}$-open set in X, for each 12 -regular open set V of Y.

Proof. (1) $\Rightarrow(2)$. Let V be any 1-open set in Y. We have to show that $f^{-1}(1 \operatorname{Int}(2 C l(V)))$ is $S_{\gamma_{1} \text {-open set in } X \text {. Let } x \in f^{-1}(1 \operatorname{Int}(2 C l(V))) \text {. Then }{ }^{\text {}} \text {. } 2 C l}$ $f(x) \in 1 \operatorname{Int}(2 C l(V))$ and $1 \operatorname{Int}(2 C l(V))$ is an 12-regular open set in Y. Since f is 12-almost $S_{\gamma_{1}}$-continuous, then by Proposition 3.9, there exists a $S_{\gamma_{1}}$-open set U of X containing x such that $f(U) \subseteq 1 \operatorname{Int}(2 C l(V))$. Which implies that $x \in U \subseteq f^{-1}(1 \operatorname{Int}(2 C l(V)))$. Therefore, $f^{-1}(1 \operatorname{Int}(2 C l(V)))$ is a $S_{\gamma_{1}}$-open set in X.
$(2) \Rightarrow(3)$. Let F be any 1-closed set of Y. Then $Y \backslash F$ is an 1-open set of Y. By $(2), f^{-1}(1 \operatorname{Int}(2 C l(Y \backslash F)))$ is a $S_{\gamma_{1}}$-open set in X and $f^{-1}(1 \operatorname{Int}(2 C l(Y \backslash F)))=$
$f^{-1}(1 \operatorname{Int}(Y \backslash 2 \operatorname{Int}(F)))=f^{-1}(Y \backslash 1 C l(2 \operatorname{Int}(F)))=X \backslash f^{-1}(1 C l(2 \operatorname{Int}(F)))$ is a $S_{\gamma_{1}}$-open set in X and hence $f^{-1}(1 C l(2 \operatorname{Int}(F)))$ is $S_{\gamma_{1}}$-closed set in X.
$(3) \Rightarrow$ (4). Let F be any 12 -regular closed set of Y. Then F is an 1-closed set of Y. By (3), $f^{-1}(1 C l(2 \operatorname{Int}(F)))$ is $S_{\gamma_{1}}$-closed set in X. Since F is 12regular closed set, then $f^{-1}(1 C l(2 \operatorname{Int}(F)))=f^{-1}(F)$. Therefore, $f^{-1}(F)$ is a $S_{\gamma_{1}}$-closed set in X.
$(4) \Rightarrow(5)$. Let V be any 12-regular open set of Y. Then $Y \backslash V$ is an 12-regular closed set of Y and by (4), we have $f^{-1}(Y \backslash V)=X \backslash f^{-1}(V)$ is a $S_{\gamma_{1}}$-closed set in X and hence $f^{-1}(V)$ is a $S_{\gamma_{1}}$-open set in X.
$(5) \Rightarrow(6)$. Let G be any 12 - δ-open set in $Y, G=\bigcup\left\{V_{\alpha}: \alpha \in \Delta\right\}$ where V_{α} is 12-regular open. Then $f^{-1}(G)=\bigcup\left\{f^{-1}\left(V_{\alpha}\right)\right\}$, from (5) we have $f^{-1}\left(V_{\alpha}\right)$ is a $S_{\gamma_{1}}$-open set, then $f^{-1}(G)=\bigcup\left\{f^{-1}\left(V_{\alpha}\right)\right\}$ is a $S_{\gamma_{1}}$-open.
$(6) \Rightarrow(1)$. Let $x \in X$ and let V be any $12-\delta$-open set of Y containing $f(x)$. Then $x \in f^{-1}(V)$. By (6), we have $f^{-1}(V)$ is a $S_{\gamma_{1}}$-open set in X. Therefore, we obtain $f\left(f^{-1}(V)\right) \subseteq V$. Hence by Proposition 3.9, f is 12 -almost $S_{\gamma_{1}}{ }^{-}$ continuous.

Proposition 3.11 For a function $f: X \rightarrow Y$, the following statements are equivalent:

1. f is 12-almost $S_{\gamma_{1}}$-continuous.
2. $f\left(S_{\gamma_{1}} C l(A)\right) \subseteq 12 C l_{\delta}(f(A))$, for each subset A of X.
3. $S_{\gamma_{1}} C l\left(f^{-1}(B)\right) \subseteq f^{-1}\left(12 C l_{\delta}(B)\right)$, for each subset B of Y.
4. $f^{-1}(F)$ is $S_{\gamma_{1}}$-closed set in X, for each 12- δ-closed set F of Y.
5. $f^{-1}(V)$ is $S_{\gamma_{1}}$-open set in X, for each 12- δ-open set V of Y.
6. $f^{-1}\left(12 \operatorname{Int}_{\delta}(B)\right) \subseteq S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(B)\right)$, for each subset B of Y.
7. $12 \operatorname{Int}_{\delta}(f(A)) \subseteq f\left(S_{\gamma_{1}} \operatorname{Int}(A)\right)$, for each subset A of X.

Proof. $(1) \Rightarrow(2)$. Let A be a subset of X. Since $12 C l_{\delta}(f(A))$ is an 12-δ-closed set in Y, then $Y \backslash 12 C l_{\delta}(f(A))$ is 12 - δ-open, from Proposition 3.10, $f^{-1}\left(Y \backslash 12 C l_{\delta}(f(A))\right)$ is $S_{\gamma_{1}}$-open, which implies that $X \backslash f^{-1}\left(12 C l_{\delta}(f(A))\right)$ is also $S_{\gamma_{1} \text {-open, so }} f^{-1}\left(12 C l_{\delta}(f(A))\right)$ is $S_{\gamma_{1}}$-closed set in X. Since $A \subseteq$ $f^{-1}\left(12 C l_{\delta}(f(A))\right)$, so $S_{\gamma_{1}} C l(A) \subseteq f^{-1}\left(12 C l_{\delta}(f(A))\right)$. Therefore, $f\left(S_{\gamma_{1}} C l(A)\right)$ $\subseteq 12 C l_{\delta}(f(A))$ is obtained.
$(2) \Rightarrow(3)$. Let B be a subset of Y. We have $f^{-1}(B)$ is a subset of X. By (2), we have $f\left(S_{\gamma_{1}} C l\left(f^{-1}(B)\right)\right) \subseteq 12 C l_{\delta}\left(f\left(f^{-1}(B)\right)\right)=12 C l_{\delta}(B)$. Hence $S_{\gamma_{1}} C l\left(f^{-1}(B)\right) \subseteq f^{-1}\left(12 C l_{\delta}(B)\right)$.
$(3) \Rightarrow(4)$. Let F be any $12-\delta$-closed set of Y. By (3), we have $S_{\gamma_{1}} C l\left(f^{-1}(F)\right)$ $\subseteq f^{-1}\left(12 C l_{\delta}(F)\right)=f^{-1}(F)$ and hence $f^{-1}(F)$ is a $S_{\gamma_{1}}$-closed set in X.
(4) $\Rightarrow(5)$. Let V be any $12-\delta$-open set of Y. Then $Y \backslash V$ is an $12-\delta$-closed set of Y and by (4), we have $f^{-1}(Y \backslash V)=X \backslash f^{-1}(V)$ is a $S_{\gamma_{1}}$-closed set in X. Hence $f^{-1}(V)$ is a $S_{\gamma_{1}}$-open set in X.
$(5) \Rightarrow(6)$. For each subset B of Y. We have $12 \operatorname{Int} t_{\delta}(B) \subseteq B$. Then $f^{-1}\left(12 \operatorname{Int}_{\delta}(B)\right) \subseteq f^{-1}(B)$. By (5), $f^{-1}\left(12 \operatorname{Int} t_{\delta}(B)\right)$ is a $S_{\gamma_{1}}$ open set in X. Then $f^{-1}\left(12 \operatorname{Int}_{\delta}(B)\right) \subseteq S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(B)\right)$.
$(6) \Rightarrow(7)$. Let A be any subset of X. Then $f(A)$ is a subset of Y. By (6), we obtain that $f^{-1}\left(12 \operatorname{Int} t_{\delta}(f(A))\right) \subseteq S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(f(A))\right)$. Hence $f^{-1}\left(12 \operatorname{Int} t_{\delta}(f(A))\right) \subseteq$ $S_{\gamma_{1}} \operatorname{Int}(A)$, which implies that $12 \operatorname{Int}_{\delta}(f(A)) \subseteq f\left(S_{\gamma_{1}} \operatorname{Int}(A)\right)$.
$(7) \Rightarrow(1)$. Let $x \in X$ and V be any 12 -reguler open set of Y containing $f(x)$. Then $x \in f^{-1}(V)$ and $f^{-1}(V)$ is a subset of X. By (7), we get $12 \operatorname{Int}_{\delta}\left(f\left(f^{-1}(V)\right)\right) \subseteq f\left(S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(V)\right)\right)$ implies that $12 \operatorname{Int} \delta_{\delta}(V) \subseteq f\left(S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(V)\right)\right)$. Since V is 12-reguler open set and hence 12- δ-open set, then $V \subseteq f\left(S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(V)\right)\right)$ this implies that $f^{-1}(V) \subseteq S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(V)\right)$. Therefore, $f^{-1}(V)$ is a $S_{\gamma_{1}}$-open set in X which contains x and clearly $f\left(f^{-1}(V)\right) \subseteq V$. Hence, by Proposition 3.9 , f is 12 -almost $S_{\gamma_{1}}$-continuous.

Proposition 3.12 For a function $f: X \rightarrow Y$, the following statements are equivalent:

1. f is 12-almost $S_{\gamma_{1}}$-continuous.
2. $S_{\gamma_{1}} C l\left(f^{-1}(V)\right) \subseteq f^{-1}(1 C l(V))$, for each 21- β-open set V of Y.
3. $f^{-1}(1 \operatorname{Int}(F)) \subseteq S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(F)\right)$, for each 21- β-closed set F of Y.
4. $f^{-1}(1 \operatorname{Int}(F)) \subseteq S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(F)\right)$, for each 21 -semi closed set F of Y.
5. $S_{\gamma_{1}} C l\left(f^{-1}(V)\right) \subseteq f^{-1}(1 C l(V))$, for each 21-semi open set V of Y.

Proof. $(1) \Rightarrow(2)$. Let V be any $21-\beta$-open set of Y. It follows that $1 C l(V)$ is an 12 -reguler closed set in Y. Since f is 12 -almost $S_{\gamma_{1}}$-continuous. Then by Proposition 3.10, $f^{-1}(V)$ is a $S_{\gamma_{1}}$-closed set in X. Therefore, we obtain $S_{\gamma_{1}} C l\left(f^{-1}(V)\right) \subseteq f^{-1}(1 C l(V))$.
$(2) \Rightarrow(3)$. Let F be any $21-\beta$-closed set of Y. Then $Y \backslash F$ is a $21-\beta$-open set of Y and by (2), we have $S_{\gamma_{1}} C l\left(f^{-1}(Y \backslash F)\right) \subseteq f^{-1}(1 C l(Y \backslash F)) \Leftrightarrow S_{\gamma_{1}} C l(X \backslash$ $\left.f^{-1}(F)\right) \subseteq f^{-1}(Y \backslash 1 \operatorname{Int}(F)) \Leftrightarrow X \backslash S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(F)\right) \subseteq X \backslash f^{-1}(1 \operatorname{Int}(F))$. Therefore, $f^{-1}(1 \operatorname{Int}(F)) \subseteq S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(F)\right)$.
$(3) \Rightarrow(4)$. This is obvious since every 21 -semi closed set is $21-\beta$-closed set.
$(4) \Rightarrow(5)$. Let V be any 21 -semi open set of Y. Then $Y \backslash V$ is 21 -semi closed set and by (4), we have $f^{-1}(1 \operatorname{Int}(Y \backslash V)) \subseteq S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(Y \backslash V)\right) \Leftrightarrow f^{-1}(Y \backslash$ $1 C l(V)) \subseteq S_{\gamma_{1}} \operatorname{Int}\left(X \backslash f^{-1}(V)\right) \Leftrightarrow X \backslash f^{-1}(1 C l(V)) \subseteq X \backslash S_{\gamma_{1}} C l\left(f^{-1}(V)\right)$. Therefore, $S_{\gamma_{1}} C l\left(f^{-1}(V)\right) \subseteq f^{-1}(1 C l(V))$.
$(5) \Rightarrow(1)$. Let F be any 12 -reguler closed set of Y. Then F is a 21 -semi open

On $S_{\gamma_{1}}$-Open Sets and $S_{\gamma_{1}}$-Continuous...
set of Y. By (5), we have $S_{\gamma_{1}} C l\left(f^{-1}(F)\right) \subseteq f^{-1}(1 C l(F))=f^{-1}(F)$. This shows that $f^{-1}(F)$ is a $S_{\gamma_{1}}$-closed set in X. Therefore, by Proposition 3.10, f is 12-almost $S_{\gamma_{1}}$-continuous.

Proposition 3.13 A function $f: X \rightarrow Y$ is 12-almost $S_{\gamma_{1}}$-continuous if and only if $f^{-1}(V) \subseteq S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(1 \operatorname{Int}(2 C l(V)))\right)$ for each 1-open set V of Y.

Proof. Let V be any 1-open set of Y. Then $V \subseteq 1 \operatorname{Int}(2 C l(V))$ and 1Int $(2 C l(V))$ is 12-reguler open set in Y. Since f is 12 -almost $S_{\gamma_{1}}$-continuous, by Proposition 3.10, $f^{-1}(1 \operatorname{Int}(2 C l(V)))$ is a $S_{\gamma_{1}}$-open set in X and hence we obtain that $f^{-1}(V) \subseteq f^{-1}(1 \operatorname{Int}(2 C l(V)))=S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(1 \operatorname{Int}(2 C l(V)))\right)$.
Conversely, Let V be any 12-regular open set of Y. Then V is 1-open set of Y. By hypothesis, we have $f^{-1}(V) \subseteq S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(1 \operatorname{Int}(2 C l(V)))\right)=S_{\gamma_{1}} \operatorname{Int}\left(f^{-1}(V)\right)$. Therefore, $f^{-1}(V)$ is a $S_{\gamma_{1}}$-open set in X and hence by Proposition 3.10, f is 12-almost $S_{\gamma_{1}}$-continuous.

From Proposition 3.13, the following result is obtained.
Corollary 3.14 A function $f: X \rightarrow Y$ is 12-almost $S_{\gamma_{1}}$-continuous if and only if $S_{\gamma_{1}} C l\left(f^{-1}(1 C l(2 \operatorname{Int}(F)))\right) \subseteq f^{-1}(F)$ for each 1-closed set F of Y.

Proposition 3.15 Let $f: X \rightarrow Y$ is an 12-almost $S_{\gamma_{1}}$-continuous function and let V be any 1 -open subset of Y. If $x \in S_{\gamma_{1}} C l\left(f^{-1}(V)\right) \backslash f^{-1}(V)$, then $f(x) \in S_{\gamma_{1}} C l(V)$.

Proof. Let $x \in X$ be such that $x \in S_{\gamma_{1}} C l\left(f^{-1}(V)\right) \backslash f^{-1}(V)$ and suppose $f(x) \notin S_{\gamma_{1}} C l(V)$. Then there exists a $S_{\gamma_{1}}$-open set H containing $f(x)$ such that $H \cap V=\varphi$. Then $2 C l(H) \cap V=\varphi$ implies 1Int $(2 C l(H)) \cap V=\varphi$ and $1 \operatorname{Int}(2 \mathrm{Cl}(H))$ is an 12-regular open set. Since f is 12 -almost $S_{\gamma_{1}}$-continuous, by Proposition 3.10, there exists a $S_{\gamma_{1}}$-open set U in X containing x such that $f(U) \subseteq 1 \operatorname{Int}(2 C l(H))$. Therefore, $f(U) \cap V=\varphi$. However, since $x \in$ $S_{\gamma_{1}} C l\left(f^{-1}(V)\right), U \cap f^{-1}(V) \neq \varphi$ for every $S_{\gamma_{1}}$-open set U in X containing x, so that $f(U) \cap V \neq \varphi$. We get a contradiction. It follows that $f(x) \in S_{\gamma_{1}} C l(V)$.

References

[1] A.B. Khelaf and A.M. Omar, S_{\imath}-open sets and S_{\imath}-continuity in bitopological spaces, Tamkang Journal of Mathematics, 43(2012), 81-97.
[2] C.K. Basu, B.M.U. Afsan and M.K. Ghosh, A class of functions and separation axioms with respect to an operation, Hacettepe Journal of Mathematics and Statistics, 38(2) (2009), 103-118.
[3] C.G. Kariofillis, On pairwise almost compactness, Ann. Soc. Sci. Bruxelles., 100(1986), 129-137.
[4] F.H. Khedr and A.M. Alshibani, On pairwise super continuous mapping in bitopological spaces, Internat. J. Math. and Math. Sci., 14(4) (1991), 715-722.
[5] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36(1991), 175-184.
[6] M. Jelic, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math. Ser., 3(1990), 25-29.
[7] M. Jelic, Feebly p-continuous mappings, V International Meeting on Topology in Italy (Italian) (Lecce, 1990/Otranto, 1990), Rend. Circ. Mat. Palermo. (2) Suppl., 24(1990), 387-395.
[8] S.N. Maheshwari and R. Prasad, Semi open sets and semi continuous function in bitopological spaces, Math. Notae., 26(1977/78), 29-37.
[9] G.S.S. Krishnan, A new class of semi open sets in a topological space, Proc. NCMCM, Allied Publishers, New Delhi, (2003), 305-311.
[10] S. Kasahara, Operalion-compact spaces, Math. Japonica, 24(1979), 97105.
[11] F.H. Khedr and S.M. Al-Areefi, Precontinuity and semi-pre-continuity in bitopological spaces, Indian. J. pure. appl. Math., 23(9) (1992), 625-633.
[12] S. Bose and D. Sinha, Almost open, Almost closed, θ-continuous and almost compact mapping in bitopological spaces, Bull. Calcutta. Math. Soc., 73(1981), 345-354.

