

Gen. Math. Notes, Vol. 14, No. 2, February 2013, pp.10-22 ISSN 2219-7184; Copyright ©ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

On S_{γ_1} -Open Sets and S_{γ_1} -Continuous in Bitopological Spaces

Hariwan Z. Ibrahim¹ and Alan M. Omar²

¹Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq E-mail: hariwan_math@yahoo.com
²Department of Mathematics, Faculty of Science, University of Duhok, Kurdistan-Region, Iraq E-mail: alan.m.omer@gmail.com

(Received: 16-11-12 / Accepted: 14-1-13)

Abstract

In this paper, we introduce and study the notions of S_{γ_1} -open sets, S_{γ_1} continuous and 12-almost S_{γ_1} -continuous functions in bitopological space. We
also investigated the fundamental properties of such functions.

Keywords: γ -open, S_{γ_1} -open, S_{γ_1} -continuous, 12-almost S_{γ_1} -continuous.

1 Introduction

Throughout this paper, (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed unless otherwise stated. For a subset A of X, the closure of A and the interior of A will be denoted by Cl(A) and Int(A), respectively. Let (X, τ) be a space and A a subset of X. An operation γ [10] on a topology τ is a mapping from τ in to power set P(X) of X such that $V \subset \gamma(V)$ for each $V \in \tau$, where $\gamma(V)$ denotes the value of γ at V. A subset A of X with an operation γ on τ is called γ -open [5] if for each $x \in A$, there exists an open set U such that $x \in U$ and $\gamma(U) \subset A$. Then, τ_{γ} denotes the set of all γ -open set in X. Clearly $\tau_{\gamma} \subset \tau$. Complements of γ -open sets are called γ -closed. The τ_{γ} -interior [9] of A is denoted by τ_{γ} -Int(A) and defined to be the union of all γ -open sets of X contained in A. A topological X with an operation γ on τ is said to be γ -regular [5] if for each $x \in X$ and for each open neighborhood V of x, there exists an open neighborhood U of x such that $\gamma(U)$ contained in V. It is also to be noted that $\tau = \tau_{\gamma}$ if and only if X is a γ -regular space [5].

A subset A of X is said to be *ij*-semi open [8] (resp., *ij*-pre open [6], *ij*- α -open [7], *ij*-semi-preopen [11], *ij*-regular open [12]) if $A \subseteq jCl(iInt(A))$ (resp., $A \subseteq iInt(jCl(A)), A \subseteq iInt(jCl(iInt(A))), A \subseteq jCl(iInt(jCl(A))), A = iInt(jCl(A)))$.

A point x of X is said to be ij- δ -cluster point [4] of A if $A \cap U \neq \varphi$ for every ij-regular open set U containing x, the set of all ij- δ -cluster points of A is called ij- δ -closure of A, a subset A of X is said to be ij- δ -closed if ij- δ -cluster points of $A \subseteq A$, the complement of ij- δ -closed set is ij- δ -open. A point $x \in X$ is in the ij- θ -closure [3] of A, denoted by ij- $Cl_{\theta}(A)$, if $A \cap jCl(U) \neq \varphi$ for every *i*-open set U containing x. A subset A of X is said to be ij- θ -closed if A = ij- $Cl_{\theta}(A)$. A subset A of X is said to be ij- θ -closed.

The complement of an *ij*-semi open (resp., *ij*-pre open, *ij*- α -open, *ij*-semi-preopen, *ij*-regular open) set is said to be *ij*-semi closed (resp., *ij*-pre closed, *ij*- α -closed, *ij*-semi-preclosed, *ij*-regular closed).

Proposition 1.1 Let Y be a subspace of a space (X, τ_1, τ_2) . If A is a 21semi closed subset in Y and Y is 21-semi closed in X, then A is a 21-semi closed in X.

Remark 1.2 [8] It is clear that the intersection of two j-semi closed sets is j-semi closed, and also every i-closed set is j-semi closed.

Remark 1.3 [5] If (X, τ_1) is a γ_1 - T_1 space, then every singleton is γ_1 -closed

Proposition 1.4 [5] Lel $\gamma : \tau \to p(X)$ be a regular operation on τ . If A and B are γ -open, then $A \cap B$ is γ -open.

2 S_{γ_1} -Open Sets

Definition 2.1 An γ_1 -open subset A of a space X is called S_{γ_1} -open if for each $x \in A$, there exists a 21-semi closed set F such that $x \in F \subseteq A$.

The family of all S_{γ_1} -open subsets of a bitopological space (X, τ_1, τ_2) is denoted by $S_{\gamma_1}O(X, \tau_1, \tau_2)$ or $S_{\gamma_1}O(X)$.

A subset B of a space X is called S_{γ_1} -closed if $X \setminus B$ is S_{γ_1} -open. The family of all S_{γ_1} -closed subsets of a bitopological space (X, τ_1, τ_2) is denoted by $S_{\gamma_1}C(X, \tau_1, \tau_2)$ or $S_{\gamma_1}C(X)$.

Proposition 2.2 A subset A of a space X is S_{γ_1} -open if and only if A is γ_1 -open and it is a union of 21-semi closed sets. That is, $A = \bigcup F_{\alpha}$ where A is γ_1 -open and F_{α} is a 21-semi closed set for each α .

Proof. Obvious.

It is clear from the definition that every S_{γ_1} -open subset of a space X is γ_1 -open, but the converse is not true in general as shown by the following example.

Example 2.3 Let $X = \{x, y, z\}$ with $\tau_1 = \{X, \varphi, \{x\}, \{x, y\}, \{x, z\}\}$ and $\tau_2 = \{X, \varphi, \{y\}, \{y, z\}\}$, define γ_1 on τ_1 by $\gamma_1(A) = A$ for all $A \in \tau_1$, the S_{γ_1} -open sets are $\{X, \varphi, \{x\}, \{x, z\}\}$ then $\{x, y\}$ is γ_1 -open but not S_{γ_1} -open.

Proposition 2.4 Let $\{A_{\alpha} : \alpha \in \Delta\}$ be a collection of S_{γ_1} -open sets in a bitopological space X. Then $\bigcup \{A_{\alpha} : \alpha \in \Delta\}$ is also S_{γ_1} -open.

Proof. Since A_{α} is a S_{γ_1} -open set for each α , then A_{α} is γ_1 -open and $\bigcup \{A_{\alpha} : \alpha \in \Delta\}$ is γ_1 -open [5], so for all $x \in A_{\alpha}$, there exists a 21-semi closed set F such that $x \in F \subseteq A_{\alpha}$ this implies that $x \in F \subseteq A_{\alpha} \subseteq \bigcup \{A_{\alpha} : \alpha \in \Delta\}$, then $x \in F \subseteq \bigcup \{A_{\alpha} : \alpha \in \Delta\}$, and hence $\bigcup \{A_{\alpha} : \alpha \in \Delta\}$ is a S_{γ_1} -open set.

Remark 2.5 The intersection of two S_{γ_1} -open sets need not be S_{γ_1} -open as can be seen from the following example:

Example 2.6 Let $X = \{x, y, z\}$ and $\tau_1 = \tau_2 = P(X)$. Define an operation γ_1 on τ_1 by

$$\gamma_1(A) = \begin{cases} A & \text{if } A = \{x, y\} \text{ or } \{x, z\} \text{ or } \{y, z\} \\ X & \text{otherwise} \end{cases}$$

Clearly, $\tau_{\gamma_1} = \{\phi, \{x, y\}, \{x, z\}, \{y, z\}, X\}$. Let $A = \{x, y\}$ and $B = \{x, z\}$, then A and B are S_{γ_1} -open, but $A \cap B = \{x\}$ which is not S_{γ_1} -open.

Proposition 2.7 If γ_1 is a regular operation on τ_1 , then the intersection of two S_{γ_1} -open sets is S_{γ_1} -open.

Proof. Let A and B be two S_{γ_1} -open sets, then A and B are γ_1 -open sets. Since, γ_1 is regular this implies that $A \cap B$ is also an γ_1 -open set, we have to prove that $A \cap B$ is S_{γ_1} -open, let $x \in A \cap B$ then $x \in A$ and $x \in B$, for all $x \in A$ there exists a 21-semi closed set F such that $x \in F \subseteq A$ and for all $x \in B$ there exists a 21-semi closed set E such that $x \in E \subseteq B$, and so that $x \in F \cap E \subseteq A \cap B$. Since the intersection of two 21-semi closed sets is 21-semi closed (by Remark 1.2), this shows that $A \cap B$ is S_{γ_1} -open set.

From propositions 2.4 and 2.7 for γ_1 is a regular operation on τ_1 we conclude that the family of all S_{γ_1} -open subsets of a space X is a topology on X.

Proposition 2.8 A subset A of a space (X, τ_1, τ_2) is S_{γ_1} -open if and only if for each $x \in A$, there exists a S_{γ_1} -open set B such that $x \in B \subseteq A$.

On S_{γ_1} -Open Sets and S_{γ_1} -Continuous...

Proof. Assume that A is a S_{γ_1} -open set in (X, τ_1, τ_2) , let $x \in A$. If we put B = A then B is a S_{γ_1} -open set containing x such that $x \in B \subseteq A$. Conversely, suppose that for each $x \in A$, there exists a S_{γ_1} -open set B_x such that $x \in B_x \subseteq A$, thus $A = \bigcup B_x$ where $B_x \in S_{\gamma_1}O(X)$ for each x, therefore A is S_{γ_1} -open.

Proposition 2.9 If (X, τ_1) is a γ_1 - T_1 space, then $S_{\gamma_2}O(X) = \tau_{\gamma_2}$, where γ_2 is an operation on τ_2 .

Proof. Let A be any subset of a space X and $A \in \tau_{\gamma_2}$, if $A = \varphi$, then $A \in S_{\gamma_2}O(X)$. If $A \neq \varphi$, let $x \in A$, since (X, τ_1) is a γ_1 - T_1 space, then every singlton is γ_1 -closed by Remark 1.2, implies that every singlton is 12-semi closed and hence $x \in \{x\} \subseteq A$. Therefore, $A \in S_{\gamma_2}O(X)$. Hence, $\tau_{\gamma_2} \subseteq S_{\gamma_2}O(X)$, but from definition of S_{γ_2} -open sets we have $S_{\gamma_2}O(X) \subseteq \tau_{\gamma_2}$. Thus $S_{\gamma_2}O(X) = \tau_{\gamma_2}$.

Remark 2.10 Every S_{γ_1} -open set is S_1 -open [1].

The converse of the above Remark is not true in general as shown in the following example.

Example 2.11 Let $X = \{x, y, z\}$ with $\tau_1 = \{X, \varphi, \{y\}, \{x, y\}, \{y, z\}\}$ and $\tau_2 = \{X, \varphi, \{y\}, \{y, z\}\}$, define γ_1 on τ_1 by $\gamma_1(A) = X$ for all $A \in \tau_1$, then $\{y\}$ is S_1 -open set but not S_{γ_1} -open.

Remark 2.12 Let (X, τ_1, τ_2) be a space and $x \in X$. If $\{x\}$ is S_{γ_1} -open, then $\{x\}$ is 21-semi closed.

Proposition 2.13 Let (Y, σ_1, σ_2) be a subspace of a space (X, τ_1, τ_2) . If $A \in S_{\gamma_1}O(Y)$ and $Y \in 21$ -SC(X), then for each $x \in A$, there exists a 21-semi closed set F in X such that $x \in F \subseteq A$.

Proof. Let $A \in S_{\gamma_1}O(Y)$, then $A \in \sigma_1$ and for each $x \in A$, there exists a 21-semi closed set F in Y such that $x \in F \subseteq A$. Since $Y \in 21$ -SC(X), by Proposition 1.1, $F \in 21$ -SC(X), which completes the proof.

Proposition 2.14 A subset B of a space X is S_{γ_1} -closed if and only if B is an γ_1 -closed set and it is an intersection of 21-semi open sets.

Proof. Obvious.

Proposition 2.15 Let $\{B_{\alpha} : \alpha \in \Delta\}$ be a collection of S_{γ_1} -closed sets in a bitopological space X. Then $\bigcap \{B_{\alpha} : \alpha \in \Delta\}$ is S_{γ_1} -closed set.

Proof. Follows from Proposition 2.4.

Definition 2.16 Let (X, τ_1, τ_2) be a bitopological space and $x \in X$. A subset N of X is said to be S_{γ_1} -neighborhood of x if there exists a S_{γ_1} -open set U in X such that $x \in U \subseteq N$.

Theorem 2.17 A subset A of a bitopological space (X, τ_1, τ_2) is S_{γ_1} -open if and only if it is a S_{γ_1} -neighborhood of each of its points.

Proof. Let $A \subseteq X$ be a S_{γ_1} -open set, since for every $x \in A$, $x \in A \subseteq A$ and A is S_{γ_1} -open. This shows that A is S_{γ_1} -neighborhood of each of its points. **Conversely**, suppose that A is a S_{γ_1} -neighborhood of each of its points, then for each $x \in A$, there exists $B_x \in S_{\gamma_1}O(X)$ such that $x \in B_x \subseteq A$. Therefore $A = \bigcup \{B_x : x \in A\}$. Since each B_x is S_{γ_1} -open, it follows that A is a S_{γ_1} -open set.

Definition 2.18 For any subset A in a space X, the S_{γ_1} -interior of A, denoted by $S_{\gamma_1}Int(A)$, is defined by the union of all S_{γ_1} -open sets which are contained in A.

Remark 2.19 Let A be any subset of a bitopological space. A point $x \in A$ is belongs to $S_{\gamma_1}Int(A)$ if and only if there exists an S_{γ_1} -open set G such that $x \in G \subset A$.

Proposition 2.20 Let A be any subset of a space X. If a point x is in the S_{γ_1} -interior of A, then there exists a 21-semi closed set F of X containing x such that $F \subseteq A$.

Proof. Suppose that $x \in S_{\gamma_1}Int(A)$, then there exists a S_{γ_1} -open set U of X containing x such that $U \subseteq A$. Since U is a S_{γ_1} -open set, so there exists a 21-semi closed set F containing x such that $x \in F \subseteq U \subseteq A$. Hence, $x \in F \subseteq A$.

Definition 2.21 For any subset A in a space X, the S_{γ_1} -closure of A, denoted by $S_{\gamma_1}Cl(A)$, is defined by the intersection of all S_{γ_1} -closed sets containing A.

Corollary 2.22 Let A be a set in a space X. A point $x \in X$ is in the S_{γ_1} -closure of A if and only if $A \cap U \neq \varphi$ for every S_{γ_1} -open set U containing x.

Proof. Let $x \notin S_{\gamma_1}Cl(A)$. Then $x \notin \bigcap F$, where F is S_{γ_1} -closed with $A \subseteq F$. So $x \in X \setminus \bigcap F$ and $X \setminus \bigcap F$ is a S_{γ_1} -open set containing x and hence, $(X \setminus \bigcap F) \cap A \subseteq (X \setminus \bigcap F) \cap (\bigcap F) = \varphi$.

Conversely, suppose that there exists a S_{γ_1} -open set containing x with $A \cap U = \varphi$, then $A \subseteq X \setminus U$ and $X \setminus U$ is a S_{γ_1} -closed with $x \notin X \setminus U$. Hence, $x \notin S_{\gamma_1}Cl(A)$.

Proposition 2.23 Let A be any subset of a space X and x is a point of X. If $A \cap F \neq \varphi$ for every 21-semi closed set F of X containing x, then the point x is in the S_{γ_1} -closure of A.

Proof. Suppose that U is any S_{γ_1} -open set containing x, then by Definition 2.1, there exists a 21-semi closed set F such that $x \in F \subseteq U$. So by hypothesis $A \cap F \neq \varphi$ which implies that $A \cap U \neq \varphi$ for every S_{γ_1} -open set U containing x. Therefore, by Corollary 2.22, $x \in S_{\gamma_1}Cl(A)$.

3 S_{γ_1} -Continuous and 12-Almost S_{γ_1} -Continuous

Definition 3.1 A function $f : X \to Y$ is called S_{γ_1} -continuous at a point $x \in X$ if for each 1-open set V of Y containing f(x), there exists a S_{γ_1} -open set U of X containing x such that $f(U) \subseteq V$. If f is S_{γ_1} -continuous at every point x of X, then it is called S_{γ_1} -continuous.

Definition 3.2 A function $f : X \to Y$ is called 12-almost S_{γ_1} -continuous at a point $x \in X$ if for each 1-open set V of Y containing f(x), there exists a S_{γ_1} -open set U of X containing x such that $f(U) \subseteq 1Int(2ClV)$. If f is 12-almost S_{γ_1} -continuous at every point x of X, then it is called 12-almost S_{γ_1} -continuous.

It is obvious from the definition that S_{γ_1} -continuity implies 12-almost S_{γ_1} continuity. However, the converse is not true in general as it is shown in the following example.

Example 3.3 Let $X = \{x, y, z\}, \tau_1 = \{X, \varphi, \{x\}, \{x, y\}\}, \tau_2 = \{X, \varphi, \{z\}, \{y, z\}\}, \sigma_1 = \{X, \varphi, \{x\}, \{z\}, \{x, z\}\}, \sigma_2 = \{X, \varphi, \{y, z\}\}, and \gamma_1$ defined on τ_1 by $\gamma_1(A) = A$ for all $A \in \tau_1$. Then the identity function $f : (X, \tau_1, \tau_2) \rightarrow (X, \sigma_1, \sigma_2) f$ is 12-almost S_{γ_1} -continuous but not S_{γ_1} -continuous at z, because $\{z\}$ is a 1-open set in (X, σ_1, σ_2) containing f(z) = z, there exists no S_{γ_1} -open set U in (X, τ_1, τ_2) containing z such that $x \in f(U) \subseteq \{z\}$.

Proposition 3.4 Let X and Y be bitopological spaces. A function $f: X \to Y$ is S_{γ_1} -continuous if and only if the inverse image under f of every 1-open set in Y is a S_{γ_1} -open in X.

Proof. Assume that f is S_{γ_1} -continuous and let V be any 1-open set in Y. We have to show that $f^{-1}(V)$ is S_{γ_1} -open in X.

If $f^{-1}(V) = \varphi$, there is nothing to prove. So let $f^{-1}(V) \neq \varphi$ and let $x \in f^{-1}(V)$ so that $f(x) \in V$. By S_{γ_1} -continuity of f, there exists an S_{γ_1} -open set U in X containing x such that $f(U) \subseteq V$, that is $x \in U \subseteq f^{-1}(V)$, so $f^{-1}(V)$ is a S_{γ_1} -open set. Conversely, let $f^{-1}(V)$ be S_{γ_1} -open in X for every 1-open set V in Y. To show that f is S_{γ_1} -continuous at $x \in X$, let V be any 1-open set in Y such that $f(x) \in V$ so that $x \in f^{-1}(V)$. By hypothesis $f^{-1}(V)$ is S_{γ_1} -open in X. If $f^{-1}(V) = U$, then U is a S_{γ_1} -open set in X containing x such that

$$f(U) = f(f^{-1}(V)) \subseteq V$$

Hence f is a S_{γ_1} -continuous function. This completes the proof.

The proof of the following corollary follows directly from their definitions.

Corollary 3.5

- 1. Every S_{γ_1} -continuous function is γ_1 -continuous [2].
- 2. Every S_{γ_1} -continuous function is S_1 -continuous [1].
- 3. Every 12-almost S_{γ_1} -continuous function is 12-almost S_1 -continuous.
- 4. Every 12-almost S_{γ_1} -continuous function is 12-almost continuous.

By Definition 3.1, Definition 3.2 and corollary 3.5, we obtain the following diagram.

In the sequel, it will be shown that none of the implications concerning S_{γ_1} -continuity and 12-almost S_{γ_1} -continuity is reversible.

Example 3.6 Let $X = \{x, y, z, w\}$ with four topologies $\tau_1 = \{X, \varphi, \{z\}, \{x, w\}, \{x, z, w\}\}, \tau_2 = \{X, \varphi, \{y\}, \{x, y, w\}\}, \sigma_1 = \{X, \varphi, \{x\}, \{y, z\}, \{x, y, z\}\}$ and $\sigma_2 = \{X, \varphi, \{w\}, \{x, y, z\}\}$, and γ_1 defined on τ_1 by $\gamma_1(A) = A$ for all $A \in \tau_1$. Then the family of S_{γ_1} -open subsets of X with respect to τ_1 and τ_2 is:

 $S_{\gamma_1}O(X) = \{X, \varphi, \{z\}, \{x, z, w\}\}$. We defined the function $f: (X, \tau_1, \tau_2) \rightarrow (X, \sigma_1, \sigma_2)$ as follows f(x) = y, f(y) = w, f(z) = x, f(w) = z. Then f is γ_1 -continuous but not S_{γ_1} -continuous, because $\{y, z\}$ is 1-open set in (X, σ_1, σ_2) containing f(x) = y, there exists no S_{γ_1} -open set U in (X, τ_1, τ_2) containing x such that $x \in f(U) \subseteq \{y, z\}$.

Example 3.7 In Example 3.6, if we have $f : (X, \tau_1, \tau_2) \to (X, \sigma_1, \sigma_2)$ is a function defined as follows f(x) = x, f(y) = f(z) = w, f(w) = y, then f is 12-almost continuous but not 12-almost S_{γ_1} -continuous, because $\{x\}$ is a 1-open set in (X, σ_1, σ_2) containing f(x) = x, there exists no S_{γ_1} -open set Uin (X, τ_1, τ_2) containing x such that $x \in f(U) \subseteq 1$ -Int(2-Cl $\{x\})$ implies that $f(U) \subseteq \{x, y, z\}$. On S_{γ_1} -Open Sets and S_{γ_1} -Continuous...

Proposition 3.8 For a function $f : X \to Y$, the following statements are equivalent:

- 1. f is S_{γ_1} -continuous.
- 2. $f^{-1}(V)$ is a S_{γ_1} -open set in X, for each 1-open set V in Y.
- 3. $f^{-1}(F)$ is a S_{γ_1} -closed set in X, for each 1-closed set F in Y.
- 4. $f(S_{\gamma_1}Cl(A)) \subseteq 1Cl(f(A))$, for each subset A of X.
- 5. $S_{\gamma_1}Cl(f^{-1}(B)) \subseteq f^{-1}(1Cl(B))$, for each subset B of Y.
- 6. $f^{-1}(1Int(B)) \subseteq S_{\gamma_1}Int(f^{-1}(B))$, for each subset B of Y.
- 7. $1Int(f(A)) \subseteq f(S_{\gamma_1}Int(A))$, for each subset A of X.

Proof. (1) \Rightarrow (2). Directly from Proposition 3.4.

(2) \Rightarrow (3). Let *F* be any 1-closed set of *Y*. Then $Y \setminus F$ is an 1-open set of *Y*. By (2), $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$ is S_{γ_1} -open set in *X* and hence $f^{-1}(F)$ is S_{γ_1} -closed set in *X*.

 $(3) \Rightarrow (4)$. Let A be any subset of X. Then $f(A) \subseteq 1Cl(f(A))$ and 1Cl(f(A))is 1-closed in Y. Hence $A \subseteq f^{-1}(1Cl(f(A)))$. By (3), we have $f^{-1}(1Cl(f(A)))$ is a S_{γ_1} -closed set in X. Therefore, $S_{\gamma_1}Cl(A) \subseteq f^{-1}(1Cl(f(A)))$. Hence $f(S_{\gamma_1}Cl(A)) \subseteq 1Cl(f(A))$.

(4) \Rightarrow (5). Let *B* be any subset of *Y*. Then $f^{-1}(B)$ is a subset of *X*. By (4), we have $f(S_{\gamma_1}Cl(f^{-1}(B))) \subseteq 1Cl(f(f^{-1}(B))) = 1Cl(B)$. Hence $S_{\gamma_1}Cl(f^{-1}(B)) \subseteq f^{-1}(1Cl(B))$.

 $(5) \Rightarrow (6).$ Let *B* be any subset of *Y*. Then apply (5) to $Y \setminus B$ is obtained $S_{\gamma_1}Cl(f^{-1}(Y \setminus B)) \subseteq f^{-1}(1Cl(Y \setminus B)) \Leftrightarrow S_{\gamma_1}Cl(X \setminus f^{-1}(B)) \subseteq f^{-1}(Y \setminus 1Int(B)) \Leftrightarrow X \setminus S_{\gamma_1}Int(f^{-1}(B)) \subseteq X \setminus f^{-1}(1Int(B)) \Leftrightarrow f^{-1}(1Int(B)) \subseteq S_{\gamma_1}Int(f^{-1}(B)).$ Therefore, $f^{-1}(1Int(B)) \subseteq S_{\gamma_1}Int(f^{-1}(B)).$

(6) \Rightarrow (7). Let A be any subset of X. Then f(A) is a subset of Y. By (6), we have $f^{-1}(1Int(f(A))) \subseteq S_{\gamma_1}Int(f^{-1}(f(A))) = S_{\gamma_1}Int(A)$. Therefore, $1Int(f(A)) \subseteq f(S_{\gamma_1}Int(A))$.

 $(7) \Rightarrow (1)$. Let $x \in X$ and let V be any 1-open set of Y containing f(x). Then $x \in f^{-1}(V)$ and $f^{-1}(V)$ is a subset of X. By (7), we have $1Int(f(f^{-1}(V))) \subseteq f(S_{\gamma_1}Int(f^{-1}(V)))$. Then $1Int(V) \subseteq f(S_{\gamma_1}Int(f^{-1}(V)))$. Since V is an 1-open set. Then $V \subseteq f(S_{\gamma_1}Int(f^{-1}(V)))$ implies that $f^{-1}(V) \subseteq S_{\gamma_1}Int(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is a S_{γ_1} -open set in X which contains x and clearly $f(f^{-1}(V)) \subseteq V$. Hence f is S_{γ_1} -continuous.

Proposition 3.9 For a function $f : X \to Y$, the following statements are equivalent:

1. f is 12-almost S_{γ_1} -continuous.

- 2. For each $x \in X$ and each 12-regular open set V of Y containing f(x), there exists a S_{γ_1} -open U in X containing x such that $f(U) \subseteq V$.
- 3. For each $x \in X$ and each 12- δ -open set V of Y containing f(x), there exists a S_{γ_1} -open U in X containing x such that $f(U) \subseteq V$.

Proof. (1) \Rightarrow (2). Let $x \in X$ and let V be any 12-regular open set of Y containing f(x). By (1), there exists a S_{γ_1} -open set U of X containing x such that $f(U) \subseteq 1Int(2Cl(V))$. since V is 12-regular open, then 1Int(2Cl(V)) = V. Therefore, $f(U) \subseteq V$.

 $(2) \Rightarrow (3)$. Let $x \in X$ and let V be any 12- δ -open set of Y containing f(x). Then for each $f(x) \in V$, there exists an 1-open set G containing f(x) such that $G \subseteq 1Int(2Cl(G)) \subseteq V$. Since 1Int(2Cl(G)) is 12-regular open set of Y containing f(x). By (2), there exists a S_{γ_1} -open set U in X containing x such that $f(U) \subseteq 1Int(2Cl(G)) \subseteq V$. This completes the proof.

 $(3) \Rightarrow (1)$. Let $x \in X$ and let V be any 1-open set of Y containing f(x). Then $1Int(2Cl(V) \text{ is } 12\text{-}\delta\text{-open set of } Y \text{ containing } f(x)$. By (3), there exists a S_{γ_1} -open set U in X containing x such that $f(U) \subseteq 1Int(2Cl(V))$. Therefore, f is 12-almost S_{γ_1} -continuous.

Proposition 3.10 For a function $f : X \to Y$, the following statements are equivalent:

- 1. f is 12-almost S_{γ_1} -continuous.
- 2. $f^{-1}(1Int(2Cl(V)))$ is a S_{γ_1} -open set in X, for each 1-open set V in Y.
- 3. $f^{-1}(1Cl(2Int(F)))$ is a S_{γ_1} -closed set in X, for each 1-closed set F in Y.
- 4. $f^{-1}(F)$ is a S_{γ_1} -closed set in X, for each 12-regular closed set F of Y.
- 5. $f^{-1}(V)$ is a S_{γ_1} -open set in X, for each 12-regular open set V of Y.
- 6. $f^{-1}(G)$ is a S_{γ_1} -open set in X, for each 12- δ -open set G of Y.

Proof. (1) \Rightarrow (2). Let V be any 1-open set in Y. We have to show that $f^{-1}(1Int(2Cl(V)))$ is S_{γ_1} -open set in X. Let $x \in f^{-1}(1Int(2Cl(V)))$. Then $f(x) \in 1Int(2Cl(V))$ and 1Int(2Cl(V)) is an 12-regular open set in Y. Since f is 12-almost S_{γ_1} -continuous, then by Proposition 3.9, there exists a S_{γ_1} -open set U of X containing x such that $f(U) \subseteq 1Int(2Cl(V))$. Which implies that $x \in U \subseteq f^{-1}(1Int(2Cl(V)))$. Therefore, $f^{-1}(1Int(2Cl(V)))$ is a S_{γ_1} -open set in X. (2) \Rightarrow (3). Let F be any 1-closed set of Y. Then $Y \setminus F$ is an 1-open set of Y. By

(2) \Rightarrow (3). Let F be any recover set of T. Then $T \setminus F$ is an respense of T. By (2), $f^{-1}(1Int(2Cl(Y \setminus F)))$ is a S_{γ_1} -open set in X and $f^{-1}(1Int(2Cl(Y \setminus F))) =$ $f^{-1}(1Int(Y \setminus 2Int(F))) = f^{-1}(Y \setminus 1Cl(2Int(F))) = X \setminus f^{-1}(1Cl(2Int(F)))$ is a S_{γ_1} -open set in X and hence $f^{-1}(1Cl(2Int(F)))$ is S_{γ_1} -closed set in X. (3) \Rightarrow (4). Let F be any 12-regular closed set of Y. Then F is an 1-closed set of Y. By (3), $f^{-1}(1Cl(2Int(F)))$ is S_{γ_1} -closed set in X. Since F is 12regular closed set, then $f^{-1}(1Cl(2Int(F))) = f^{-1}(F)$. Therefore, $f^{-1}(F)$ is a S_{γ_1} -closed set in X.

(4) \Rightarrow (5). Let V be any 12-regular open set of Y. Then $Y \setminus V$ is an 12-regular closed set of Y and by (4), we have $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is a S_{γ_1} -closed set in X and hence $f^{-1}(V)$ is a S_{γ_1} -open set in X.

(5) \Rightarrow (6). Let G be any 12- δ -open set in Y, $G = \bigcup\{V_{\alpha} : \alpha \in \Delta\}$ where V_{α} is 12-regular open. Then $f^{-1}(G) = \bigcup\{f^{-1}(V_{\alpha})\}$, from (5) we have $f^{-1}(V_{\alpha})$ is a S_{γ_1} -open set, then $f^{-1}(G) = \bigcup\{f^{-1}(V_{\alpha})\}$ is a S_{γ_1} -open.

(6) \Rightarrow (1). Let $x \in X$ and let V be any 12- δ -open set of Y containing f(x). Then $x \in f^{-1}(V)$. By (6), we have $f^{-1}(V)$ is a S_{γ_1} -open set in X. Therefore, we obtain $f(f^{-1}(V)) \subseteq V$. Hence by Proposition 3.9, f is 12-almost S_{γ_1} -continuous.

Proposition 3.11 For a function $f : X \to Y$, the following statements are equivalent:

- 1. f is 12-almost S_{γ_1} -continuous.
- 2. $f(S_{\gamma_1}Cl(A)) \subseteq 12Cl_{\delta}(f(A))$, for each subset A of X.
- 3. $S_{\gamma_1}Cl(f^{-1}(B)) \subseteq f^{-1}(12Cl_{\delta}(B))$, for each subset B of Y.
- 4. $f^{-1}(F)$ is S_{γ_1} -closed set in X, for each 12- δ -closed set F of Y.
- 5. $f^{-1}(V)$ is S_{γ_1} -open set in X, for each 12- δ -open set V of Y.
- 6. $f^{-1}(12Int_{\delta}(B)) \subseteq S_{\gamma_1}Int(f^{-1}(B))$, for each subset B of Y.
- 7. $12Int_{\delta}(f(A)) \subseteq f(S_{\gamma_1}Int(A))$, for each subset A of X.

Proof. (1) \Rightarrow (2). Let A be a subset of X. Since $12Cl_{\delta}(f(A))$ is an 12- δ -closed set in Y, then $Y \setminus 12Cl_{\delta}(f(A))$ is 12- δ -open, from Proposition 3.10, $f^{-1}(Y \setminus 12Cl_{\delta}(f(A)))$ is S_{γ_1} -open, which implies that $X \setminus f^{-1}(12Cl_{\delta}(f(A)))$ is also S_{γ_1} -open, so $f^{-1}(12Cl_{\delta}(f(A)))$ is S_{γ_1} -closed set in X. Since $A \subseteq f^{-1}(12Cl_{\delta}(f(A)))$, so $S_{\gamma_1}Cl(A) \subseteq f^{-1}(12Cl_{\delta}(f(A)))$. Therefore, $f(S_{\gamma_1}Cl(A))$ $\subseteq 12Cl_{\delta}(f(A))$ is obtained.

 $(2) \Rightarrow (3)$. Let *B* be a subset of *Y*. We have $f^{-1}(B)$ is a subset of *X*. By (2), we have $f(S_{\gamma_1}Cl(f^{-1}(B))) \subseteq 12Cl_{\delta}(f(f^{-1}(B))) = 12Cl_{\delta}(B)$. Hence $S_{\gamma_1}Cl(f^{-1}(B)) \subseteq f^{-1}(12Cl_{\delta}(B))$.

(3) ⇒ (4). Let F be any 12-δ-closed set of Y. By (3), we have $S_{\gamma_1}Cl(f^{-1}(F))$ ⊆ $f^{-1}(12Cl_{\delta}(F)) = f^{-1}(F)$ and hence $f^{-1}(F)$ is a S_{γ_1} -closed set in X. $(4) \Rightarrow (5)$. Let V be any 12- δ -open set of Y. Then $Y \setminus V$ is an 12- δ -closed set of Y and by (4), we have $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is a S_{γ_1} -closed set in X. Hence $f^{-1}(V)$ is a S_{γ_1} -open set in X. (5) \Rightarrow (6). For each subset B of Y. We have $12Int_{\delta}(B) \subseteq B$. Then $f^{-1}(12Int_{\delta}(B)) \subseteq f^{-1}(B)$. By (5), $f^{-1}(12Int_{\delta}(B))$ is a S_{γ_1} -open set in X. Then $f^{-1}(12Int_{\delta}(B)) \subseteq S_{\gamma_1}Int(f^{-1}(B)).$ $(6) \Rightarrow (7)$. Let A be any subset of X. Then f(A) is a subset of Y. By (6), we obtain that $f^{-1}(12Int_{\delta}(f(A))) \subseteq S_{\gamma_1}Int(f^{-1}(f(A)))$. Hence $f^{-1}(12Int_{\delta}(f(A))) \subseteq$ $S_{\gamma_1}Int(A)$, which implies that $12Int_{\delta}(f(A)) \subseteq f(S_{\gamma_1} Int(A))$. (7) \Rightarrow (1). Let $x \in X$ and V be any 12-regular open set of Y containing f(x). Then $x \in f^{-1}(V)$ and $f^{-1}(V)$ is a subset of X. By (7), we get $12Int_{\delta}(f(f^{-1}(V))) \subseteq f(S_{\gamma_1}Int(f^{-1}(V)))$ implies that $12Int_{\delta}(V) \subseteq f(S_{\gamma_1}Int(f^{-1}(V))).$ Since V is 12-regular open set and hence $12-\delta$ -open set, then $V \subseteq f(S_{\gamma_1}Int(f^{-1}(V)))$ this implies that $f^{-1}(V) \subseteq S_{\gamma_1} Int(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is a S_{γ_1} -open set in X which contains x and clearly $f(f^{-1}(V)) \subseteq V$. Hence, by Proposition 3.9, f is 12-almost S_{γ_1} -continuous.

Proposition 3.12 For a function $f : X \to Y$, the following statements are equivalent:

1. f is 12-almost S_{γ_1} -continuous.

2.
$$S_{\gamma_1}Cl(f^{-1}(V)) \subseteq f^{-1}(1Cl(V))$$
, for each 21- β -open set V of Y.

- 3. $f^{-1}(1Int(F)) \subseteq S_{\gamma_1}Int(f^{-1}(F))$, for each 21- β -closed set F of Y.
- 4. $f^{-1}(1Int(F)) \subseteq S_{\gamma_1}Int(f^{-1}(F))$, for each 21-semi closed set F of Y.
- 5. $S_{\gamma_1}Cl(f^{-1}(V)) \subseteq f^{-1}(1Cl(V))$, for each 21-semi open set V of Y.

Proof. (1) \Rightarrow (2). Let V be any 21- β -open set of Y. It follows that 1Cl(V) is an 12-regular closed set in Y. Since f is 12-almost S_{γ_1} -continuous. Then by Proposition 3.10, $f^{-1}(V)$ is a S_{γ_1} -closed set in X. Therefore, we obtain $S_{\gamma_1}Cl(f^{-1}(V)) \subseteq f^{-1}(1Cl(V))$.

(2) \Rightarrow (3). Let F be any 21- β -closed set of Y. Then $Y \setminus F$ is a 21- β -open set of Y and by (2), we have $S_{\gamma_1}Cl(f^{-1}(Y \setminus F)) \subseteq f^{-1}(1Cl(Y \setminus F)) \Leftrightarrow S_{\gamma_1}Cl(X \setminus f^{-1}(F)) \subseteq f^{-1}(Y \setminus 1Int(F)) \Leftrightarrow X \setminus S_{\gamma_1}Int(f^{-1}(F)) \subseteq X \setminus f^{-1}(1Int(F)).$ Therefore, $f^{-1}(1Int(F)) \subseteq S_{\gamma_1}Int(f^{-1}(F)).$

 $(3) \Rightarrow (4)$. This is obvious since every 21-semi closed set is $21-\beta$ -closed set.

(4) \Rightarrow (5). Let V be any 21-semi open set of Y. Then $Y \setminus V$ is 21-semi closed set and by (4), we have $f^{-1}(1Int(Y \setminus V)) \subseteq S_{\gamma_1}Int(f^{-1}(Y \setminus V)) \Leftrightarrow f^{-1}(Y \setminus 1Cl(V)) \subseteq S_{\gamma_1}Int(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(1Cl(V)) \subseteq X \setminus S_{\gamma_1}Cl(f^{-1}(V)).$ Therefore, $S_{\gamma_1}Cl(f^{-1}(V)) \subseteq f^{-1}(1Cl(V)).$

 $(5) \Rightarrow (1)$. Let F be any 12-regular closed set of Y. Then F is a 21-semi open

set of Y. By (5), we have $S_{\gamma_1}Cl(f^{-1}(F)) \subseteq f^{-1}(1Cl(F)) = f^{-1}(F)$. This shows that $f^{-1}(F)$ is a S_{γ_1} -closed set in X. Therefore, by Proposition 3.10, f is 12-almost S_{γ_1} -continuous.

Proposition 3.13 A function $f : X \to Y$ is 12-almost S_{γ_1} -continuous if and only if $f^{-1}(V) \subseteq S_{\gamma_1} Int(f^{-1}(1Int(2Cl(V))))$ for each 1-open set V of Y.

Proof. Let V be any 1-open set of Y. Then $V \subseteq 1Int(2Cl(V))$ and 1Int(2Cl(V)) is 12-reguler open set in Y. Since f is 12-almost S_{γ_1} -continuous, by Proposition 3.10, $f^{-1}(1Int(2Cl(V)))$ is a S_{γ_1} -open set in X and hence we obtain that $f^{-1}(V) \subseteq f^{-1}(1Int(2Cl(V))) = S_{\gamma_1}Int(f^{-1}(1Int(2Cl(V))))$. Conversely, Let V be any 12-regular open set of Y. Then V is 1-open set of Y. By hypothesis, we have $f^{-1}(V) \subseteq S_{\gamma_1}Int(f^{-1}(1Int(2Cl(V)))) = S_{\gamma_1}Int(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is a S_{γ_1} -open set in X and hence by Proposition 3.10, f is 12-almost S_{γ_1} -continuous.

From Proposition 3.13, the following result is obtained.

Corollary 3.14 A function $f : X \to Y$ is 12-almost S_{γ_1} -continuous if and only if $S_{\gamma_1}Cl(f^{-1}(1Cl(2Int(F)))) \subseteq f^{-1}(F)$ for each 1-closed set F of Y.

Proposition 3.15 Let $f: X \to Y$ is an 12-almost S_{γ_1} -continuous function and let V be any 1-open subset of Y. If $x \in S_{\gamma_1}Cl(f^{-1}(V)) \setminus f^{-1}(V)$, then $f(x) \in S_{\gamma_1}Cl(V)$.

Proof. Let $x \in X$ be such that $x \in S_{\gamma_1}Cl(f^{-1}(V)) \setminus f^{-1}(V)$ and suppose $f(x) \notin S_{\gamma_1}Cl(V)$. Then there exists a S_{γ_1} -open set H containing f(x) such that $H \cap V = \varphi$. Then $2Cl(H) \cap V = \varphi$ implies $1Int(2Cl(H)) \cap V = \varphi$ and 1Int(2Cl(H)) is an 12-regular open set. Since f is 12-almost S_{γ_1} -continuous, by Proposition 3.10, there exists a S_{γ_1} -open set U in X containing x such that $f(U) \subseteq 1Int(2Cl(H))$. Therefore, $f(U) \cap V = \varphi$. However, since $x \in S_{\gamma_1}Cl(f^{-1}(V)), U \cap f^{-1}(V) \neq \varphi$ for every S_{γ_1} -open set U in X containing x, so that $f(U) \cap V \neq \varphi$. We get a contradiction. It follows that $f(x) \in S_{\gamma_1}Cl(V)$.

References

- [1] A.B. Khelaf and A.M. Omar, S_i -open sets and S_i -continuity in bitopological spaces, *Tamkang Journal of Mathematics*, 43(2012), 81-97.
- [2] C.K. Basu, B.M.U. Afsan and M.K. Ghosh, A class of functions and separation axioms with respect to an operation, *Hacettepe Journal of Mathematics and Statistics*, 38(2) (2009), 103-118.
- [3] C.G. Kariofillis, On pairwise almost compactness, Ann. Soc. Sci. Bruxelles., 100(1986), 129-137.

- [4] F.H. Khedr and A.M. Alshibani, On pairwise super continuous mapping in bitopological spaces, *Internat. J. Math. and Math. Sci.*, 14(4) (1991), 715-722.
- [5] H. Ogata, Operation on topological spaces and associated topology, *Math. Japonica*, 36(1991), 175-184.
- [6] M. Jelic, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math. Ser., 3(1990), 25-29.
- [7] M. Jelic, Feebly p-continuous mappings, V International Meeting on Topology in Italy (Italian) (Lecce, 1990/Otranto, 1990), Rend. Circ. Mat. Palermo. (2) Suppl., 24(1990), 387-395.
- [8] S.N. Maheshwari and R. Prasad, Semi open sets and semi continuous function in bitopological spaces, *Math. Notae.*, 26(1977/78), 29-37.
- [9] G.S.S. Krishnan, A new class of semi open sets in a topological space, *Proc. NCMCM*, Allied Publishers, New Delhi, (2003), 305-311.
- [10] S. Kasahara, Operalion-compact spaces, Math. Japonica, 24(1979), 97-105.
- [11] F.H. Khedr and S.M. Al-Areefi, Precontinuity and semi-pre-continuity in bitopological spaces, *Indian. J. pure. appl. Math.*, 23(9) (1992), 625-633.
- [12] S. Bose and D. Sinha, Almost open, Almost closed, θ-continuous and almost compact mapping in bitopological spaces, Bull. Calcutta. Math. Soc., 73(1981), 345-354.