

Gen. Math. Notes, Vol. 17, No. 1, July, 2013, pp.8-15 ISSN 2219-7184; Copyright ©ICSRS Publication, 2013 www.i-csrs.org Available free online at http://www.geman.in

λ -Almost Summable and Statistically

(V, λ) -Summable Sequences

Fatih Nuray¹ and Bunyamin Aydin²

¹Afyon Kocatepe University, Afyonkarahisar, Turkey E-mail: fnuray@aku.edu.tr ²Necmettin Erbakan University, Konya, Turkey E-mail: bunyaminaydin63@hotmail.com

(Received: 1-12-12 / Accepted: 3-5-13)

Abstract

King [3] introduced and examined the concepts of almost A-summable sequence, almost conservative matrix and almost regular matrix. In this paper, we introduce and examine the concepts of λ -almost A-summable sequence, λ almost conservative matrix and λ -almost regular matrix. Also we introduce statistically (V, λ) -summable sequence.

Keywords: λ -sequence, λ -almost convergence, λ -almost conservative matrix, λ -almost regular matrix, λ -statistical convergence

1 Introduction and Background

Let $A = (a_{lk})$ be an infinite matrix of complex numbers and $x = (x_k)$ be a sequence of complex numbers. The sequence $\{A_l(x)\}$ defined by

$$A_l(x) = \sum_{k=1}^{\infty} a_{lk} x_k$$

is called A-transform of x whenever the series converges for l = 1, 2, 3, The sequence x is said to be A-summable to L if $\{A_l(x)\}$ converges to L.

Let ℓ_{∞} denote the linear space of bounded sequences. A sequence $x \in \ell_{\infty}$

is said to be almost convergent to L if

$$\lim_{m \to \infty} \frac{1}{m} \sum_{k=1}^m x_{k+i} = L$$

uniformly in i.

The matrix A is said to be conservative if $x \in c$ implies that the A-transform of x is convergent. The matrix A is said to be regular if the A-transform of x is convergent to the limit of x for each $x \in c$, where c is the linear spaces of convergent sequences.

In the theory of summability and its applications one is usually interested in conservative or regular matrices. In [3], King introduced almost conservative and almost regular matrices.

A sequence $x \in \ell_{\infty}$ is said to be almost A-summable to L if the A-transform of x is almost convergent to L. The matrix A is said to be almost conservative if $x \in c$ implies that the A-transform of x is almost convergent. The matrix A is said to be almost regular if the A-transform of x almost convergent to the limit of x for each $x \in c$.

Let $\lambda = (\lambda_n)$ be a nondecreasing sequence of positive numbers tending to ∞ , and $\lambda_{n+1} - \lambda_n \leq 1$, $\lambda_1 = 1$. The generalized de la Vallée-Poussin mean is defined by

$$v_n = v_n(x) = \frac{1}{\lambda_n} \sum_{k=n-\lambda_n+1}^n x_k := \frac{1}{\lambda_n} \sum_{k \in I_n} x_k.$$

L. Leindler in [4] defined a sequence $x = (x_k)$ to be (V, λ) -summable to number L if $v_n(x) \to L$ as $n \to \infty$. If $\lambda_n = n$, then (V, λ) -summability is reduced to (C, 1)-summability. We write

$$[V,\lambda] = \{x = (x_k): \qquad \lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} |x_k - L| = 0, \quad for \quad some \quad L\}$$

for set of sequences $x = (x_k)$ which are strongly (V, λ) -summable to L, that is, $x_k \to L[V, \lambda]$.

2 λ -Almost Conservative and λ -Almost Regular Matrices

In this section we introduce λ -almost conservative and λ -almost regular matrices.

Definition 2.1 A sequence $x = (x_k)$ is said to be λ -almost convergent to number L if

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} x_{k+i} = L$$

uniformly in i.

Definition 2.2 The matrix A is said to be λ -almost conservative if $x \in c$ implies that A-transform of x is λ -almost convergent.

Definition 2.3 The matrix A is said to be λ -almost regular if $x \in c$ implies that A-transform of x is λ -almost convergent to the limit of x for each $x \in c$.

Theorem 2.4 Let $A = (a_{lk})$ be an infinite matrix. Then the matrix A is λ -almost conservative if and only if (i)

$$\sup_{n} \sum_{k=0}^{\infty} \frac{1}{\lambda_{n}} |\sum_{j \in I_{n}} a_{l+j,k}| < \infty, \quad l = 0, 1, 2, ...,$$

(ii) there exists an $\xi \in C$, the set of complex numbers, such that

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{j \in I_n} \sum_{k=0}^{\infty} a_{l+j,k} = \xi$$

uniformly in l, and

(iii) there exists an $\xi_k \in \mathcal{C}$, $k=0,1,2,\ldots$ such that

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{j \in I_n} a_{l+j,k} = \xi_k$$

uniformly in l.

Proof. Suppose that A is λ -almost conservative. Fix $l \in \mathcal{N}$, the set of natural numbers. Let

$$t_{nl} = \frac{1}{\lambda_n} \sum_{j \in I_n} s_{j+l}(x)$$

where $s_{j+l}(x) = \sum_{k=0}^{\infty} a_{j+l,k} x_k$. It is clear that $s_{j+l} \in c^*$, j, n = 1, 2, ... Hence $t_{nl} \in c^*$, where c^* is the continuous dual of c. Since A is λ -almost conservative $\lim_{n\to\infty} t_{nl} = t(x)$ uniformly in l. It follows that $\{t_{nl}(x)\}$ is bounded for $x \in c$ and fixed l. Hence $\{||t_{nl}||\}$ is bounded by the uniform bounded principle. For each $q \in \mathcal{N}$, define the sequence y = y(l, n) by

$$y_k = \{ \begin{array}{cc} sgn \sum_{j \in I_n} a_{j+l,k}, & 0 \le k \le q \\ 0, & q < k. \end{array}$$

Then $y \in c$, ||y|| = 1, and

$$|t_{nl}(y)| = \frac{1}{\lambda_n} \sum_{k=0}^{q} |\sum_{j \in I_n} a_{j+l,k}|.$$

 λ -Almost Summable and Statistically...

Hence $|t_{nl}(y)| \leq ||t_{nl}|| ||y|| = ||t_{nl}||$. Therefore $\frac{1}{\lambda_n} \sum_{k=0}^{q} |\sum_{j \in I_n} a_{j+l,k}| \leq ||t_{nl}||$, so that (i) follows.

Since e = (1, 1, ...) and $e_k = (0, 0, ..., 0, 1, 0, 0, ...)$ (with 1 in rank k) are convergent sequences, $\lim_n t_{nl}(e)$ and $\lim_n t_{nl}(e_k)$ must exit uniformly in l. Hence (ii) and (iii) hold.

Now assume that (i), (ii) and (iii) hold. Fix l and $x \in c$. Then

$$t_{nl}(x) = \frac{1}{\lambda_n} \sum_{j \in I_n} \sum_{k=0}^{\infty} a_{l+j,k} x_k = \frac{1}{\lambda_n} \sum_{k=0}^{\infty} \sum_{j \in I_n} a_{l+j,k} x_k$$

so that

$$t_{nl}(x) \le \frac{1}{\lambda_n} \sum_{k=0}^{\infty} |\sum_{j \in I_n} a_{l+j,k} x_k| ||x||, n = 1, 2, \dots$$

Therefore $t_{nl}(x) \leq K_l ||x||$ by (i), where K_l is a constant independent of n. Hence $t_{nl} \in c^*$, and the sequence $\{||t_{nl}||\}$ is bounded for each l. (ii) and (iii) imply that $\lim_n t_{nl}(e)$ and $\lim_n t_{nl}(e_k)$ exist for l, k = 0, 1, 2, ... Since $\{e, e_0, e_1, e_2, ...\}$ is a fundamental set in c it follows from an elementary result of functional analysis that $\lim_n t_{nl}(x) = t_l(x)$ exists and $t_l \in c$. Therefore

$$t_l(x) = \lim_k x_k [t_l(e) - \sum_{k=0}^{\infty} t_l(e_k)] + \sum_{k=0}^{\infty} x_k t_l(e_k),$$

But $t_l(e) = \xi$ and $t_l(e_k) = \xi_k$, k=0,1,2,..., by (ii) and (iii), respectively. Hence $\lim_n t_{nl}(x) = t_l(x)$ exists for each $x \in c$, l = 0, 1, 2, ..., with

$$t(x) = \lim_{k} x_k [\xi - \sum_{k=0}^{\infty} \xi_k] + \sum_{k=0}^{\infty} \xi_k x_k.$$
 (1)

Since $t_{kl} \in c^*$ for each n and l, it has the form

$$t_{nl}(x) = \lim_{k} x_k[t_{nl}(e) - \sum_{k=0}^{\infty} t_{nl}(e_k)] + \sum_{k=0}^{\infty} x_k t_{nl}(e_k), \qquad (2)$$

It is easy to see from (1) and (2) that convergence of $\{t_{nl}(x)\}$ to t(x) is uniform in l, since $\lim_{n} t_{nl}(e) = \xi$ and $\lim_{n} t_{nl}(e_k) = \xi_k$ uniformly in l. Therefore A is λ -almost conservative and the theorem is proved.

Theorem 2.5 Let $A = (a_{lk})$ be an infinite matrix. Then the matrix A is λ -almost regular if and only if (iv)

$$\sup_{n} \sum_{k=0}^{\infty} \frac{1}{\lambda_{n}} |\sum_{j \in I_{n}} a_{l+j,k}| < \infty, \quad l = 0, 1, 2, ...,$$

(v)

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{j \in I_n} \sum_{k=0}^{\infty} a_{l+j,k} = 1$$

uniformly in l, and (vi)

$$\lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{j \in I_n} a_{l+j,k} = 0$$

uniformly in $l, k=0,1,2,\ldots$.

Proof. Suppose that A is λ -almost regular. Then A is λ -almost conservative so that (iv) must hold. (v) and (vi) must hold since A-transform of the sequences e_k and e must be λ -almost convergent to) 0 and 1, respectively.

Now suppose that (iv), (v) and (vi) hold. Then A is λ -almost conservative. Therefore $\lim_{n} t_{nl}(x) = t(x)$ uniformly in l for each $x \in c$. The representation (1) gives $t(x) = \lim_{k} x_{k}$. Hence A is λ -almost regular. This proves the theorem.

3 Statistically (V, λ) -Summable Sequences

The concept of statistical convergence was introduced by Fast [1]. In [8] Schoenberg gave some basic properties of statistical convergence and also studied the concept as a summability method. A sequence $x = (x_k)$ is said to be statistically convergent to the number L if for every $\epsilon > 0$,

$$\lim_{p \to \infty} \frac{1}{p} |\{k \le p : |x_k - L| \ge \epsilon\}| = 0,$$

where the vertical bars denote the number of elements in the enclosed set. In this case we write $st - \lim x_k = L$. $\lim x_k = L$ implies $st - \lim x_k = L$, so statistical convergence may be considered as a regular summability method. This was observed by Schoenberg [8] along with the fact that the statistical limit is a linear functional on some sequence space. If x is a sequence such that x_k satisfies property P for all k except a set of natural density zero, then we say that x_k satisfies P for almost all k. In [2], Fridy proved that if x is a statistically convergent sequence then there is a convergent sequence y such that $x_k = y_k$ almost all k.

The concept of statistically summable (C, 1) sequence was introduced by Moricz[5]. A sequence $x = (x_k)$ is said to be statistically summable (C, 1) to L if $\frac{1}{n} \sum_{k=1}^{n} x_k$ is statistically convergent to L.

In[6], Mursaleen introduced the concept of λ -statistical convergence. A sequence $x = (x_k)$ is said to be λ -statistically convergent to the number L if for every $\epsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{\lambda_n} |\{k \in I_n : |x_k - L| \ge \epsilon\}| = 0.$$

In this case we write $st_{\lambda} - \lim x_k = L$. In [7], Savas introduced the concept of almost λ -statistical convergence. A sequence $x = (x_k)$ is said to be almost λ -statistically convergent to the number L if for every $\epsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{\lambda_n} |\{k \in I_n : |x_{k+i} - L| \ge \epsilon\}| = 0.$$

uniformly in i.

In this section, we introduce the concept of statistically (V, λ) -summable sequence.

Definition 3.1 A sequence $x = (x_k)$ is said to be statistically (V, λ) -summable to the number L if $v_n(x) = \frac{1}{\lambda_n} \sum_{k \in I_n} x_k$ is statistically convergent to L, i.e.,

$$\lim_{p \to \infty} \frac{1}{p} |\{n \le p : | \frac{1}{\lambda_n} \sum_{k \in I_n} x_k - L| \ge \epsilon\}| = 0.$$

If $\lambda_n = n$, then statistically (V, λ) -summability is reduced to the statistically summability (C, 1).

Theorem 3.2 If $x \in \ell_{\infty}$ and $st_{\lambda} - \lim x_k = L$ then $x = (x_k)$ is statistically (V, λ) -summable to the number L, i.e., $st - \lim v_n(x) = L$.

Proof. Without loss of generality we may assume that L = 0. This means that if $\epsilon > 0$ and if we denote by N_{λ_n} the number of $k \in I_n$ for which $|x_k| \ge \epsilon$, then

$$\lim_{n \to \infty} \frac{N_{\lambda_n}}{\lambda_n} = 0. \tag{3}$$

Since (x_k) is bounded, we say $|x_k| \leq M$ for all k. Now

$$\begin{aligned} |\frac{1}{\lambda_n} \sum_{k \in I_n} x_k| &\leq \frac{N_{\lambda_n} M + (\lambda_n - N_{\lambda_n})\epsilon}{\lambda_n} \\ &= \frac{(M - \epsilon)N_{\lambda_n} + \lambda_n \epsilon}{\lambda_n} = \epsilon + (M - \epsilon)\frac{N_{\lambda_n}}{\lambda_n} \end{aligned}$$

where, by (3), the right side less than 2ϵ provided that n is sufficiently large. Thus $\lim v_n(x) = 0$. Since $\lim x_k = L$ implies $st - \lim x_k = L$, we have $st - \lim v_n(x) = 0$.

Theorem 3.3 If x statistically (V, λ) -summable to the number L and $\Delta v_n = O(\frac{1}{n})$, then x is (V, λ) -summable to the number L, where $\Delta v_n = v_n - v_{n+1}$.

Proof. Assume that x statistically (V, λ) -summable to the number L. Then $st - \lim v_n = L$ and we can choose a sequence w such that $\lim w_n = L$ and $v_n = w_n$ for almost all n. For each n, write n = m(n) + p(n), where m(n) = m(n) + p(n), where m(n) = m(n) + p(n).

 $max\{i \leq n : v_i = w_i\}$; if the set $\{i \leq n : v_i = w_i\}$ is empty, take m(n) = -1. This can occur for at most a finite number of n. We assert that

$$\lim_{n} \frac{p(n)}{m(n)} = 0. \tag{4}$$

For, if $\frac{p(n)}{m(n)} > \epsilon > 0$, then

$$\frac{1}{n}|\{i \le n: \quad v_i \ne w_i\}| \le \frac{1}{m(n) + p(n)}p(n) \le \frac{p(n)}{\frac{p(n)}{\epsilon} + p(n)} = \frac{\epsilon}{1+\epsilon}$$

so if $\frac{p(n)}{m(n)} \ge \epsilon$ for infinitely many n, we would contradict $v_n = w_n$ for almost all n. Thus (4) holds. Now consider that difference between $w_{m(n)}$ and v_n . Since $\Delta v_n = O(\frac{1}{n})$ there is a constant K such that $|\Delta v_n| \le \frac{K}{n}$ for all n. Therefore

$$|w_{m(n)} - v_n| = |v_{m(n)} - v_{m(n)+p(n)}| \le \sum_{i=m(n)}^{m(n)+p(n)-1} |\Delta v_i| \le \frac{p(n)K}{m(n)}$$

By (4), the last expression tends to 0 as $n \to \infty$, and since $\lim_{n\to\infty} w_n = L$, we conclude that

$$\lim_{n \to \infty} v_n = \lim_{n \to \infty} \frac{1}{\lambda_n} \sum_{k \in I_n} x_k = L.$$

References

- [1] H. Fast, Sur la convergence statistique, Colloq. Math., 2(1952), 241-244.
- [2] J.A. Fridy, On statistical convergence, Analysis, 5(1985), 301-313.
- [3] J.P. King, Almost summable sequences, *Proc. Amer. Math. Soc.*, 17(1966), 1219-1225.
- [4] L. Leindler, Uber die verallgemeinerte de la Vallée-Poussinsche summierbarkeit allgemenier orthogonalreihen, Acta Math. Acad. Sci. Hungar., 16(1965), 375-387.
- [5] F. Moricz, Tauberian conditions, under which statistical convergence follows from statistical summability (C, 1), J. Math. Anal. Appl., 275(2002), 277-287.
- [6] Mursaleen, λ -Statistical convergence, Math. Slovaca, 50(1) (2000), 111-115.
- [7] E. Savas, Strong almost convergence and almost λ -statistical convergence, Hokkaido Math. J., 29(3) (2000), 531-536.

 $\lambda\text{-}Almost$ Summable and Statistically...

[8] I.J. Schoenberg, The integrability of certain functions and related summability methods, *Amer. Math. Monthly*, 66(1959), 361-375.