Gen. Math. Notes, Vol. 13, No. 1, November 2012, pp.10-20
ISSN 2219-7184; Copyright (C)ICSRS Publication, 2012
www.i-csrs.org
Available free online at http://www.geman.in

Properties of a Subclass of Multivalent Harmonic Functions Defined by a Linear Operator

Elif Yaşar ${ }^{1}$ and Sibel Yalçın ${ }^{2}$
1, ${ }^{2}$ Department of Mathematics, Faculty of Arts and Sciences
Uludag University, Bursa, Turkey
${ }^{1}$ E-mail: elifyasar@uludag.edu.tr
${ }^{2}$ E-mail: syalcin@uludag.edu.tr

(Received: 4-10-12 / Accepted: 15-11-12)

Abstract

In this paper, we introduce a linear operator for harmonic multivalent functions by using harmonic convolution operator and generalized Saitoh operator. We investigate some properties of a new subclass of harmonic multivalent functions defined by using this operator.

Keywords: harmonic, multivalent, linear operator, convolution, generalized Saitoh operator.

1 Introduction

A continuous function $f=u+i v$ is a complex valued harmonic function in a domain $D \subset \mathbb{C}$ if both u and v are real harmonic in D. In any simply connected domain D we can write $f=h+\bar{g}$, where h and g are analytic in D. We call h the analytic part and g the co-analytic part of f. The harmonic function $f=h+\bar{g}$ is sense preserving and locally one to one in D if $\left|h^{\prime}(z)\right|>\left|g^{\prime}(z)\right|$ in D. See Clunie and Sheil-Small [6].

For $p \geq 1, n \in \mathbb{N}$, denote by $S H^{n, p}$ the class of functions $f=h+\bar{g}$ that are sense preserving, harmonic multivalent in the unit disk $U=\{z:|z|<1\}$,
where h and g defined by

$$
\begin{equation*}
h(z)=z^{p}+\sum_{k=n+p}^{\infty} A_{k} z^{k}, g(z)=\sum_{k=n+p-1}^{\infty} B_{k} z^{k}, \quad\left|B_{p}\right|<1, \tag{1}
\end{equation*}
$$

which are analytic and multivalent functions in U.
Note that $S H^{n, p}$ reduces to $S^{n, p}$, the class of analytic multivalent functions, if the co-analytic part of $f=h+\bar{g}$ is identically zero.

For $a_{1}, a_{2}, c_{1}, c_{2}$ are positive real numbers, $\lambda \geq 0$, and $f=h+\bar{g}$ given by (1), we define the operator

$$
\begin{aligned}
L_{p} f(z) & :=L_{p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right) f(z) \\
& =D_{\lambda} f(z) \tilde{*}\left(\phi_{1}^{p}\left(a_{1}, c_{1}, z\right)+\overline{\phi_{2}^{p}\left(a_{2}, c_{2}, z\right)}\right) \\
& =H(z) * \phi_{1}^{p}\left(a_{1}, c_{1}, z\right)+\overline{G(z) * \phi_{2}^{p}\left(a_{2}, c_{2}, z\right)}
\end{aligned}
$$

where

$$
\begin{aligned}
D_{\lambda} f(z) & =(1-\lambda)(h(z)+\overline{g(z)})+\frac{\lambda}{p}\left(z h^{\prime}(z)-\overline{z g^{\prime}(z)}\right) \\
& =H(z)+\overline{G(z)} \\
\phi_{1}^{p}\left(a_{1}, c_{1}, z\right)= & z^{p}+\sum_{k=n+p}^{\infty} \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}} z^{k}, \phi_{2}^{p}\left(a_{2}, c_{2}, z\right)=\sum_{k=n+p-1}^{\infty} \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}} z^{k},
\end{aligned}
$$

and $(x)_{k}$ denotes the Pochhammer symbol given by

$$
(x)_{k}= \begin{cases}1 & , \text { if } k=0 \\ x(x+1) \ldots(x+k-1) & , \text { if } k \in \mathbb{N}=\{1,2,3, \ldots\} .\end{cases}
$$

If $f=h+\bar{g} \in S H^{n, p}$, then $L_{p} f(z)=L_{p} h(z)+\overline{L_{p} g(z)}$,
where

$$
L_{p} h(z)=z^{p}+\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}} A_{k} z^{k},
$$

and

$$
L_{p} g(z)=-\sum_{k=n+p-1}^{\infty}\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}} B_{k} z^{k} .
$$

Remark 1. (i) For $f(z) \in S H^{1,1}, L_{1}\left(a_{1}, c_{1}, a_{2}, c_{2}, 0\right) f(z)=L(f)$ defined and studied by Ahuja [2]-[3],
(ii) For $f(z) \in S H^{1,1}, L_{1}(n+1,1, n+1,1,0) f(z)$ reduces to the Ruscheweyh derivative operator for harmonic functions [9],
(iii) For $f(z) \in S^{n, p}, L_{p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right) f(z)=L_{p}(a, c, \lambda) f(z)$ defined by Mahzoon [8],
(iv) For $f(z) \in S^{1, p}, L_{p}\left(a_{1}, c_{1}, a_{2}, c_{2}, 0\right) f(z)$ reduces to the Saitoh operator [10],
(v) For $f(z) \in S^{1,1}, L_{p}\left(a_{1}, c_{1}, a_{2}, c_{2}, 0\right) f(z)$ reduces to the Carlson-Shaffer operator [5].

Let $S H_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$ denote the subclass of $S H^{n, p}$ consisting of functions $f=h+\bar{g} \in S H^{n, p}$ that satisfy the condition

$$
\begin{gather*}
\operatorname{Re}\left\{\frac{z\left[L_{p} h(z)\right]^{\prime}-\overline{z\left[L_{p} g(z)\right]^{\prime}}}{L_{p} h(z)+\overline{L_{p} g(z)}}\right\} \geq \alpha p \tag{2}\\
(\lambda \geq 0,0 \leq \alpha<1, p \in \mathbb{N}, n \in \mathbb{N}, z \in U)
\end{gather*}
$$

Denote by $\overline{S H}^{n, p}$ the subclass of $S H^{n, p}$, consist of harmonic functions $f=h+\bar{g}$ where h and g are of the form

$$
\begin{equation*}
h(z)=z^{p}-\sum_{k=n+p}^{\infty} A_{k} z^{k}, \quad g(z)=-\sum_{k=n+p-1}^{\infty} B_{k} z^{k}, \quad A_{k}, B_{k} \geq 0 \tag{3}
\end{equation*}
$$

Define $\overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right):=S H_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right) \cap \overline{S H}^{n, p}$.
If $f=h+\bar{g} \in \overline{S H}^{n, p}$, then $L_{p} f(z)=L_{p} h(z)+\overline{L_{p} g(z)}$,
where

$$
L_{p} h(z)=z^{p}-\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}} A_{k} z^{k}
$$

and

$$
L_{p} g(z)=\sum_{k=n+p-1}^{\infty}\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}} B_{k} z^{k}
$$

By suitably specializing the parameters, the classes $S H_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$ reduces to the various subclasses of harmonic univalent functions. Such as,
(i) $S H_{0}^{1,1}(1,1,1,1,0)=S H^{*}(0)$, is the class of univalent harmonic starlike functions; [4], [11], [12]
(ii) $S H_{\alpha}^{1,1}(1,1,1,1,0)=S H^{*}(\alpha)$, is the class of univalent harmonic starlike functions of order α; [7], [11], [12]
(iii) $S H_{0}^{1,1}(1,1,1,1,1)=K H(0)$, is the class of univalent harmonic convex functions; [4], [11], [12]
(iv) $S H_{\alpha}^{1,1}(1,1,1,1,1)=K H(\alpha)$, is the class of univalent harmonic convex functions of order $\alpha ;$ [7], [11], [12]
(v) $S H_{\alpha}^{n, p}(1,1,1,1,0)=S H(p, \alpha)$, is the class of multivalent harmonic starlike functions; [1]
(vi) $S H_{\alpha}^{1,1}(n+1,1, n+1,1,0)=R H(n, \alpha)$, is the class of univalent Ruscheweyhtype harmonic functions;[9].

2 Main Results

Theorem 1. Let $f(z) \in S H^{n, p}$ be given by (1). If

$$
\begin{gather*}
\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}}(k-\alpha p)\left|A_{k}\right| \\
+\sum_{k=n+p-1}^{\infty}\left|\lambda\left(\frac{k}{p}+1\right)-1\right| \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}}(k+\alpha p)\left|B_{k}\right| \leq p(1-\alpha), \tag{4}\\
\left(\lambda \geq 0, \frac{p-1}{p} \leq \alpha<1, p \in \mathbb{N}, n \in \mathbb{N}\right)
\end{gather*}
$$

then $f \in S H_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$.
Proof. In view of (2), we need to prove that $\operatorname{Re}\{w\} \geq 0$, where

$$
w=\frac{z\left[L_{p} h(z)\right]^{\prime}-\overline{z\left[L_{p} g(z)\right]^{\prime}}-\alpha p\left[L_{p} h(z)+\overline{L_{p} g(z)}\right]}{L_{p} h(z)+\overline{L_{p} g(z)}}:=\frac{A(z)}{B(z)}
$$

Using the fact that Rew $\geq 0 \Leftrightarrow|1+w| \geq|1-w|$, it suffices to show that

$$
|A(z)+B(z)|-|A(z)-B(z)| \geq 0
$$

Therefore we obtain

$$
\begin{aligned}
& |A(z)+B(z)|-|A(z)-B(z)| \\
\geq & {[1+p(1-\alpha)]|z|^{p}-\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}}(k-\alpha p+1)\left|A_{k}\right||z|^{k} } \\
& -\sum_{k=n+p-1}^{\infty}\left|\lambda\left(\frac{k}{p}+1\right)-1\right| \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}}(k+\alpha p+1)\left|B_{k}\right||z|^{k} \\
& -|1-p(1-\alpha)||z|^{p}-\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}}(k-\alpha p-1)\left|A_{k}\right||z|^{k} \\
& -\sum_{k=n+p-1}^{\infty}\left|\lambda\left(\frac{k}{p}+1\right)-1\right| \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}}(k+\alpha p-1)\left|B_{k}\right||z|^{k} \\
\geq & 2 p(1-\alpha)|z|^{p}-2 \sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}}(k-\alpha p)\left|A_{k}\right||z|^{k} \\
& -2 \sum_{k=n+p-1}^{\infty}\left|\lambda\left(\frac{k}{p}+1\right)-1\right| \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}}(k+\alpha p)\left|B_{k}\right||z|^{k}
\end{aligned}
$$

$$
\begin{aligned}
> & 2 p(1-\alpha)|z|^{p} \times\left\{1-\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}} \frac{(k-\alpha p)}{p(1-\alpha)}\left|A_{k}\right|\right. \\
& \left.-\sum_{k=n+p-1}^{\infty}\left|\lambda\left(\frac{k}{p}+1\right)-1\right| \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}} \frac{(k+\alpha p)}{p(1-\alpha)}\left|B_{k}\right|\right\} .
\end{aligned}
$$

This last expression is non-negative by (4), and so the proof is complete.
Theorem 2. Let $f(z)$ be of the form (3). $f(z) \in \overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$ if and only if

$$
\begin{gather*}
\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}}(k-\alpha p) A_{k} \\
+\sum_{k=n+p-1}^{\infty}\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}}(k+\alpha p) B_{k} \leq p(1-\alpha) . \tag{5}\\
\left(\lambda \geq \frac{1}{2}, \frac{p-1}{p} \leq \alpha<1, p \in \mathbb{N}, n \in \mathbb{N}\right)
\end{gather*}
$$

Proof. The "if" part follows from Theorem 1 upon noting that $\overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right) \subset$ $S H_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$. For the "only if" part, we show that $f \notin \overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$ if the condition (5) does not hold.

Note that a necessary and sufficient condition for $f=h+\bar{g}$ given by (3), to be in $\overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$ is that the condition (2) to be satisfied. This is equivalent to

$$
\begin{aligned}
& \operatorname{Re}\left\{\frac{p(1-\alpha) z^{p}-\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}}(k-\alpha p) A_{k} z^{k}}{z^{p}-\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}} A_{k} z^{k}+\sum_{k=n+p-1}^{\infty}\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}} B_{k} \bar{z}^{k}}\right. \\
& \left.-\frac{\sum_{k=n+p-1}^{\infty}\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}}(k+\alpha p) B_{k} \bar{z}^{k}}{z^{p}-\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}} A_{k} z^{k}+\sum_{k=n+p-1}^{\infty}\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}} B_{k} \bar{z}^{k}}\right\} \geq 0
\end{aligned}
$$

The above condition must hold for all values of $z,|z|=r<1$. Upon choosing
the values of z on the positive real axis where $0 \leq z=r<1$ we must have

$$
\begin{align*}
& \frac{p(1-\alpha)-\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}}(k-\alpha p) A_{k} r^{k-p}}{1-\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}} A_{k} r^{k-p}+\sum_{k=n+p-1}^{\infty}\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}} B_{k} r^{k-p}} \\
& -\frac{\sum_{k=n+p-1}^{\infty}\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}}(k+\alpha p) B_{k} r^{k-p}}{1-\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}} A_{k} r^{k-p}+\sum_{k=n+p-1}^{\infty}\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}} B_{k} r^{k-p}} \geq 0 .
\end{align*}
$$

If the condition (5) does not hold then the numerator of (6) is negative for r sufficiently close to 1 . Hence there exists a $z_{0}=r_{0}$ in $(0,1)$ for which the quotient in (6) is negative. This contradicts the required condition for $f \in$ $\overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$ and so the proof is complete.

Next we determine the distortion bounds for the functions in $\overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$.
Theorem 3. Let $f \in \overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$. Also, let $a_{1} c_{2}<a_{2} c_{1}$. Then for $|z|=r<1$ we have

$$
\begin{aligned}
|f(z)| \leq & \left(1+B_{n+p-1}\right) r^{p}+\left[\frac{p(1-\alpha)\left(c_{1}\right)_{n}}{\left[\frac{\lambda n}{p}+1\right][n+p(1-\alpha)]\left(a_{1}\right)_{n}}\right. \\
& \left.-\frac{\left[\lambda\left(\frac{n-1}{p}+2\right)-1\right]\left(a_{2}\right)_{n-1}\left(c_{1}\right)_{n}[n-1+p(1+\alpha)]}{\left[\frac{\lambda n}{p}+1\right]\left(c_{2}\right)_{n-1}\left(a_{1}\right)_{n}[n+p(1-\alpha)]} B_{n+p-1}\right] r^{n+p},
\end{aligned}
$$

and

$$
\begin{aligned}
|f(z)| \geq & \left(1-B_{n+p-1}\right) r^{p}-\left[\frac{p(1-\alpha)\left(c_{1}\right)_{n}}{\left[\frac{\lambda n}{p}+1\right][n+p(1-\alpha)]\left(a_{1}\right)_{n}}\right. \\
& \left.-\frac{\left[\lambda\left(\frac{n-1}{p}+2\right)-1\right]\left(a_{2}\right)_{n-1}\left(c_{1}\right)_{n}[n-1+p(1+\alpha)]}{\left[\frac{\lambda n}{p}+1\right]\left(c_{2}\right)_{n-1}\left(a_{1}\right)_{n}[n+p(1-\alpha)]} B_{n+p-1}\right] r^{n+p} .
\end{aligned}
$$

Proof. We only prove the right hand inequality. The proof for the left hand inequality is similar and will be omitted. Let $f \in \overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$.

Taking the absolute value of f we have

$$
\begin{aligned}
|f(z)| \leq & \left(1+B_{n+p-1}\right) r^{p}+\sum_{k=n+p}^{\infty}\left(A_{k}+B_{k}\right) r^{k} \\
\leq & \left(1+B_{n+p-1}\right) r^{p}+\sum_{k=n+p}^{\infty}\left(A_{k}+B_{k}\right) r^{n+p} \\
= & \left(1+B_{n+p-1}\right) r^{p}+\frac{p(1-\alpha)\left(c_{1}\right)_{n}}{\left[\frac{\lambda n}{p}+1\right][n+p(1-\alpha)]\left(a_{1}\right)_{n}} \\
& \times \sum_{k=n+p}^{\infty}\left[\frac{\lambda n}{p}+1\right] \frac{\left(a_{1}\right)_{n}}{\left(c_{1}\right)_{n}} \frac{n+p(1-\alpha)}{p(1-\alpha)}\left(A_{k}+B_{k}\right) r^{n+p} \\
\leq & \left(1+B_{n+p-1}\right) r^{p}+\left(\frac{p(1-\alpha)\left(c_{1}\right)_{n}}{\left[\frac{\lambda n}{p}+1\right][n+p(1-\alpha)]\left(a_{1}\right)_{n}}\right) \\
& \times\left[\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}} \frac{(k-\alpha p)}{p(1-\alpha)} A_{k} r^{n+p}\right. \\
& \left.+\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}} \frac{(k+\alpha p)}{p(1-\alpha)} B_{k} r^{n+p}\right]
\end{aligned}
$$

Using Theorem 2, we obtain

$$
\begin{aligned}
|f(z)|= & \left(1+B_{n+p-1}\right) r^{p}+\left[\frac{p(1-\alpha)\left(c_{1}\right)_{n}}{\left[\frac{\lambda n}{p}+1\right][n+p(1-\alpha)]\left(a_{1}\right)_{n}}\right. \\
& \left.-\frac{\left[\lambda\left(\frac{n-1}{p}+2\right)-1\right]\left(a_{2}\right)_{n-1}\left(c_{1}\right)_{n}[n-1+p(1+\alpha)]}{\left[\frac{\lambda n}{p}+1\right]\left(c_{2}\right)_{n-1}\left(a_{1}\right)_{n}[n+p(1-\alpha)]} B_{n+p-1}\right] r^{n+p} .
\end{aligned}
$$

The following covering result follows from the left hand inequality in Theorem 3.

Corollary 1. Let f of the form (3) be so that $f \in \overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$. Also, let $a_{1} c_{2}<a_{2} c_{1}$. Then

$$
\begin{aligned}
& \quad\left\{w:|w|<\left[\frac{\left[\frac{\lambda n}{p}+1\right][n+p(1-\alpha)]\left(a_{1}\right)_{n}-p(1-\alpha)\left(c_{1}\right)_{n}}{\left[\frac{\lambda n}{p}+1\right][n+p(1-\alpha)]\left(a_{1}\right)_{n}}\right.\right. \\
& - \\
& \left.\left.-\frac{\left[\frac{\lambda n}{p}+1\right]\left(c_{2}\right)_{n-1}\left(a_{1}\right)_{n}[n+p(1-\alpha)]-\left[\lambda\left(\frac{n-1}{p}+2\right)-1\right]\left(a_{2}\right)_{n-1}\left(c_{1}\right)_{n}[n-1+p(1+\alpha)]}{\left[\frac{\lambda n}{p}+1\right]\left(c_{2}\right)_{n-1}\left(a_{1}\right)_{n}[n+p(1-\alpha)]} B_{n+p-1}\right]\right\} \subset f(U) .
\end{aligned}
$$

Theorem 4. Let f be given by (3). Then $f \in \overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$ if and only if

$$
f(z)=\sum_{k=n+p-1}^{\infty}\left(x_{k} h_{k}(z)+y_{k} g_{k}(z)\right)
$$

where

$$
\begin{aligned}
h_{n+p-1}(z) & =z^{p}, \\
h_{k}(z) & =z^{p}-\frac{p(1-\alpha)}{\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}}(k-\alpha p)} z^{k}, \quad(k=n+p, n+p+1, \ldots) \\
g_{k}(z) & =z^{p}-\frac{p(1-\alpha)}{\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}}(k+\alpha p)} \bar{z}^{k}, \quad(k=n+p-1, n+p, \ldots) \\
x_{n+p-1} & \equiv x_{p}=1-\left(\sum_{k=n+p}^{\infty} x_{k}+\sum_{k=n+p-1}^{\infty} y_{k}\right), x_{k} \geq 0, y_{k} \geq 0 .
\end{aligned}
$$

In particular, the extreme points of $\overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$ are $\left\{h_{k}\right\}$ and $\left\{g_{k}\right\}$.

Proof.

$$
\begin{aligned}
f(z)= & \sum_{k=n+p-1}^{\infty}\left(x_{k} h_{k}(z)+y_{k} g_{k}(z)\right) \\
= & z^{p}-\sum_{k=n+p}^{\infty} \frac{p(1-\alpha)}{\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}}(k-\alpha p)} x_{k} z^{k} \\
& -\sum_{k=n+p-1}^{\infty} \frac{p(1-\alpha)}{\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}}(k+\alpha p)} y_{k} \bar{z}^{k} .
\end{aligned}
$$

Then

$$
\begin{aligned}
& \sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}} \frac{(k-\alpha p)}{p(1-\alpha)} \frac{p(1-\alpha)}{\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}}(k-\alpha p)} x_{k} \\
& +\sum_{k=n+p-1}^{\infty}\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}} \frac{(k+\alpha p)}{p(1-\alpha)} \frac{p(1-\alpha)}{\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}}(k+\alpha p)} y_{k} \\
= & \sum_{k=n+p}^{\infty} x_{k}+\sum_{k=n+p-1}^{\infty} y_{k}=1-x_{p} \leq 1,
\end{aligned}
$$

and so $f \in \overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$.

Conversely, if $f \in \overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$, then

$$
A_{k} \leq \frac{\left(c_{1}\right)_{k-p}[p(1-\alpha)]}{\left[\lambda\left(\frac{k}{p}-1\right)+1\right]\left(a_{1}\right)_{k-p}(k-\alpha p)}
$$

and

$$
B_{k} \leq \frac{\left(c_{2}\right)_{k-p}[p(1-\alpha)]}{\left[\lambda\left(\frac{k}{p}+1\right)-1\right]\left(a_{2}\right)_{k-p}(k+\alpha p)}
$$

Set

$$
\begin{aligned}
& x_{k}=\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}} \frac{(k-\alpha p)}{p(1-\alpha)} A_{k},(k=n+p, n+p+1, \ldots) \\
& y_{k}=\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}} \frac{(k+\alpha p)}{p(1-\alpha)} B_{k},(k=n+p-1, n+p, \ldots)
\end{aligned}
$$

and

$$
x_{p}=1-\left(\sum_{k=n+p}^{\infty} x_{k}+\sum_{k=n+p-1}^{\infty} y_{k}\right)
$$

where $x_{p} \geq 0$. Then, as required, we obtain

$$
f(z)=x_{p} z^{p}+\sum_{k=n+p}^{\infty} x_{k} h_{k}(z)+\sum_{k=n+p-1}^{\infty} y_{k} g_{k}(z) .
$$

Theorem 5. The class $\overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$ is closed under convex combinations.

Proof. Let $f_{i} \in \overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$ for $i=1,2, \ldots$, where f_{i} is given by

$$
f_{i}(z)=z^{p}-\sum_{k=n+p}^{\infty} A_{k_{i}} z^{k}-\sum_{k=n+p-1}^{\infty} B_{k_{i}} \bar{z}^{k}
$$

Then by (5),

$$
\begin{equation*}
\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}} \frac{(k-\alpha p)}{p(1-\alpha)} A_{k_{i}}+\sum_{k=n+p-1}^{\infty}\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}} \frac{(k+\alpha p)}{p(1-\alpha)} B_{k_{i}}<1 \tag{7}
\end{equation*}
$$

For $\sum_{i=1}^{\infty} t_{i}=1,0 \leq t_{i} \leq 1$, the convex combination of f_{i} may be written as

$$
\sum_{i=1}^{\infty} t_{i} f_{i}=z^{p}-\sum_{k=n+p}^{\infty}\left(\sum_{i=1}^{\infty} t_{i} A_{k_{i}}\right) z^{k}-\sum_{k=n+p-1}^{\infty}\left(\sum_{i=1}^{\infty} t_{i} B_{k_{i}}\right) \bar{z}^{k} .
$$

Then by (7),

$$
\begin{aligned}
& \sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}} \frac{(k-\alpha p)}{p(1-\alpha)}\left(\sum_{i=1}^{\infty} t_{i} A_{k_{i}}\right) \\
& +\sum_{k=n+p-1}^{\infty}\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}} \frac{(k+\alpha p)}{p(1-\alpha)}\left(\sum_{i=1}^{\infty} t_{i} B_{k_{i}}\right) \\
= & \sum_{i=1}^{\infty} t_{i}\left\{\sum_{k=n+p}^{\infty}\left[\lambda\left(\frac{k}{p}-1\right)+1\right] \frac{\left(a_{1}\right)_{k-p}}{\left(c_{1}\right)_{k-p}} \frac{(k-\alpha p)}{p(1-\alpha)} A_{k_{i}}\right. \\
& \left.+\sum_{k=n+p-1}^{\infty}\left[\lambda\left(\frac{k}{p}+1\right)-1\right] \frac{\left(a_{2}\right)_{k-p}}{\left(c_{2}\right)_{k-p}} \frac{(k+\alpha p)}{p(1-\alpha)} B_{k_{i}}\right\} \\
\leq & \sum_{i=1}^{\infty} t_{i}=1 .
\end{aligned}
$$

This is the condition required by (5) and so $\sum_{i=1}^{\infty} t_{i} f_{i}(z) \in \overline{S H}_{\alpha}^{n, p}\left(a_{1}, c_{1}, a_{2}, c_{2}, \lambda\right)$.

References

[1] O.P. Ahuja and J.M. Jahangiri, Multivalent harmonic starlike functions, Annales Universitatis Mariae Curie-Sklodowska, 55(1) (2001), 1-13.
[2] O.P. Ahuja, Planar harmonic convolution operators generated by hypergeometric functions, Integral Transforms and Special Functions, 18(3) (2007), 165-177.
[3] O.P. Ahuja, Connections between various subclasses of planar harmonic mappings involving hypergeometric functions, Appl. Math. Comp., 198(1) (2008), 305-316.
[4] Y. Avcı and E. Zlotkiewicz, On harmonic univalent mappings, Ann. Univ. Mariae Curie-Sklodowska, Sect. A(44) (1990), 1-7.
[5] B.C. Carlson and D.B. Shaffer, Starlike and prestarlike hypergeometric functions, SIAM. J. Math. Anal., 15(4) (1984), 737-745.
[6] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn., Ser. A I Math. (9) (1984), 3-25.
[7] J.M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl., 235(1999), 470-477.
[8] H. Mahzoon and S. Latha, On certain properties of neighborhoods of multivalent functions involving the generalized Saitoh operator, JIPAM, 10(4) (2009), Article 112, 6.
[9] G. Murugusundaramoorthy, A class of Ruscheweyh-type harmonic univalent functions with varying arguments, Souhwest Journal of Pure and Applied Mathematics, 2(2003), 90-95.
[10] H. Saitoh, A linear operator and its applications of first order differential subordinations, Math. Japon, 44(1) (1996), 31-38.
[11] H. Silverman, Harmonic univalent functions with negative coefficients, J. Math. Anal. Appl., 220(1998), 283-289.
[12] H. Silverman and E. M. Silvia, Subclasses of harmonic univalent functions, N.Z.J. Math., 28(1999), 275-284.

