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Abstract
A motivation of the classical Sumudu transform “ Elzaki transform ” was

presented as a closely related transform to the Laplace transform. In the present
work, we extend the cited transform to a Schwartz space of distributions of
compact support and retain its classical properties. The Elzaki transform is
extended to the context of Boehmian spaces and, further, shown to be well de-
fined and linear mapping in the banach space of Lebesgue integrable Boehmians.
Certain theorem is also proved in some detail.

Keywords: Distribution Space, Sumudu Transform, Boehmian Spaces,
Elzaki Transform.

1 Introduction

Integral transforms play an important role in many fields of science. In the
literature, integral transforms are widely used in mathematical physics, optics,
engineering mathematics and, few others. Among these transforms which were
extensively used and applied on theory and applications are : the Mellin,
Hankel, Laplace and Sumudu transforms, to name, but a few. The Sumudu
transform is defined on a set A of functions

A =
{
f (t) : ∃M, τ1, τ2 > 0, |f (t)| < Me

t
τj , if t ∈ (−1)j × [0,∞]

}
(1.1)

by the formula [14,15,16]

F (ζ) = Sf (ζ) =∞0 f (ζt) e−tdt, t ∈ (−τ1, τ2) . (1.2)
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The Sumudu transform has a strong relationship with other integral trans-
forms. In particular, the relationship between the Sumudu transform and
Laplace transform have been established by kilicman 2010. Recently, a moti-
vation of the Sumudu transform, namely, Elzaki transform, is given by Elzaki
[17, 18, 19]. The Elzaki transform of a function f (t) over the set (1.1) of func-
tions of exponential order, is given by [17, 18]

Ef (ζ) = ζ∞0 f (t) e
−t
ζ dt, ζ ∈ (−τ1, τ2) . (1.3)

In the above citations, the transform (1.3) is noted to facilitate the process
of solving order and partial differential equations where examples are solved.

Let f be a function of exponential order. Let Lf and Ef be the Laplace
and Elzaki transforms of f , respectively, then

Ef (ζ) = ζLf

(
1

ζ

)
. (1.4)

and hence

Lf

(
1

ζ

)
= ζE

(
1

ζ

)
. (1.5)

Following, are considered as general properties of Elzaki transform.
(1) If a and b are non-negative real numbers then

E (af (t) + bg (t)) (ζ) = aEf (ζ) + bEg (ζ) .

(2) limt→0 f (t) = limζ→0Ef (ζ) = f (0) .

The convolution product between two L1 functions f and g is defined by

f ∗ g (x) =∞0 f (t) g (x− t) dt (1.6)

then

E (f ∗ g) (ζ) =
f (ζ) g (ζ)

ζ
, see [19] .

2 The Elzaki Transform of Distributions

Let ε (R+) be the space of smooth functions of arbitrary support on R+ and
έ (R+) be its strong dual of distributions of compact support. Denote by
D (R+) , the subspace of ε (R+) of test functions of compact support then its
dual space D́ (R+) consists of Schwartz distributions. Certainly, D ⊂ ε and

hence ε ⊂ έ ⊂ D́. The kernel function ζe
−t
ζ of Elzaki transform is clearly a

member of ε (R+). Hence, we define the generalized Elzaki transform Ê on
έ (R+) by the equation

Êf (ζ) =
〈
f (t) , ζe

−t
ζ

〉
. (2.1)
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for every distribution f ∈ έ (R+).

Theorem 2.1. Ê is a well-defined mapping in the space ε (R+) .

Proof. of this theorem is immediate, since ζe
−t
ζ ∈ ε (R+) .

Theorem 2.2. Ê is infinitely smooth and

dk

dζk
Êf (ζ) =

〈
f (t) ,

dk

dζk

(
ζe

−t
ζ

)〉
.

for every f ∈ έ (R+) .
This theorem can be proved by an argument similar to that used in [9, Theorem 2.9.1.] ,

detailed proof thus avoided. Next, is a theorem describing linearity of the dis-
tributional Elzaki transform.

Theorem 2.3. Ê is linear.

Let f, g ∈ έ (R+) . We define the generalized convolution between f and g
by

〈f ∗ g (x) , ψ (x)〉 = 〈f (x) , 〈g (t) , ψ (x+ t)〉〉 . (2.2)

for every ψ ∈ ε (R+) . Hence using (2.1) and (2.2) together with simple calcu-
lations yields

Ê (f ∗ g) (ζ) =
Êf (ζ) Êg (ζ)

ζ
.

Theorem 2.4. Let f ∈ έ (R+) and g (t) =

{
f (t− τ) , t ≥ τ

0, t < τ
then

Êg (ζ) = e
−τ
ζ Êf (ζ) .

Proof. It is clear that g ∈ έ (R+) . The translation property of distributions
through τ [9, p.26] , implies

Êg (ζ) =
〈
f (t− τ) , ζe−t/ζ

〉
= e−τ/ζÊf (ζ) .

Hence, the theorem.

Theorem 2.5. Let f ∈ έ (R+) then the following holds

(1) Ê (tf (t)) (ζ) = ζ2 d

dζ
Êf (ζ)− ζÊf (ζ) .

(2) Ê (t2f (t)) (ζ) = ζ4 d
2

dζ2
Êf (ζ) .
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Proof. Considering properties of Elzaki transform (2.1) and Theorem 2.2
, we get

d

dζ
Ê (ζ) =

d

dζ

〈
f (t) , ζe−t/ζ

〉
=

〈
f (t) ,

d

dζ

(
ζe−t/ζ

)〉
Differentiating inside the inner product yields

d

dζ
Ê (ζ) =

〈
f (t) ,

t

ζ
e−t/ζ + e−t/ζ

〉
Properties of distributions imply

d

dζ
Ê (ζ) =

〈
tf (t) ,

1

ζ
e−t/ζ

〉
+
〈
f (t) , e−t/ζ

〉
Multiplying both sides by ζ2 and rearranging complete the proof of the first
part of the theorem. Proof of the second part is similar. Hence we avoid the
same. This proof is therefore completed.

Theorem 2.6. (Shifting Theorem) . Let f ∈ έ (R+) then

Ê
(
eatf (t)

)
(ζ) = 1

1−aζ Ê
(

ζ
1−aζ

)
.

The proof is straightforward .

3 Boehmians

Let G be a linear space and S be a subspace of G. We assume that to each
pair of elements f ∈ G and φ ∈ S, is assigned the product f ∗ g such that the
following conditions are satisfied:

(1)φ, ψ ∈ S ⇒ φ ∗ ψ ∈ S and φ ∗ ψ = ψ ∗ φ.
(2) f ∈ G, φ, ψ ∈ S ⇒ (f ∗ φ) ∗ ψ = f ∗ (φ ∗ ψ) .
(3)If f, g ∈ G, φ ∈ S and λ ∈ R, then (f + g) ∗ φ = f ∗ φ + g ∗ φ and

λ (f ∗ φ) = (λf) ∗ φ. Let ∆ be a family of sequences from S, such that
(1)If f, g ∈ G, (γn) ∈ ∆ and f ∗ γn = g ∗ γn (n = 1, 2, ...) , then f = g.
(2) (γn) , (τn) ∈ ∆⇒ (γn ∗ τn) ∈ ∆.
then each elements of ∆ will be called delta sequence.
Consider the class A of pairs of sequences defined by

A =
{

((fn) , (γn)) : (fn) ⊆ GN , (γn) ∈ ∆
}
,

for each n ∈ N. Then, an element ((fn) , (γn)) ∈ A is called a quotient of
sequences, denoted by fn

γn
if

fi ∗ γj = fj ∗ γi,∀i, j ∈ N.
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Two quotients of sequences fn
γn

and gn
τn

are said to be equivalent, fn
γn
∼ gn

τn
, if

fi ∗ γj = gj ∗ τi,∀i, j ∈ N.

The relation ∼ is an equivalent relation on A and hence, splits A into equiv-

alence classes. The equivalence class containing fn
γn

is denoted by
[
fn
γn

]
.These

equivalence classes are called Boehmians and the space of all Boehmians is
denoted by H.

The sum of two Boehmians and multiplication by a scalar can be defined
in a natural way [

fn
γn

]
+
[
gn
τn

]
=
[
fn∗τn+gn∗γn

γn∗τn

]
and

a
[
fn
γn

]
=
[
afn
γn

]
, a ∈ C.

The operation ∗ and the differentiation are defined by[
fn
γn

]
∗
[
gn
τn

]
=
[
fn∗gn
γn∗τn

]
and

Dα
[
fn
γn

]
=
[
Dαfn
γn

]
.

Many a time, G is equipped with a notion of convergence. The intrinsic
relationship between the notion of convergence and the product ∗ are given
by:

(1) If fn → f as n→∞ in G and, φ ∈ S is any fixed element, then

fn ∗ φ→ f ∗ φ in G (as n→∞) .

(2) If fn → f as n→∞ in G and (γn) ∈ ∆, then

fn ∗ γn → f in G (as n→∞) .

The operation ∗ can be extended to H × S by the following definition.

Definition 3.1. If
[
fn
γn

]
∈ H and φ ∈ S ,then

[
fn
γn

]
∗ φ =

[
fn∗φ
γn

]
.

In H, two types of convergence, δ−convergence and ∆−convergence, are
defined as follows:

Definition 3.2. A sequence of Boehmians (βn) in H is said to be

δ−convergent to a Boehmian β in H, denoted by βn
δ→ β, if there exists a

delta sequence (γn) such that

(βn ∗ γn) , (β ∗ γn) ∈ G,∀k, n ∈ N,
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and

(βn ∗ γk)→ (β ∗ γk) as n→∞, in G, for every k ∈ N.

The following lemma is equivalent for the statement of δ−convergence

Lemma 3.3. βn
δ→ β (n→∞) in H if and only if there is fn,k, fk ∈ G

and γk ∈ ∆ such that βn =
[
fn,k
γk

]
, β =

[
fk
γk

]
and for each k ∈ N,

fn,k → fk as n→∞ in G.

Definition 3.4. A sequence of Boehmians (βn) in H is said to be ∆−convergent

to a Boehmian β in H, denoted by βn
∆→ β, if there exists a (γn) ∈ ∆ such

that (βn − β) ∗ γn ∈ G,∀n ∈ N, and (βn − β) ∗ γn → 0 as n → ∞ in G. see
[1-5,78,10,11,13]

4 The Elzaki Transform of Boehmians

Let G = L1 (R+) and S = D (R+) . Let ∆ be the collection of sequences (γn)
from D (R+) such that

(1)R+
γn (t) dt = 1.

(2) ‖γn‖L1 < B for all (γn) ∈ ∆ where B is certain positive constant.
(3)|x|>ε |γn (t)| dt→ 0 as n→∞, ε > 0.

The corresponding space of Boehmians H (L1, D, ∗,∆) is a convolution
algebra with the operations[

fn
γn

]
+
[
gn
τn

]
=
[
fn∗τn+gn∗γn

γn∗τn

]
. (4.1)

and
a
[
fn
γn

]
=
[
afn
γn

]
, a ∈ R. (4.2)

The operation ∗ in H (L1, D, ∗,∆) can be defined by[
fn
γn

]
∗
[
gn
τn

]
=
[
fn∗gn
γnτn

]
. (4.3)

Differentiation in H (L1, D, ∗,∆) is defined by

Dk
[
fn
γn

]
=
[
Dkfn
γn

]
, k ∈ N. (4.4)

If (γn) ∈ ∆ then, certainly, Eγn (ζ) → ζ as uniformly n → ∞, on compact
subsets of R+.
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Lemma 4.1. If fn ∈ L1 such that
[
fn
γn

]
∈ H (L1, D, ∗,∆) then

Efn (ζ) =R+ ζe
−t
ζ fn (t) dt.

converges uniformly on each compact set of R+.

Proof. Since Eγn → ζ as n→∞ on compact subsets of R+, Eγn > 0 for
almost all k ∈ N and hence

Efn (ζ) = Efn (ζ) Eγk(ζ)
Eγk(ζ)

= ζE(fn∗γk)(ζ)
Eγn(ζ)

= ζE(fk∗γn)
Eγn(ζ)

= Efk(ζ)
Eγk(ζ)

Eγn (ζ) on K.

where K is certain compact subset of R+. Considering limit as n→∞ we get
Efn (ζ)→ ζEfk(ζ)

Eγk(ζ)
.

From Theorem 4.1 we define the Elzaki transform of β ∈ H (L1, D, ∗,∆) ,

where β =
[
fn
γn

]
, by the formula

Ẽβ = limEfn
n→∞

,

on compact subsets of R+. Now, we show the above definition is well defined.

For, if β1 = β2 where, β1 =
[
fn
γn

]
, β2 =

[
gn
τn

]
then fn ∗ τm = gm ∗ γn = gn ∗ γm.

Employing Elzaki transform on both sides yields

Efn (ζ)Eτm (ζ)

ζ
=
Egn (ζ)Eγm (ζ)

ζ
.

Hence, allowing m→∞ yidels

lim
n→∞

Efn (ζ) = lim
n→∞

Egn (ζ)

Hence
Ẽβ1 = Ẽβ2.

This completes the proof.

Theorem 4.2. Let x1, x2 ∈ H (L1, D, ∗,∆) and a ∈ C then
(1) Ẽ (x1 + x2) = Ẽx1 + Ẽx2.
(2) Ẽ (ax1) = aẼx1.
(3) Ẽ (x1 ∗ γn) = Ẽ (γn ∗ x1) = 1

ζ
Ẽx1.
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(4) Ẽx1 = 0⇒ x1 = 0.

(5)xn
∆→ x ∈ H (L1, D, ∗,∆)⇒

Ẽxn
∆→ Ẽx ∈ H

(
L1, D, ∗,∆

)
as n→∞

on compact subsets.

Proof. of Parts (1− 2) , and (4) follows from the corresponding properties
of the classical Elzaki transform. Proof of Part(3): Let x1 ∈ H (L1, D, ∗,∆)

such that x1 =
[
fn
γn

]
then x1 ∗ γn =

[
fn∗γn
γn

]
. Hence,

Ẽ (x1 ∗ γn) =
1

ζ
lim

n→∞

Efn (ζ) =
1

ζ
Ẽx1.

Finally, the proof of Part (5) have analysis similar to that employed in the
proof of Part (f) of from [7,Theorem 2]. This completes the proof of the
theorem.
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