

Gen. Math. Notes, Vol. 2, No. 1, January 2011, pp. 232-243 ISSN 2219-7184; Copyright ©ICSRS Publication, 2011 www.i-csrs.org Available free online at http://www.geman.in

$(i,j)\mbox{-}\xi\mbox{-}\mbox{Open Sets}$ in Bitopological Spaces

Alias B. Khalaf and Haji M. Hasan

University of Duhok, Kurdistan-Region, Iraq E-mail:aliasbkhalaf@gmail.com University of Duhok, Kurdistan-Region, Iraq E-mail:shavanhaji@yahoo.com

(Received 26.10.2010, Accepted 23.11.2010)

Abstract

The aim of this paper is to introduce a new type of sets in bitopological spaces which is conditional ξ -open set in bitopological spaces called (i, j)- ξ -open set and we study its basic properties, and also we introduce some characterizations of this set.

Keywords: ξ -open, (i, j)- ξ -open, semi-open, regular-closed 2000 MSC No:54A05, 54A10; Secondary: 54E55.

1 Introduction

In 1963 Kelley J. C. [7] was first introduced the concept of bitopological spaces, where X is a nonempty set and τ_1 , τ_2 are topologies on X. In 1963 Levine [8] introduced the concept of semi-open sets in topological spaces. By using this concept, several authers defined and studied stronger or weaker types of topological concept.

In this paper, we introduce the concept of a conditional ξ -open set in a bitopological space, and we study their basic properties and relationships with other concepts of sets. Throughout this paper, (X, τ_1, τ_2) is a bitopological space, and if $A \subseteq Y \subseteq X$, then *i*-Int(A) and *i*-Cl(A) denote respectively the interior and closure of A with respect to the topology τ_i on X and i-Int_Y(A), i-Cl_Y(A) denote respectively the interior and the closure of A with respect to the induced topology on Y.

2 Preliminaries

We shall give the following definitions and results.

Definition 2.1 A subset A of a space (X, τ) is called:

- 1. preopen [9], if $A \subseteq Int(Cl(A))$
- 2. semi-open [8], if $A \subseteq Cl(Int(A))$
- 3. α -open [11], if $A \subseteq Int(Cl(Int(A)))$
- 4. regular open [5], if A = Int(Cl(A))
- 5. regular semi-open [1], if A = sInt(sCl(A))

The complement of a preopen (resp., semi-open, α -open, regular open, regular semi-open) set is said to be preclosed (resp., semi-closed, α -closed, regular closed, regular semi-closed). The intersection of all preclosed (resp., semi-closed, α -closed) sets of X containing A is called preclosure (resp., semiclosure, α -closure) of A. The union of all preopen (resp., semi-open, α -open) sets of X contained in A called preinterior (resp., semi-interior, α -interior) of A.

A subset A of a space X is called δ -open [15], if for each $x \in A$, there exists an open set G such that $x \in G \subseteq Int(Cl(G)) \subseteq A$. A subset A of a space X is called θ -semi-open [6] (resp., semi- θ -open [2]) if for each $x \in A$, there exists a semi-open set G such that $x \in G \subseteq Cl(G) \subseteq A$ (resp., $x \in G \subseteq sCl(G) \subseteq A$. A subset A of a topological space (X, τ) is called η -open [13], if A is a union of δ -closed sets. The complement of η -open sets is called η -closed.

Definition 2.2 A topological space X is called,

- 1. Extermally disconnected [2], if $Cl(U) \in \tau$ for every $U \in \tau$.
- 2. Locally indiscrete [4], if every open subset of X is closed.

From the above definition we obtain:

Remark 2.3 If X is locally indiscrete space, then every semi-open subset of X is closed and hence every semi-closed subset of X is open.

Theorem 2.4 [9] A space X is semi- T_1 if and only if for any point $x \in X$ the singleton set $\{x\}$ is semi-closed.

Theorem 2.5 [10] For any space (X, τ) and (Y, τ) if $A \subseteq X$, $B \subseteq Y$ then:

- 1. $pInt_{X \times Y}(A \times B) = pInt_X(A) \times pInt_Y(B)$
- 2. $sCl_{X \times Y}(A \times B) = sCl_X(A) \times sCl_Y(B)$

Theorem 2.6 [10] For any topological space the following statements are true:

- 1. Let (Y, τ_Y) be a subspace of a space (X, τ) , if $F \in SC(X)$ and $F \subseteq Y$ then $F \in SC(Y)$.
- 2. Let (Y, τ_Y) be a subspace of a space (X, τ) , if $F \in SC(Y)$ and $Y \in SC(X)$ then $F \in SC(X)$
- 3. Let (X, τ) be a topological space, if Y is an open subset of a space X and $F \in SC(X)$, then $F \cap Y \in SC(X)$

Definition 2.7 [12] A space X is said to be semi-regular if for any open set U of X and each point $x \in U$, there exists a regular open set V of X such that $x \in V \subseteq U$.

3 Basic Properties

In this section, we introduce and define a new type of sets in bitopological spaces and find some of its properties

Definition 3.1 A subset A of a bitopological space (X, τ_1, τ_2) is said to be (i, j)- ξ -open, if A is a j-open set and for all x in A, there exist an i-semi-closed set F such that $x \in F \subseteq A$. A subset B of X is called (i, j)- ξ - closed if B^c is (i, j)- ξ - open.

The family of (i, j)- ξ -open (resp., (i, j)- ξ - closed) subset of x is denoted by (i, j)- $\xi O(X)$ (resp.,(i, j)- $\xi C(X)$).

From the above definition we obtain:

Corollary 3.2 A subset A of a bitopological space X is (i, j)- ξ -open, if A is j-open set and it is a union of i-semi-closed sets. This means that $A = \bigcup F_{\alpha}$, where A is a j-open and F_{α} is an i-semi-closed set for each α .

It is clear from the definition that every (i, j)- ξ -open set is j-open, but the converse is not true in general as shown in the following example.

Example 3.3 Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, \{a\}, X\}$, $\tau_2 = \{\phi, \{c\}, \{a, b\}, X\}$, then (i, j)- $\xi O(X) = \{\phi, \{c\}, X\}$. It is clear that $\{a, b\}$ is j-open but not (i, j)- ξ -open.

Proposition 3.4 Let (X, τ_1, τ_2) be a bitopological space if (X, τ_1) is a semi- T_1 -space, then (i, j)- $\xi O(X) = \tau_i(X)$.

Proof. Let A be any subset of a space X and A is j-open set, if $A = \phi$, then $A \in (i, j)$ - $\xi O(X)$, if $A \neq \phi$, now let $x \in A$, since (X, τ_1) is semi- T_1 -space, then by Theorem 2.4 every singleton is *i*-semi-closed set , and hence $x \in \{x\} \subseteq A$, therefore $A \in (i, j)$ - $\xi O(X)$, hence $\tau_j(X) \subseteq (i, j)$ - $\xi O(X)$ but (i, j)- $\xi O(X) \subseteq \tau_j(X)$ generally, thus (i, j)- $\xi O(X) = \tau_j(X)$.

Proposition 3.5 Let (X, τ_1, τ_2) be a bitopological space and A be a subset the space X. If $A \in j \cdot \delta O(X)$ and A is an i-closed set, then $A \in (i, j) \cdot \xi O(X)$

Proof. If $A = \phi$, then $A \in (i, j)$ - $\xi O(X)$, if $A \neq \phi$, let $x \in A$ since $A \in j$ - $\delta O(X)$ and j- $\delta O(X) \subseteq \tau_j(X)$ in general so $A \in \tau_j(X)$, and since A is *i*-closed so A is *i*-semi-closed and $x \in A \subseteq A$, and hence $A \subseteq (i, j)$ - $\xi O(X)$.

From Proposition 3.5 we obtain the following:

Corollary 3.6 Let (X, τ_1, τ_2) be a bitopological space, if a subset A of X is *i*-regular closed and *j*-open then $A \in (i, j)$ - $\xi O(X)$

Theorem 3.7 In a bitopological space (X, τ_1, τ_2) if a space (X, τ_i) is locally indiscrete then (i, j)- $\xi O(X) \subseteq \tau_i$.

Proof. Let $V \in (i, j)$ - $\xi O(X)$, then $V \in \tau_j(X)$ and for each $x \in V$, there exist *i*-semi-closed F in X such that $x \in F \subseteq V$, by Remark 2.3, F is *i*-open, it follows that $V \in \tau_i$, and hence (i, j)- $\xi O(X) \subseteq \tau_i$.

The converse of Theorem 3.7, is not true in general, as shown in the following example:

Example 3.8 Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{b, c\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$, then (i, j)- $\xi O(X) = \{\phi, \{b, c\}, X\}$ and it is clear that (X, τ_1) is locally indiscrete but τ_1 is not a subset of (i, j)- $\xi O(X)$

Theorem 3.9 Let X_1 , X_2 be two bitopological space and $X_1 \times X_2$ be the bitopological product, let $A_1 \in (i, j)$ - $\xi O(X_1)$ and $A_2 \in (i, j)$ - $\xi O(X_2)$ then $A_1 \times A_2 \in (i, j)$ - $\xi O(X_1 \times X_2)$

Proof. Let $(x_1, x_2) \in A_1 \times A_2$ then $x_1 \in A_1$ and $x_2 \in A_2$, and since $A_1 \in (i, j)$ - $\xi O(X_1)$ and $A_2 \in (i, j)$ - $\xi O(X_2)$, then $A_1 \in j$ - $\xi O(X_1)$ and $A_2 \in j$ - $\xi O(X_2)$, there exist $F_1 \in i$ - $SC(X_1)$ and $F_2 \in i$ - $SC(X_2)$ such that $x_1 \in F_1 \subseteq A_1$ and $x_2 \in F_2 \subseteq A_2$. Therefore $(x_1, x_2) \in F_1 \times F_2 \subseteq A_1 \times A_2$, and since $A_1 \in j$ - $\xi O(X_1)$ and $A_2 \in j$ - $\xi O(X_2)$, then by Theorem 2.5 part(1) $A_1 \times A_2 = j$ - $\xi Int_{x_1}(A_1) \times j$ - $\xi Int_{x_2}(A_2) = j$ - $\xi Int_{x_1 \times x_2}(A_1 \times A_2)$, hence $A_1 \times A_2 \in j$ - $\xi O(X_1 \times X_2)$ and since $F_1 \in i$ - $SC(X_1)$ and $F_2 \in i$ - $SC(X_2)$ then by Theorem 2.5 part (2) we get $F_1 \times F_2 = i$ - $sCl_{x_1}(F_1) \times i$ - $sCl_{x_2}(F_2) = i$ - $sCl_{x_1 \times x_2}(F_1 \times F_2)$, hence $F_1 \times F_2 \in i$ - $SC(X_1 \times X_2)$, therefore $A_1 \times A_2 \in (i, j)$ - $\xi O(X)$.

Theorem 3.10 For any bitopological space (X, τ_1, τ_2) , if $A \in \tau_j(X)$ and either $A \in i \cdot \eta O(X)$ or $A \in i \cdot S \theta O(X)$, then $A \in (i, j) \cdot \xi O(X)$

Proof. Let $A \in i \cdot \eta O(X)$ and $A \in \tau_j(X)$, if $A = \phi$, then $A \in (i, j) \cdot \xi O(X)$, if $A \neq \phi$, since $A \in i \cdot \eta O(X)$, then $A = \cup F_\alpha$, where $F_\alpha \in i \cdot \delta C(X)$ for each α , and since $i \cdot \delta C(X) \subseteq i \cdot SC(X)$, so $F_\alpha \in i \cdot SC(X)$ for each α , and $A \in \tau_j(X)$ so by Corollary 3.2 $A \in (i, j) \cdot \xi O(X)$.

On the other hand, suppose that $A \in i - S\theta O(X)$ and $A \in \tau_j(X)$, if $A = \phi$, then $A \in (i, j) - \xi O(X)$, if $A \neq \phi$, since $A \in i - S\theta O(X)$, then for each $x \in A$, there exist *i*-semi-open set U such that $x \in U \subseteq i - sCl(U) \subseteq A$, this implies that $x \in i - sCl(U) \subseteq A$ and $A \in \tau_j(X)$, therefore by Corollary 3.2 $A \in (i, j) - \xi O(X)$.

Theorem 3.11 Let Y be a subspace of a bitopological space (X, τ_1, τ_2) , if $A \in (i, j)$ - $\xi O(X)$ and $A \subseteq Y$, then $A \in (i, j)$ - $\xi O(Y)$

Proof. Let $A \in (i, j)$ - $\xi O(X)$, then $A \in \tau_j(X)$ and for each $x \in A$, there exists *i*-semi-closed set F in X such that $x \in F \subseteq A$, since $A \in \tau_j(X)$ and $A \subseteq Y$, then by Theorem 2.6 $A \in \tau_j(Y)$, and since $F \in i$ -SC(X) and $F \subseteq Y$, then by Theorem 2.6 $F \in i$ -SC(Y), hence $A \in (i, j)$ - $\xi O(Y)$.

From the above theorem we obtain:

Corollary 3.12 Let X be a bitopological space, A and Y be two subsets of X such that $A \subseteq Y \subseteq X$, $Y \in RO(X, \tau_j)$, $Y \in RO(X, \tau_i)$, then $A \in (i, j)$ - $\xi O(Y)$ if and only if $A \in (i, j)$ - $\xi O(X)$

Proposition 3.13 Let Y be a subspace of a bitopological space (X, τ_1, τ_2) , if $A \in (i, j)$ - $\xi O(Y)$ and $Y \in i$ -SC(X), then for each $x \in A$, there exists an *i*-semi-closed set F in X such that $x \in F \subseteq A$.

Proof. Let $A \in (i, j)$ - $\xi O(Y)$, then $A \in \tau_j(Y)$ and for each $x \in A$ there exist an *i*-semi-closed set F in Y such that $x \in F \subseteq A$, and since $Y \in i$ -SC(X) so by Theorem 2.6 $F \in i$ -SC(X), which completes the proof.

Proposition 3.14 Let A and Y be any subsets of a bitopological space X, if $A \in (i, j)$ - $\xi O(X)$ and $Y \in RO(X, \tau_j)$ and $Y \in RO(X, \tau_i)$ then $A \cap Y \in (i, j)$ - $\xi O(X)$

236

Proof. Let $A \in (i, j)$ - $\xi O(X)$, then $A \in \tau_j(X)$ and $A = \bigcup F_\alpha$, where $F_\alpha \in i$ -SC(X) for each α , then $A \cap Y = \bigcup F_\alpha \cap Y = \bigcup (F_\alpha \cap Y)$, since $Y \in RO(X, \tau_j)$, then Y is j-open, by Theorem 2.6 $A \cap Y \in \tau_j(X)$ and since $Y \in RO(X, \tau_i)$ then $Y \in i$ -SC(X) and hence $F_\alpha \cap Y \in i$ -SC(X), for each α , therefore by Corollary 3.2, $A \cap Y \in (i, j)$ - $\xi O(X)$.

Proposition 3.15 Let A and Y be any subsets of a bitopological space X, if $A \in (i, j)$ - $\xi O(X)$ and Y is regular semi-open in τ_i and τ_j , then $A \cap Y \in (i, j)$ - $\xi O(Y)$

Proof. Let $A \in (i, j)$ - $\xi O(X)$, then $A \in \tau_j(X)$ and $A = \bigcup F_\alpha$ where $F_\alpha \in i$ -SC(X) for each α , then $A \cap Y = \bigcup F_\alpha \cap Y = \bigcup (F_\alpha \cap Y)$, since $Y \in RSO(X, \tau_j)$, then $Y \in j$ -SO(X) and by Theorem 2.6, $A \cap Y \in \tau_j(Y)$ and since $Y \in RSO(X, \tau_i)$ then $Y \in i$ -SC(X) and hence $F_\alpha \cap Y \in i$ -SC(X) for each α , since $F_\alpha \cap Y \subseteq Y$ and $F_\alpha \cap Y \in i$ -SC(X) for each α , then by Theorem 2.6, $F_\alpha \cap Y \in i$ -SC(Y) therefore by Corollary 3.2 $A \cap Y \in (i, j)$ - $\xi O(Y)$.

Proposition 3.16 If Y is an i-open and j-open subspace of a bitopological space X and $A \in (i, j)$ - $\xi O(X)$, then $A \cap Y \in (i, j)$ - $\xi O(Y)$

Proof. Let $A \in (i, j)$ - $\xi O(X)$, then $A \in \tau_j(X)$ and $A = \bigcup F_\alpha$ where $F_\alpha \in i$ -SC(X) for each α , then $A \cap Y = \bigcup F_\alpha \cap Y = \bigcup (F_\alpha \cap Y)$, since Y is j-open subspace of X then $Y \in j$ -SO(X) and hence by Theorem 2.6 $A \cap Y \in \tau_j(Y)$, and since Y is an *i*-open subspace of X then by Theorem 2.6 $F_\alpha \cap Y \in i$ -SC(Y)for each α then by Corollary 3.2 $A \cap Y \in (i, j)$ - $\xi O(Y)$.

Frome the above proposition we obtain the following corollary:

Corollary 3.17 If either $Y \in RSO(X, \tau_j)$ and $Y \in RSO(X, \tau_i)$ or Y is an *i*-open and *j*-open subspace of a bitopological space X, and $A \in (i, j)$ - $\xi O(X)$, then $A \cap Y \in (i, j)$ - $\xi O(Y)$

The following result shows that any union of (i, j)- $\xi O(X)$ sets in bitopological space (X, τ_1, τ_2) is (i, j)- $\xi O(X)$.

Proposition 3.18 Let $\{A_{\lambda} : \lambda \in \Delta\}$ be family of (i, j)- ξ -open sets in bitopological space (X, τ_1, τ_2) , then $\cup \{A_{\lambda} : \lambda \in \Delta\}$ is an (i, j)- ξ -open set.

Proof. Let $\{A_{\lambda} : \lambda \in \Delta\}$ be family of (i, j)- ξ -open sets in bitopological space (X, τ_1, τ_2) . Since A_{λ} is *j*-open for each $\lambda \in \Delta$ then $\cup \{A_{\lambda} : \lambda \in \Delta\}$ is *j*-open set in a space X.

Suppose that $x \in \bigcup A_{\lambda}$, this implies that there exist $\lambda o \in \Delta$ such that $x \in A_{\lambda o}$ and since $A_{\lambda o}$ is an (i, j)- ξ -open set, so there exists *i*-semi-closed set F in X such that $x \in F \subseteq A_{\lambda o} \subseteq \bigcup A_{\lambda}$ for all $\lambda \in \Delta$. Therefore, $\bigcup \{A_{\lambda} : \lambda \in \Delta\}$ is an (i, j)- ξ -open set.

The following result shows that finite intersection of (i, j)- $\xi O(X)$ sets in bitopological space (X, τ_1, τ_2) is (i, j)- $\xi O(X)$.

Proposition 3.19 Any finite intersection of (i, j)- ξ -open sets in bitopological space (X, τ_1, τ_2) , is an (i, j)- ξ -open set.

Proof. Let A_i be (i, j)- ξ -open for i = 1, 2, ..., n, in bitopological space (X, τ_1, τ_2) . Then $\cap A_i$ is j-open in a space X. Let $x \in \cap A_i$, then $x \in A_i$ for i = 1, 2, ..., n, but A_i is (i, j)- ξ -open, so there exists semi-closed F_i for each i = 1, 2, ..., n, such that $x \in F_i \subseteq A_i$. This implies that $x \in \cap F_i \subseteq \cap A_i$. Therefore, $\cap A_i$ is an (i, j)- ξ -open set. Hence, the family (i, j)- ξ -open subset of (X, τ_1, τ_2) forms a bitopology on X.

4 On (i, j)- ξ - operators

Definition 4.1 A subset N of a bitopological space (X, τ_1, τ_2) is called (i, j)- ξ -neighbourhood of a subset A of X if there exists an (i, j)- ξ -open set U such that $A \subseteq U \subseteq N$. When $A = \{x\}$, we say that N is (i, j)- ξ - neighbourhood of x.

Definition 4.2 A point $x \in X$ is said to be an (i, j)- ξ -interior point of A if there exists an (i, j)- ξ - open set U containing x such that $U \subseteq A$. The set of all (i, j)- ξ - interior points of A is said to be (i, j)- ξ -interior of A and it is denoted by (i, j)- ξ Int(A)

Proposition 4.3 Let X be a bitopological space and $A \subseteq X$, $x \in X$, then x is (i, j)- ξ -interior of A if and only if A is an (i, j)- ξ -neighbourhood of x.

Proposition 4.4 A subset G of a bitopological space X is (i, j)- ξ -open if and only if it is an (i, j)- ξ -neighbourhood of each of its points.

Proposition 4.5 Let A be any subset of a bitopological space X. If a point x in the (i, j)- ξ -Int(A), then there exists a i-semi-closed set F of X containing x and $F \subseteq A$.

Proof. Suppose that $x \in (i, j)$ - ξ -Int(A), then there exists an (i, j)- ξ -open set U of X containing x such that $x \in U \subseteq A$. Since U is an (i, j)- ξ -open set, so there exists an i-semi-closed set F such that $x \in F \subseteq U \subseteq A$. Hence, $x \in F \subseteq A$.

Some properties of (i, j)- ξ -interior operators on a set are given in the following:

Theorem 4.6 For any subsets A and B of a bitopological space X, the following statements are true:

1. The (i, j)- ξ -interior of A is the union of all (i, j)- ξ -open sets contained in A.

- 2. (i, j)- ξ -Int(A) is an (i, j)- ξ -open set in X contained in A.
- 3. (i, j)- ξ -Int(A) is the largest (i, j)- ξ -open set in X contained in A.
- 4. A is an (i, j)- ξ -open set if and only if A = (i, j)- ξ -Int(A)
- 5. (i, j)- ξ -Int $(\phi) = \phi$.
- 6. (i, j)- ξ -Int(X) = X
- 7. (i, j)- ξ -Int $(A) \subseteq A$.
- 8. If $A \subseteq B$, the (i, j)- ξ -Int $(A) \subseteq (i, j)$ - ξ -Int(B).
- 9. $(i, j) \xi Int(A) \cap (i, j) \xi Int(B) = (i, j) \xi Int(A \cap B).$
- 10. (i, j)- ξ -Int $(A) \cup (i, j)$ - ξ -Int $(B) \subseteq (i, j)$ - ξ -Int $(A \cup B)$.

Proof. Straightforward.

In general (i, j)- $\xi Int(A) \cup (i, j)$ - $\xi Int(B) \neq (i, j)$ - $\xi Int(A \cup B)$ as it shown in the following example:

Example 4.7 Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$, then (i, j)- $\xi O(X) = \{\phi, \{b, c\}, X\}$ if we take $A = \{a, b\}$ and $B = \{b, c\}$, then (i, j)- $\xi Int(A) = \phi$, and (i, j)- $\xi Int(B) = \{b, c\}$, and (i, j)- $\xi Int(A) \cup (i, j)$ - $\xi Int(B) = \{b, c\}, (i, j)$ - $\xi Int(A \cup B) = (i, j)$ - $\xi Int(X) = X$.

In general (i, j)- $\xi Int(A) \subseteq j$ -Int(A), but (i, j)- $\xi Int(A) \neq j$ -Int(A), which is shown in the following example:

Example 4.8 Let $X = \{a, b, c\}, \tau_1 = \{\phi, \{a\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, \{b, c\}, X\}$, then (i, j)- $\xi O(X) = \{\phi, \{b, c\}, X\}$, if we take $A = \{a\}$, then (i, j)- $\xi Int(A) = \phi$, but j-Int(A) = A. Hence (i, j)- $\xi Int(A) \neq j$ -Int(A).

Definition 4.9 The intersection of all (i, j)- ξ -closed set containing F is called the (i, j)- ξ -closure of F and we denoted it by (i, j)- ξ Cl(F)

Corollary 4.10 Let F be any subset of a space X. A point $x \in X$ is in the (i, j)- ξ -closed of F if and only if $F \cap U \neq \phi$ for every (i, j)- ξ -open set U containng x.

Proposition 4.11 Let A be any subset of a bitopological space X. If a point x in the (i, j)- ξ -closure of A, then $F \cap A \neq \phi$ for every *i*-semi-closed set F of X containing x.

Proof. Suppose that $x \in (i, j)$ - $\xi cl(A)$, then by Corollary 4.10, $A \cap U \neq \phi$ for every (i, j)- ξ -open set U of X containing x. Since U is an (i, j)- ξ -open set, so there exists an *i*-semi-closed set F containing x, such that $F \subseteq U$. Hence, $F \cap A \neq \phi$.

Some properties of (i, j)- ξ -closure operators on a set are given.

Theorem 4.12 For any subsets A and B of a bitopological space X, the following statements are true:

- The (i, j)-ξ-closure of A is the intersection of all (i, j)-ξ-closed sets containing A.
- 2. (i, j)- ξ -cl(A) is an (i, j)- ξ -closed set in X containing A.
- 3. (i, j)- ξ -cl(A) is the smallest (i, j)- ξ -closed set in X containing A.
- 4. A is an (i, j)- ξ -closed set if and only if A = (i, j)- ξ -cl(A)
- 5. $(i, j) \xi cl(\phi) = \phi$.
- 6. $(i, j) \xi cl(X) = X$
- 7. $A \subseteq (i, j) \xi cl(A)$.
- 8. If $A \subseteq B$, then (i, j)- ξ - $cl(A) \subseteq (i, j)$ - ξ -cl(B).
- 9. (i, j)- ξ - $cl(A) \cap (i, j)$ - ξ - $cl(B) \subseteq (i, j)$ - ξ - $cl(A \cap B)$.
- 10. (i, j)- ξ - $cl(A) \cup (i, j)$ - ξ -cl(B) = (i, j)- ξ - $Int(A \cup B)$.

Proof. Directly from Definition 4.9.

Corollary 4.13 For any subset A of a bitopological space X, then the following statements are true:

- 1. $X \setminus ((i, j) \xi Cl(A)) = (i, j) \xi Int(X \setminus A)$
- 2. $X \setminus ((i, j) \xi Int(A)) = (i, j) \xi Cl(X \setminus A)$
- 3. (i, j)- $\xi Int(A) = X \setminus ((i, j)$ - $\xi Cl(X \setminus A))$

It is clear that $j-Cl(F) \subseteq (i, j)-\xi Cl(F)$, the converse may be false as shown in the following example:

Example 4.14 Considering a space X as defined in Example 3.3, if we take $F = \{a, b\}$, then j- $Cl(F) = \{a, b\}$, and (i, j)- $\xi Cl(F) = X$, this shows that (i, j)- $\xi Cl(F)$ is not a subset of j-Cl(F).

Corollary 4.15 If A is any subset of a bitopological space X, then (i, j)- $\xi Int(A) \subseteq j$ - $Int(A) \subseteq A \subseteq j$ - $Cl(A) \subseteq (i, j)$ - $\xi Cl(A)$.

Definition 4.16 Let A be a subset of a bitopological space X, A point $x \in X$ is said to be (i, j)- ξ -limit point of A if for each (i, j)- ξ -open set U containing $x, U \cap (A \setminus \{x\}) \neq \phi$, The set of all (i, j)- ξ -limit point of A is called (i, j)- ξ -derived set of A and is denoted by (i, j)- $\xi D(A)$

In general It is clear that (i, j)- $\xi D(A) \subseteq j$ -D(A), but the converse may not be true as shown in the following example:

Example 4.17 Considering the space X as defined in Example 3.3 if we take $A = \{a, c\}$, So (i, j)- $\xi D(A) = \{a, b\}$ and j- $D(A) = \{b\}$, hence (i, j)- $\xi D(A)$ is not a subset of j-D(A)

Theorem 4.18 Let X be a bitopological space and A be a subset of X, then $A \cup (i, j)$ - $\xi D(A)$ is (i, j)- ξ - closed.

Proof. Let $x \notin A \cup (i, j) \cdot \xi D(A)$. This implies that $x \notin A$ and $x \notin (i, j) \cdot \xi D(A)$. Since $x \notin (i, j) \cdot \xi D(A)$, then there exists an $(i, j) \cdot \xi$ -open U of X which contains no point of A other than x, but $x \notin A$, so U contains no point of A, which implies that $U \subseteq X \setminus A$. Again, U is an $(i, j) \cdot \xi$ -open setfor each of its points. But as U does not contain any point of A, no point of U can be $(i, j) \cdot \xi$ -limit point of A. Therefore, no point of U can belong to $(i, j) \cdot \xi D(A)$. This implies that $U \subseteq X \setminus (i, j) \cdot \xi DA$. Hence, it follows that $x \in X \setminus A \cap (X \setminus (i, j) \cdot \xi D(A))$ $= X \setminus (A \cup (i, j) \cdot \xi D(A))$, Therefore $A \cup (i, j) \cdot \xi D(A)$ is an $(i, j) \cdot \xi$ -closed. Hence $(i, j) \cdot \xi cl(A) \subseteq A \cup (i, j) \cdot \xi D(A)$.

Corollary 4.19 If a subset A of a bitopological space X is (i, j)- ξ -closed, then A contains the set of all of its (i, j)- ξ -limit points.

Theorem 4.20 Let A be any subset of a bitopological space X, then the following statements are true:

- 1. $((i, j) \xi D((i, j) \xi D(A))) \setminus A \subseteq (i, j) \xi D(A)$
- 2. (i, j)- $\xi D(A \cup (i, j)$ - $\xi D(A)) \subseteq A \cup (i, j)$ - $\xi D(A)$

Proof. Obvious .

Theorem 4.21 Let X be a bitopological space and A be a subset of X, then:(i, j)- $\xi Int(A) = A \setminus ((i, j)-\xi D(X \setminus A))$

Proof. Obvious .

Definition 4.22 If A is a subset of a bitopological space X, then (i, j)- ξ -boundary of A is (i, j)- ξ Cl $(A) \cap ((i, j)$ - ξ Int $(A))^c$, and denoted by (i, j)- ξ Bd(A)

Theorem 4.23 For any subset A of a bitopological space X, the following statements are true:

- 1. (i, j)- $\xi Bd(A) = (i, j)$ - $\xi Bd(X \setminus A)$
- 2. $A \in (i, j)$ - $\xi O(X)$ if and only if (i, j)- $\xi Bd(A) \subseteq X \setminus A$, that is $A \cap (i, j)$ - $\xi Bd(A) = \phi$.
- 3. $A \in (i, j)$ - $\xi C(X)$ if and only if (i, j)- $\xi Bd(A) \subseteq A$.
- 4. (i, j)- $\xi Bd((i, j)$ - $\xi Bd(A)) \subseteq (i, j)$ - $\xi Bd(A)$
- 5. (i, j)- $\xi Bd((i, j)$ - $\xi Int(A)) \subseteq (i, j)$ - $\xi Bd(A)$
- 6. (i, j)- $\xi Bd((i, j)$ - $\xi Cl(A)) \subseteq (i, j)$ - $\xi Bd(A)$
- 7. (i, j)- $\xi Int(A) = A \setminus ((i, j) \xi Bd(A))$

Proof. Directly from Definition 4.22.

Theorem 4.24 Let A be a subset of a bitopological space X, then (i, j)- $\xi Bd(A) = \phi$ if and only if A is both (i, j)- ξ - open and (i, j)- ξ -closed set.

Proof. Lte A be (i, j)- ξ - open and (i, j)- ξ -closed, then A = (i, j)- $\xi Int(A) = (i, j)$ - $\xi cl(A)$, hence by Definition4.22 A = (i, j)- $\xi Cl(A)$ -((i, j)- $\xi Int(A))^c = \phi$.

References

- D. E. Cameron, Properties of S-closed spaces, Proc. Amer. Math. Soc., 72(3)(1978), 581-586.
- [2] G. Di Maio and T. Noiri, On s-closed spaces, *Indian J. pure Appl. Math.*, 18(3)(1987), 226-233.
- [3] K. Dlaska and M. Ganster, S-sets and Co-S-closed topologies, Indian J. pure Appl. Math., 23(10)(1992), 731-737.
- [4] J. Dontchev, Survy on preopen sets, The Proceedings of the Yatsushiro topological conference, (1998), 1-18.
- [5] J. Dugundji, Topology, Allyn and Bacon Inc., Boston, (1966).
- [6] J. E. Joseph and M. H. Kwack, On S-closed spaces, Proc. Amer. Math. Soc., 80(2)(1980), 341-348.

- [7] J. C. Kelly, Bitopological spaces, Proc. London, Math. Soc., 13(1963), 71-89.
- [8] N. Levine, semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70(1)(1963), 36-41.
- [9] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47-53.
- [10] Moiz-ud-din Khan, Weak forms of continuity, compactness and connectedness, ph.D. Thesis, *Bahauddin Zakariya University Mulan.Pakistan*, (1997). 201-206.
- [11] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(3)(1965). 961-970.
- [12] T. Noiri and V. Popa, On Almost β-continuous functions, Acta Math. Hungar., 70 (4)(1998), 329-339.
- [13] S. Popvassilev and D. Stavrova, On the η -expansion topology for the cosemi-regularization and middly Hausdorff spaces, *Acta Math. Hangar.*, 80(1-2)(1998), 9-19.
- [14] S. F. Tadros and A. B. Khalaf, On regular semi-open sets and S^{*}-closed spaces, Tamkang J. of Math., 23(4)(1992), 337-348.
- [15] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78(2)(1968), 103-118.