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Abstract

The aim of this paper is to introduce the notion of D-bounded sets and
D-compact sets in Random n-normed linear space. Also we prove some results
in relation between D-bounded and D-compact sets in random n-normed linear
spaces.
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1 Introduction

The theory of probabilistic metric spaces was introduced in 1942 by K. Menger
[18], in connection with some measurements problems in physics. The positive
number expressing the distance between two points p, q of a metric space is
replaced by a distribution function (in the sense of probability theory) Fp,q :
R −→ [0, 1], whose value Fp,q(t) at the point t ∈ R can be interpreted as
the probability that the distance between p and q be less than t. Since then
the subject developed in various directions, see [2], [12] and [22]. A clear and
thorough presentation of the results in probabilistic metric spaces in the book
by Schweizer and Sklar [22].

In [21], A.N.Serstnev endowed a set having an algebraic structure of linear
space with a random norm. He used K.Menger’s idea, this idea led to a
large development of the theory of random normed space in various directions.
Applications to systems having hysteresis, mixture processes, the measuring
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error were also given. For an extensive review of this subject we refer to [1],
[2], [13] and [17].

In [5] and [6] S.Gähler introduced an attractive theory of 2-norm and n-
norm on a linear space, for more information see [3], [7] and [11].

In [16] I. Jebril introduced the notion of bounded sets in random n-normed
linear space.

The aim of this paper is to introduce the notion of D-compact sets in
Random n-normed linear space. Also we prove some results in relation between
D-bounded and D-compact sets in random n-normed linear spaces.

2 Preliminaries

Definition 2.1. [7] Let n ∈ N and let X be a real linear space of dimension
≥ n. A real valued function ‖•, •, . . . , •‖ on X ×X × · · · ×X︸ ︷︷ ︸

n

= Xn satisfying

the following conditions
nN1: ‖x1, x2, . . . , xn‖ = 0 if and only if x1, x2, . . . , xn are linearly depen-

dent,
nN2: ‖x1, x2, . . . , xn‖ is invariant under any permutation of x1, x2, . . . , xn,
nN3: ‖x1, x2, . . . , xn−1, αxn‖ = |α| ‖x1, x2, . . . , xn‖ for all α ∈ R
nN4: ‖x1, x2, . . . , xn−1, y+z‖ ≤ ‖x1, x2, . . . , xn−1, y‖+‖x1, x2, . . . , xn−1, z‖

for all y, z, x1, x2, . . . , xn−1 ∈ X,
then the function ‖•, •, . . . , •‖ is called an n-norm on X and the pair (X, ‖•, •, . . . , •‖)
is called an n-normed linear space.

Definition 2.2. [22] A distance distribution function (briefly, a d.d.f.), is
a function F defined from the extended interval [0,+∞] into the unit interval
I = [0, 1] , that is non-decreasing and left continuous on (0,+∞) with F (0) = 0
and F (+∞) = 1.

The family of all distance distribution functions will be denoted by ∆+ .
We denote D+ = {F ∈ ∆+\ lim

x→∞
F (x) = 1}.

One introduces a natural ordering in D+, by setting F ≤ G whenever
F (x) ≤ G(x), for all x ∈ R+. If a ∈ R+, then εa will be an element of D+,
defined by

εa = 0 if x ≤ a,

= 1 if x > a,

It is obvious that εa ≥ F if x > a for all F ∈ D+. The maximal element in
this order is the distribution function given by

ε0 = 0 if x ≤ 0,
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= 1 if x > 0,

The set D+ will be endowed with the natural topology defined by the
modified Levy metric dL [22].

A t-norm T is a two-place function T : I × I −→ I which is associative,
commutative, non decreasing in each place and such that T (a, 1) = a, for all
a ∈ [0, 1].

Definition 2.3. [22] A triangle function is a binary operation on ∆+,
namely a function τ : ∆+ × ∆+ −→ ∆+ that is associative, commutative,
non-decreasing and which has ε0 as unit, viz. for all F,G,H ∈ ∆+, we have

τ(τ(F,G), H) = τ(F, τ(G,H)),

τ(F,G) = τ(G,F ),

τ(F,H) ≤ τ(G,H) if F ≤ G,

τ(F, ε0) = F.

Continuity of triangle function means continuity with respect to the topol-
ogy of weak convergence in ∆+. Triangular functions are recursively defined
by

τ 1(F,G) = τ(F,G),

τ 2(F,G,H) = τ(τ(F,G), H),

τn(F1, F2, . . . , Fn+1) = τ(τn−1(F1, F2, . . . , Fn), Fn+1), for n ≥ 3.

Particular triangle functions are the functions τT which for any continuous
t-norm T and any x ≥ 0, are given by

τT (F,G)(x) = sup
s+t=x

T (F (s), G(t))

for all F , G in ∆+ and all x in R. Here T is a continuous t-norm, i.e., a con-
tinuous binary operation on that is associative, commutative, non-decreasing
and has 1 as identity [22].

In some papers the probabilistic 2-metric space and random 2-normed space
were also considered and some results are obtained [8], [9], [10], and [22].

Definition 2.4. [10] A probabilistic 2-metric space is a triple (S, F, τ),
where S is a nonempty set whose elements are the points in the space, F
is a mapping from S × S × S into D+. F (x, y, z) will be denoted by Fx,y,z,
τ is a triangular function and the following conditions are satisfied, for all
x, y, z, u ∈ S.
P − 2M1 : To each pair of distinct points x, y in S there exists a point z in S
such that Fx,y,z 6= ε0
P − 2M2 : Fx,y,z = ε0 if at least two of x, y, z are equal,
P − 2M3 : Fx,y,z = Fx,z,y = Fy,z,x
P − 2M4 : Fx,y,z ≥ τ(Fx,y,u, Fx,u,z, Fu,y,z).
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Definition 2.5. [9] Let L be a linear space of a dimension greater than
one over a real field. Let τ be a triangle function and let v be a mapping from
L× L into D+. If the following conditions are satisfied.
R− 2N1 : vx,y = ε0 if and only if x and y are linearly dependent,
R− 2N2 : vx,y 6= ε0 if and only if x and y are linearly independent,
R− 2N3 : vx,y = vy,x for every x and y in L,

R− 2N4 : vαx,y = vy,x

(
t
|α|

)
, for every t > 0, α 6= 0, α ∈ R, x, y ∈ L,

R− 2N5 : vx+y,z ≥ τ(vx,z, vy,z), whenever x, y, z ∈ L
then v is called a random 2-norm on L and (L, v, τ) is called a random 2-
normed linear space (briefly R-2-NLS).

3 D-Bounded Sets in Random n-Normed

Linear Space

The diameter of a nonempty set in a probabilistic metric space was defined in
Egbert [4], Lafuerza-Guillén et al. [17] have introduced definition of probabilis-
tic radius and boundedness sets in probabilistic normed space. A. Pourmoslemi
and M. Salimi are introduced the notion of D-bounded sets in generalized
probabilistic 2-normed space [19]. By generalizing definition 2.1, we obtain a
satisfactory notion of random n-normed space as follows, see [14], [15] and [20].

Definition 3.1. [14] Let L be a linear space of a dimension greater than
one over a real field. Let τ be a triangle function and let v be a mapping
from L× L× · · · × L︸ ︷︷ ︸

n

×R =Ln ×R (R set of real numbers) into D+. If the

following conditions are satisfied.
R− nN1 : v(x1,x2,...,xn) = ε0 if and only if x1, x2, . . . , xn are linearly dependent,
R− nN2 : v(x1,x2,...,xn) is invariant under any permutation of x1, x2, . . . , xn,
R−nN3 : v(x1,x2,...,αxn)(t) = v(x1,x2,...,xn)(

t
|α|), for every t > 0, α 6= 0, α ∈ R,

R− nN4 : v(x1,x2,...,xn+x′n) ≥ τ( v(x1,x2,...,xn) , v(x1,x2,...,x′n) ),
then (L, v, τ) is called a random n-normed linear space (briefly R-n-NLS).

Remark 3.2. [15] From (R− nN3), it follows that in an R-n-NLS and
(R− nN4) for all t, s ∈ R with t > 0

v(x1,x2,...,αxi,...,xn)(t) = v(x1,x2,...,xi,...,xn)

(
t

|α|

)
, if α 6= 0,

v(x1,x2,...,xi+x′i,...,xn)(s+ t) ≥ τ
(
v(x1,x2,...,xi,...,xn)(s), v(x1,x2,...,x′i,...,xn)(t)

)
.

Remark 3.3. From (R− nN3), Let (L, v, τ) be a R-n-NLS. If |α| ≤ |β|,
then

v(x1,x2,...,βxi,...,xn) ≤ v(x1,x2,...,αxi,...,xn),
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with t > 0 and α, β ∈ R− {0}

v(x1,x2,...,αxi,...,xn)(t) = v(x1,x2,...,xi,...,xn)

(
t

|α|

)
and

v(x1,x2,...,βxi,...,xn)(t) = v(x1,x2,...,xi,...,xn)

(
t

|β|

)
Hence |α| ≤ |β|, which implies that

t

|β|
≤ t

|α|
.

Therefore

v(x1,x2,...,xi,...,xn)

(
t

|β|

)
≤ v(x1,x2,...,xi,...,xn)

(
t

|α|

)
Then

v(x1,x2,...,βxi,...,xn) ≤ v(x1,x2,...,αxi,...,xn).

Definition 3.4. Let (L, v, τ) be a R-n-NLS and A× A× · · · × A︸ ︷︷ ︸
n

be a nonempty

subset of L× L× · · · × L︸ ︷︷ ︸
n

. The probabilistic radius of A× A× · · · × A︸ ︷︷ ︸
n

is the

function RA×A×···×A defined by

RA×A×···×A(t) = l−ϕA×A×···×A(t) if t ∈ [0,+∞),

= 1 if t = +∞,
where ϕA×A×···×A(t) = inf{v(x1,x2,...,xn)(t) : x1, x2, . . . , xn ∈ A} and l−f(t) de-
note the left limit of the function f at the point t.

Definition 3.5. A nonempty set A× A× · · · × A︸ ︷︷ ︸
n

in a R-n-NLS (L, v, τ)

is said to be
(a) Certainly bounded if RA×A×···×A(t0) = 1, for some t0 ∈ (0,+∞).
(b) Perhaps bounded if one has RA×A×···×A(t) < 1, for every t ∈ (0,+∞) and
l−RA×A×···×A(+∞) = 1.
(c) Perhaps unbounded if RA×A×···×A(t0) > 0, for some t0 ∈ (0,+∞) and
l−RA×A×···×A(+∞) ∈ (0, 1).
(d) Certainly unbounded if l−RA×A×···×A(+∞) = 0, i.e., RA×A×···×A(+∞) =
ε∞.

Moreover A× A× · · · × A︸ ︷︷ ︸
n

will be said to be distributionally bounded or

simply D-bounded if either (a) or (b) holds. i.e., RA×A×···×A ∈ D+. Otherwise
(i.e., if RA×A×···×A ∈ ∆+\D+) A is said to D-unbounded.

Note that in the definition 3.5, we can have used
inf{v(x1,x2,...,xn)(t) : x1, x2, . . . , xn ∈ A} instead of RA×A×···×A.
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Definition 3.6. A nonempty set A× A× · · · × A︸ ︷︷ ︸
n

in a R-n-NLS (L, v, τ)

is said to be
(a) Certainly bounded if inf{v(x1,x2,...,xn)(t0) : x1, x2, . . . , xn ∈ A} = 1, for
some t0 ∈ (0,+∞).
(b) Perhaps bounded if one has inf{v(x1,x2,...,xn)(t) : x1, x2, . . . , xn ∈ A} < 1,
for every t ∈ (0,+∞) and l− inf{v(x1,x2,...,xn)(+∞) : x1, x2, . . . , xn ∈ A} = 1.
(c) Perhaps unbounded if inf{v(x1,x2,...,xn)(t0) : x1, x2, . . . , xn ∈ A} > 0, for
some t0 ∈ (0,+∞) and l− inf{v(x1,x2,...,xn)(+∞) : x1, x2, . . . , xn ∈ A} ∈ (0, 1).
(d) Certainly unbounded if l− inf{v(x1,x2,...,xn)(+∞) : x1, x2, . . . , xn ∈ A} = 0,
i.e., inf{v(x1,x2,...,xn)(+∞) : x1, x2, . . . , xn ∈ A} = 0.

Example 3.7. Let (L, ‖•, •, . . . , •‖) be an n-normed linear space defined

v(x1,x2,...,xn)(t) = 0 when t ≤ ‖x1, x2, . . . , xn‖

= 1 when ‖x1, x2, . . . , xn‖ < t

and τM is the minimum t-norm. Then (L, v, τM) is an R-n-NLS.

Proof. (R−nN1) : For all t ∈ R, v(x1,x2,...,xn)(t) = ε0 ⇔ ‖x1, x2, . . . , xn‖ <
t⇔ ‖x1, x2, . . . , xn‖ = 0⇔ x1, x2, . . . , xn are linearly dependent.
(R−nN2) : As ‖x1, x2, . . . , xn‖ is invariant under any permutation of x1, x2, . . . , xn.
It follows that v(x1,x2,...,xn) is invariant under any permutation of x1, x2, . . . , xn.
(R− nN3) : For all t ∈ R with t > 0 and α ∈ R− {0},
v(x1,x2,...,αxn)(t) = 0 ⇔ t ≤ ‖x1, x2, . . . , αxn‖ ⇔ t ≤ |α| ‖x1, x2, . . . , xn‖ ⇔(

t
|α|

)
≤ ‖x1, x2, . . . , xn‖ ⇔ v(x1,x2,...,xn)

(
t
|α|

)
= 0, and v(x1,x2,...,αxn)(t) = 1 ⇔

‖x1, x2, . . . , αxn‖ < t⇔ |α| ‖x1, x2, . . . , xn‖ < t⇔ ‖x1, x2, . . . , xn‖ <
(

t
|α|

)
⇔

v(x1,x2,...,xn)

(
t
|α|

)
= 1. Thus v(x1,x2,...,αxn)(t) = v(x1,x2,...,xn)

(
t
|α|

)
.

(R − nN4) : For all s, t ∈ R, v(x1,x2,...,xn+x′n)(s + t) = 0 ⇔ s + t ≤
‖x1, x2, . . . , xn + x′n‖ ≤ ‖x1, x2, . . . , xn‖+ ‖x1, x2, . . . , x′n‖.
If ‖x1, x2, . . . , xn‖ < s then ‖x1, x2, . . . , xn‖ ≮ t. That is v(x1,x2,...,xn)(s) = 1
then v(x1,x2,...,x′n)(t) = 0. Thus

v(x1,x2,...,xn+x′n)(s+ t) = 0⇒ min
(
v(x1,x2,...,xn)(s), v(x1,x2,...,x′n)(t)

)
= 0.

Similarly, v(x1,x2,...,xn+x′n)(s+ t) ≥ min
(
v(x1,x2,...,xn)(s), v(x1,x2,...,x′n)(t)

)
.

A nonempty set A× A× · · · × A︸ ︷︷ ︸
n

in a R-n-NLS (L, v, τ) is

(a) Certainly bounded, since for some t0 ∈ (0,+∞) where t0 > ‖x1, x2, . . . , xn‖
then

inf{v(x1,x2,...,xn)(t0) : x1, x2, . . . , xn ∈ A} = 1
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(b) Not perhaps bounded, since for all t ∈ (0,+∞)

inf{v(x1,x2,...,xn)(t) : x1, x2, . . . , xn ∈ A} = 1 ≮ 1.

(c) Not perhaps unbounded, since

lim
t→∞

inf{v(x1,x2,...,xn)(t) : x1, x2, . . . , xn ∈ A} = 1 /∈ (0, 1)

(d) Not certainly unbounded, since

inf{v(x1,x2,...,xn)(+∞) : x1, x2, . . . , xn ∈ A} = 1 6= 0.

Theorem 3.8. Let (L, v, τ) be a R-n-NLS and A× A× · · · × A︸ ︷︷ ︸
n

be a

nonempty subset of L× L× · · · × L︸ ︷︷ ︸
n

. Then A× A× · · · × A︸ ︷︷ ︸
n

is a D-bounded if

and only if lim
t→+∞

ϕA×A×···×A(t) = 1.

Proof. If A× A× · · · × A︸ ︷︷ ︸
n

is a D-bounded set then it is clear that

lim
t→+∞

ϕA×A×···×A(t) = 1. Conversely, if lim
t→+∞

ϕA×A×···×A(t) = 1. Then we have

∀ δ > 0, ∃ M > 0, ∀ t0 > M ⇒ 1 − δ < ϕA×A×···×A(t0) ≤ 1 ⇒ ∃ s such
that t0 > s > M , 1 − δ < ϕA×A×···×A(s) ≤ 1 ⇒ 1 − δ < lim

s→t0
ϕA×A×···×A(s) ≤

1 ⇒ 1 − δ < RA×A×···×A(t0) ≤ 1 ⇒ lim
t0→+∞

RA×A×···×A(t0) = 1. Therefore

A× A× · · · × A︸ ︷︷ ︸
n

is a D-bounded set.

Theorem 3.9. A subset A× A× · · · × A︸ ︷︷ ︸
n

in a R-n-NLS (L, v, τ) is a D-

bounded if and only if there exists a distance distribution function G ∈ D+

such that v(p1,p2,...,pn) ≥ G for every p1, p2, . . . , pn ∈ A.

Proof. Let G = ϕA×A×···×A therefore G(0) = 0 and by theorem 3.8. If
A× A× · · · × A︸ ︷︷ ︸

n

is a D-bounded set, then we have lim
t→+∞

G(t) = 1. Then

G(t) = ϕA×A×···×A(t) ≤ v(p1,p2,...,pn)(t), for every p1, p2, . . . , pn ∈ A. Conversely,
let G ∈ D+ such that, if G(t) = v(p1,p2,...,pn)(t) for every p1, p2, . . . , pn ∈ A,
then A× A× · · · × A︸ ︷︷ ︸

n

is a D-bounded set. But if G(t) < v(p1,p2,...,pn)(t) then

G(t) < ϕA×A×···×A(t) ≤ v(p1,p2,...,pn)(t) ⇒ lim
t→+∞

G(t) = 1, since G ∈ D+ ⇒
lim
t→+∞

ϕA×A×···×A(t) = 1.

If A× A× · · · × A︸ ︷︷ ︸
n

be a D-bounded set then A× A× · · · × αA× · · · × A︸ ︷︷ ︸
n

need not be D-bounded set, but this will hold under suitable conditions, as
shown in the next theorem.
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Theorem 3.10. Let (L, v, τ) be a R-n-NLS and A× A× · · · × A︸ ︷︷ ︸
n

be a D-

bounded set in L× L× · · · × L︸ ︷︷ ︸
n

. Then

A× A× · · · × αA× · · · × A︸ ︷︷ ︸
n

= {(p1, p2, . . . , αpi, . . . , pn) : p1, p2, . . . , pi, . . . , pn ∈ A}

is also D-bounded for every fixed α ∈ R − {0}, where D+ is closed set under
τ . i.e., τ(D+ ×D+) ⊆ D+.

Proof. Since (L, v, τ) be a R-n-NLS and by remark 3.3, we have it sufficient
to consider the case α > 0, because R− nN3. In case α ∈ (0, 1), then

v(p1,p2,...,αpi,...,pn)(t) = v(p1,p2,...,pi,...,pn)

(
t

|α|

)
≥ v(p1,p2,...,pi,...,pn)(t) ≥ RA×A×···×A(t).

This shows that A× A× · · · × αA× · · · × A︸ ︷︷ ︸
n

is D-bounded set. In case α = 1

then A× A× · · · × αA× · · · × A︸ ︷︷ ︸
n

is D-bounded set. In case α > 1 then let

k = [α] + 1, then remark 3.3, we have v(p1,p2,...,αpi,...,pn) ≥ v(p1,p2,...,kpi,...,pn). Now
let Gα = τ k−1 (RA×A×···×A, RA×A×···×A, . . . , RA×A×···×A), one has by induction

v(p1,p2,...,αpi,...,pn)(t) ≥ τ
(
v(p1,p2,...,(k−1)pi,...,pn), v(p1,p2,...,pi,...,pn)

)
(t)

≥ τ
(
τ
(
v(p1,p2,...,(k−2)pi,...,pn), v(p1,p2,...,pi,...,pn)

)
, v(p1,p2,...,pi,...,pn)

)
(t)

≥ τ k−1
(
v(p1,p2,...,pi,...,pn), v(p1,p2,...,pi,...,pn), . . . , v(p1,p2,...,pi,...,pn)

)
(t)

≥ τ k−1 (RA×A×···×A, RA×A×···×A, . . . , RA×···×A) (t)

and hence v(p1,p2,...,αpi,...,pn)(t) ≥ Gα. Finally, one can say thatRA×A×···×αA×···×A ≥
Gα and since Gα ∈ D+ then A× A× · · · × αA× · · · × A︸ ︷︷ ︸

n

is D-bounded.

4 D-Compact Sets in Random n-Normed

Linear Space

In this section we introduce the concept of distributional compactness (briefly
D-compactness) in a random n-normed space.

Definition 4.1. A sequence {xk} in a R-n-NLS (L, v, τ) is called D-convergent
to x and denoted by xk −→ x as k −→∞ if lim

k→∞
v(xk−x,w2,...,wn)(t) = ε0, for all

w2, w3, . . . , wn ∈ L, t > 0.
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Definition 4.2. A subset A× A× · · · × A︸ ︷︷ ︸
n

in a R-n-NLS (L, v, τ) is called

D-compact subset if for every sequence {yk} in A, there exists a subsequence
of {yk} which D-convergent to an element y ∈ A.

Lemma 4.3. Let x1, x2, . . . , xn be an element of a R-n-NLS (L, v, τ) and
γ1, γ2, . . . , γn−1 ∈ R, then

v(x1,x2,...,xn−1,xn) = v(x1,x2,...,xn−1,xn+γ1x1+γ2x2+···+γn−1xn−1).

Proof. It is sufficient to prove that

v(x1,x2,...,xi,...,xj ,...,xn) = v(x1,x2,...,xi,...,xj+γxi,...,xn)

First we show that v(x1,x2,...,xi,...,xj ,...,xn) ≥ v(x1,x2,...,xi,...,xj+γxi,...,xn), because

v(x1,x2,...,xi,...,xj ,...,xn) = v(x1,x2,...,xi,...,xj+γxi−γxi,...,xn)

≥ τ
(
v(x1,x2,...,xi,...,xj+γxi,...,xn), v(x1,x2,...,xi,...,−γxi,...,xn)

)
= τ

(
v(x1,x2,...,xi,...,xj+γxi,...,xn), ε0

)
= v(x1,x2,...,xi,...,xj+γxi,...,xn).

On the other hand v(x1,x2,...,xi,...,xj+γxi,...,xn) ≥ v(x1,x2,...,xi,...,xj ,...,xn), because

v(x1,x2,...,xi,...,xj+γxi,...,xn) ≥ τ
(
v(x1,x2,...,xi,...,xj ,...,xn), v(x1,x2,...,xi,...,γxi,...,xn)

)
= τ

(
v(x1,x2,...,xi,...,xj ,...,xn), ε0

)
= v(x1,x2,...,xi,...,xj ,...,xn).

Hence the lemma.

Lemma 4.4. Let (L, v, τ) be a R-n-NLS and A× A× · · · × A︸ ︷︷ ︸
n

be a D-

compact subspace of (L, v, τ). For w1, w2, . . . , wn ∈ (L, v, τ). If

sup
y∈A

v(w1−y,w2−y,...,wn−y) = ε0

then there exists an element y0 ∈ A such that v(w1−y0,w2−y0,...,wn−y0) = ε0.

Proof. For each positive integer k, there exists an element yk ∈ A such that
v(w1−yk,w2−yk,...,wn−yk) > ε( 1

k
). Since {yk} is a sequence in a D-compact space A,

then for every δ > 0, there exists a positive integer K with
(

1
K

)
< δ such that

k > K implies that v(yk−y0,w2,...,wn) > εδ, for every wi ∈ L (i = 1, 2, . . . , n).

Let w1 := (w1 − yk, w2 − y0, . . . , wn − y0)

wi := (w1 − yk, w2 − yk, . . . , wi−1 − yk, wi − yk, wj − y0, . . . , wn − y0),
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for i = 2, 3, . . . , n− 1, j = i+ 1, 2, . . . , n,

wn := (w1 − yk, w2 − yk, . . . , wn − yk),

and
u1 := (yk − y0, w2 − y0, . . . , wn − y0)

ui := (w1 − yk, w2 − yk, . . . , wi−1 − yk, yk − y0, wj − y0, . . . , wn − y0)
un := (w1 − yk, w2 − yk, . . . , wn−1 − yk, yk − y0).

By previous lemma 4.3, if k > K, then we have

v(w1−y0,w2−y0,...,wn−y0) ≥ τ (vu1 , vw1) ≥ τ (vu1 , τ (vu2 , vw2))

≥ τ (vu1 , τ (vu2 , τ (vu3 , vw3)))

............................

≥ τn−1 (vu1 , vu2 , vu3 , . . . , vun−1 , vwn−1)

≥ τn−1 (vu1 , vu2 , vu3 , . . . , vun−1 , τ (vun , vwn))

≥ τn (vu1 , vu2 , vu3 , . . . , vun−1 , vun , vwn)

> τn
(
εδ, εδ, . . . , εδ, ε 1

k

)
> τn

(
εδ, εδ, . . . , εδ, ε 1

K

)
> τn (εδ, εδ, . . . , εδ, εδ) .

Then v(w1−y0,w2−y0,...,wn−y0) = ε0.

Lemma 4.5. Let A and Z be subspaces of R-n-NLS (L, v, τ) and A× A× · · · × A︸ ︷︷ ︸
n

be a D-compact proper subset of Z with dimA ≥ n. Then

sup
y∈A

v(w1−y,w2−y,...,wn−y)(t) < ε0(t),

for every w1, w2, . . . , wn ∈ Z − A and t > 0.

Proof. Suppose w1, w2, . . . , wn ∈ Z − A be linearly independent and

B = sup
y∈A

v(w1−y,w2−y,...,wn−y)(t), (t > 0).

IfB = ε0(t), then by lemma 4.4, there exists y0 ∈ A such that v(w1−y0,w2−y0,...,wn−y0) =
ε0. If y0 = 0 then w1, w2, . . . , wn are linearly dependent, which is a con-
tradiction. So y0 6= 0. Hence w1, w2, . . . , wn, y0 are linearly independent.
On the other hand, it follows from the definition and above equation that
w1 − y0, w2 − y0, . . . , wn − y0 are linearly dependent. Thus there exist real
numbers α1, α2, . . . , αn not all of which are zero such that

α1(w1 − y0) + α2(w2 − y0) + · · ·+ αn(wn − y0) = 0

⇒ α1w1 + α2w2 + · · ·+ αnwn + (−1)(α1 + α2 + · · ·+ αn)y0 = 0

Then w1, w2, . . . , wn, y0 are linearly dependent, which is a contradiction. Hence
B < ε0(t).
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Definition 4.6. A subset A× A× · · · × A︸ ︷︷ ︸
n

of R-n-NLS (L, v, τ) is called

a partially D-closed subset if for linear independent elements x1, x2, . . . , xn in
(L, v, τ) there exists a sequence {yk} in A such that v(x1−yk,x2−yk,...,xn−yk)(t) −→
ε0(t) as k −→∞ then xj ∈ A for some j.

Theorem 4.7. Let A and Z be subspaces of R-n-NLS (L, v, τ) and A× A× · · · × A︸ ︷︷ ︸
n

be a partially D-closed proper subset of Z. Assume that dimZ ≥ n. Then

sup
y∈A

v(w1−y,w2−y,...,wn−y)(t) < ε0(t),

for every w1, w2, . . . , wn ∈ Z − A and t > 0.

Proof. Let w1, w2, . . . , wn ∈ Z − A be linearly independent and

B = sup
y∈A

v(w1−y,w2−y,...,wn−y)(t), (t > 0).

IfB = ε0(t), then there is a sequence {yk} inA such that v(w1−yk,w2−yk,...,wn−yk) −→
ε0 as k −→ ∞. Since A is partially D-closed, then wj ∈ A for some j, which
is a contradiction. Hence B < ε0.

Lemma 4.8. Let (L, v, τ) be a R-n-NLS such that v(Ln) ⊆ D+ and τ(D+×
D+) ⊆ D+ then the set of all convergent sequences in L is a D-bounded subset
of (L, v, τ).

Proof. LetA ⊆ L andA = {(pm, w2, . . . , wn) : pm ∈ A,m ∈ N, wi ∈ L, 2 ≤ i ≤ n}
and pm −→ p, then there exist a positive integer N such that for every m > N
we have v(pm−p,w2,...,wn) = ε0, it means v(pm−p,w2,...,wn) ≥ G, for every G ∈ D+.
Now we have

v(pm,w2,...,wn) ≥ τ
(
v(pm−p,w2,...,wn), v(p,w2,...,wn)

)
≥ τ

(
G, v(p,w2,...,wn)

)
.

Now letK = min
{
v(p1,w2,...,wn), v(p2,w2,...,wn), . . . , v(pN−1,w2,...,wn), τ

(
G, v(p,w2,...,wn)

)}
then K ∈ D+. Also v(pm,w2,...,wn) ≥ K, for every m ∈ N. Therefore by theorem
3.9, A is D-bounded.

Theorem 4.9. A D-compact subset of a R-n-NLS (L, v, τ) in which v(Ln) ⊆
D+ and τ(D+ ×D+) ⊆ D+ is D-bounded and partially D-closed.

Proof. Suppose that A ⊆ L be D-compact. If A is D-unbounded, it
contains a D-unbounded sequence {pm}, by lemma 4.8, this sequence could
not have a convergent subsequence, therefore A is not a D-compact set and it
is a contradiction. The partially D-closeness of A comes from Definition 4.2
and 4.6.

The converse of the above theorem need not be true. The D-bounded and
partially D-closed subset of a R-n-NLS (L, v, τ) is not D-compact in general.
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