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Abstract
The notions of quasi-open sets, quasi-continuity, semi-open sets and quasi-

Hausdorffness were studied in [4]. Here we study the same in more general
structure of a bispace and investigate how far several results as valid in a
bitopological space are affected in a bispace.
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1 Introduction

The notion of a topological space was generalized to a σ-space(or simply space)
by A.D.Alexandroof[1] weakening the union requirements. J.C. Kelly[6] intro-
duced the idea of a bitopological space. Several works on bitopological spaces
have been done in [4]. The concept of σ-space was used by Lahiri and Das
[8] to generalize the notion of a bitopological space to a bispace where sev-
eral ideas like pairwise Hausdorffness, pairwise bicompactness etc. were also
studied. The concept of quasi-open sets and quasi-continuity were studied
by M.C.Datta [4] in a bitopological space. Indeed quasi-continuity is weaker
than Pervin’s continuity [10] and quasi-Hausdorffness is more general than a
pairwise Hausdorffness in a bitopological space [4]. Here we have studied the
ideas of quasi open sets, quasi-continuity and quasi-Hausdorffness in a bispace
and investigate how far several results as valid in a bitopological space are
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affected in a bispace. J. Swart [11] introduced the idea of least upper bound
topology in a bitopological space whose members are called semi-open set [4].
In fact this notion is not same with the notion of semi-open set introduced by
Levine[9] and [3]. In this paper we have also studied the idea of semi-open set
due to M.C. Datta [4] in a bispace.

Definition 1.1 A set X is called an Alexandroff space or simply a space if
in it is chosen a system of subsets F satisfying the following axioms:

1. The intersection of a countable number of sets from F is a set in F .
2. The union of a finite number of sets from F is a set in F .
3. The void set φ is a set in F .
4. The whole set X is a set in F .

Sets of F are called closed sets. Their complementary sets are called open.
It is clear that instead of closed sets in the definition of the space, one may
put open sets with subject to the conditions of countable summability, finite
intersectibility and the condition that X and void set φ should be open. The
collection of all such open sets will sometimes be denoted by τ and the space
by (X, τ). Note that, in general, τ is not a topology as can be easily seen by
taking X = R, the set of real numbers and τ as the collection of all Fσ -sets
in R.

Definition 1.2 To every set M of (X, τ) we correlate its closure M, the
intersection of all closed sets containing M . Sometimes the closure of a set M
will be denoted by τ − clM or simply clM when there is no confusion about τ .

Generally the closure of a set in a space is not a closed set.
From the axioms, it easily follows that

1)M ∪N = M ∪N ; 2)M ⊂M ; 3)M = M ; 4)φ = φ.

Definition 1.3 The interior of a set M in (X, τ) is defined as the union of
all open sets contained in M and is denoted by τ − intM or intM when there
is no confusion.

Definition 1.4 Let X be a nonempty set. If τ1 and τ2 be two collections of
subsets of X such that (X, τ1) and (X, τ2) are two spaces, then X is called a
bispace and is denoted by (X, τ1, τ2).

2 Quasi Open Sets

Throughout our discussion, (X, τ1, τ2) or simply X stands for a bispace, R
stands for the set of real numbers , Q stands for the set of rational numbers
and sets are always subsets of X unless otherwise stated.
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Definition 2.1 A subset A in a bispace (X, τ1, τ2) is said to be quasi-open
if for every x ∈ A there exists a τ1-open neighbourhood Ux ⊂ A or a τ2-open
neighbourhood Vx ⊂ A.

In bitopological space quasi open sets are precisely the unions of τ1-open
and τ2-open sets (proposition 2.2 [4] ). But in bispace quasi open sets may not
be the unions of τ1-open and τ2-open sets as shown in the following example:

Example 2.2 Let X = [0, 2] − Q, where Q is the set of rational numbers.
Let {Fi} be the collection of all countable subsets in [0, 1]−Q and {Gi} be the
collection of all countable subsets in [1, 2]−Q .
Let τ1 = {X,φ, Fi} , τ2 = {X,φ,Gi} and A = [1

2
, 3

2
]−Q . Then A is neither τ1

open nor τ2 open, but A is quasi open because A = (
⋃

r∈A1

{r}) ∪ (
⋃

q∈A2

{q}) where

A1 = [1
2
, 1]−Q,A2 = [1, 3

2
]−Q and each {r} is τ1-open and {q} is τ2-open.

However any quasi open set is the union of τ1-open and τ2-open sets in
the form (

⋃
i
Uxi) ∪ (

⋃
j
Vxj) where Uxi and Vxj are respectively the τ1-open and

τ2-open neighbourhoods of xi and xj.

Note 1: Clearly every τ1-open(τ2-open) set is quasi-open and arbitrary
union of quasi-open sets is quasi-open. But finite intersection of quasi-open
sets need not be quasi-open as shown in the following example.

Example 2.3 Let X = [0, 3] . Let {Gi} be the collection of all countable
subsets in [0, 1]−Q and {Fi} be the collection of all countable subsets in [2, 3]−
Q .

Let τ1 = {X,Φ, Gi ∪{
√

2}} and τ2 = {X,Φ, Fi ∪{
√

2}}. Then clearly each
τ1-open or τ2-open set is quasi-open but the intersection of any τ1-open and
τ2-open set other than X and φ is {

√
2} which is not quasi-open.

Definition 2.4 A subset A in a bispace (X, τ1, τ2) is said to be quasi-closed
set if its complement is quasi-open.

Note 2: Clearly every τ1-closed ( τ2-closed) set is quasi-closed. Arbitrary
intersection of quasi-closed sets is quasi-closed but finite union of quasi-closed
sets need not be quasi-closed as shown in the above example 2.3 that union of
any two τ1-closed and τ2-closed set is X − {

√
2} which is not quasi-closed.

In bitopological space every quasi-closed set is the intersection of a τ1-
closed and τ2-closed sets but in a bispace this is not true. Because in Example
2.2, Ac = (

⋂
r∈A1

(X − {r})) ∩ (
⋂

q∈A2

(X − {q})) which is not the intersection of

τ1-closed and τ2-closed sets.
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Definition 2.5 The quasi-closure of a subset A in a bispace (X, τ1, τ2) is
the set (τ1 − cl(A)) ∩ (τ2 − cl(A)). The quasi-closure of A is denoted by A.

Theorem 2.6 Quasi-closure of a set is quasi-closed.

Proof: A = (τ1 − cl(A)) ∩ (τ2 − cl(A)) = (∩Pi) ∩ (∩Qi), where {Pi} and
{Qi} are family of τ1-closed and τ2-closed set respectively satisfying the con-
ditions A ⊂ Pi and A ⊂ Qi.
Therefore A

c
= (

⋂
i
Pi)

c ∪ (
⋂
i
Qi)

c = (
⋃
i
P c
i ) ∪ (

⋃
i
Qc
i) which implies that A

c
is

quasi open and hence A is quasi closed.

Note 3: If A ⊂ (X, τ1, τ2) , then A is the smallest quasi closed set con-
taining A.

Theorem 2.7 If x ∈ A then every open set U containing x intersects A.

Proof: If possible, let there exist an open set U containing x such that
A ∩ U = φ which implies that A ⊂ X − U where X − U is closed set. Since
x /∈ X − U and X − U is a closed set containing A , x /∈ A. So if x ∈ A, then
every open set U containing x intersects A.

Corollary 2.8 A ⊂ A ∪ A′
.

Definition 2.9 Let (X, τ) be a space. A family of open sets B is said to
form a base (open) for τ if and only if every open set can be expressed as
countable union of members of B.

Theorem 2.10 A collection of subsets B of a set X forms an open base of
a suitable space structure τ of X if and only if

1) the null set φ ∈ B
2) X is the countable union of some sets belonging to B.
3) intersection of any two sets belonging to B is expressible as countable

union of some sets belonging to B.

Definition 2.11 Let (X, τ) be a space. A family of subsets S of X is said
to form a subbase of a space structure τ if the collection of subsets obtained as
the intersection of all finite sub-collections of S constitute a base of τ .

Theorem 2.12 A collection of subsets S of a given set X forms a subbase
of a suitable space structure of X if and only if

1) either φ ∈ S or φ is the intersection of a finite number of subsets be-
longing to S

2) X is the countable union of subsets belonging to S.
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Proof: Let S form a subbase of a space structure τ of X and let B be
the base generated by S. As φ ∈ B either φ ∈ S or S must contains some
subsets, finite in number whose intersection is the null set φ . As X is the

countable union of some sets belonging to B, so X =
∞⋃
i=1

Vi, where Vi ∈ B.

Again, each Vi is the intersection of finite numbers of subsets belonging to
S i.e, Vi = S1

i ∩ S2
i ∩ ........ ∩ Ski , for some finite number k, where Sji ∈ S.

So Vi ⊂ S1
i (taking first number of the intersection) for all i = 1, 2.......∞.

Therefore X =
∞⋃
i=1

Vi ⊂
∞⋃
i=1

S1
i , on the other hand

∞⋃
i=1

S1
i ⊂ X . Therefore,

X =
∞⋃
i=1

S1
i , i.e, X is the countable union of subsets belongs to S.

Conversely, let the condition hold. Let B be the set formed by the inter-
section of finite members of S. Clearly φ ∈ B by (1) . Since S ⊂ B and X is
the countable union of subsets belonging to S, therefore X ∈ B.

Let V1, V2 ∈ B, and let V1 = A1 ∩ A2 ∩ ............ ∩ Ak , V2 = B1 ∩ B2 ∩
............ ∩ Bm where Ai, Bj ∈ S, i = 1, 2, ......, k and j = 1, 2, ......,m. So

V1∩V2 = A1∩A2∩.......∩Ak∩B1∩......∩Bm = V3(say) ∈ B. So V1∩V2 =
∞⋃
i=1

Vi,

where Vi = V3 for all i.
So B form a base and hence S form a subbase of space structure τ of X.

Definition 2.13 Let (X, τ1, τ2) be a bispace . The space (X, τ) is called
least upper bound space generated by τ1 and τ2 if τ is generated by subbase
τ1 ∪ τ2.

Definition 2.14 Let (X, τ1, τ2) be a bispace. A ⊂ X is said to be semi-open
if it is open in the least upper bound space structure τ generated by τ1 and τ2.

Definition 2.15 Complement of semi-open set is called semi-closed. Semi-
closure of any set A ⊂ X is intersection of all semi-closed sets containing A.

In (X, τ1, τ2) every τ1-closed or τ2 closed is semi-closed. For let A be τ1-
closed. Then Ac is τ1-open. So Ac ∈ τ1 ∪ τ2 which implies that Ac is a
subbasic open set of least upper bound space structure τ generated by τ1 and
τ2. Therefore Ac is semi-open and hence A is semi-closed. Similarly every
τ2-closed set is semi-closed set.

Remark 2.16 In a bitopological space every quasi-closed is semi-closed, but
in bispace quasi-closed sets may not be semi-closed i.e, quasi-open set may not
be semi-open as shown in the following example.
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Example 2.17 Consider X, τ1, τ2 and A ⊂ X as in example 2.2. Then A
is a quasi-open and uncountable set. Clearly τ1 ∪ τ2 form a subbase of least
upper bound space structure τ . Other than X,φ every member of τ1 ∪ τ2 is
countable set. So finite intersection of member of τ1 ∪ τ2 is also a countable
set i.e, all basic open set of τ is countable. So every member of τ is countable,
since open sets are formed by countable union of basic open sets. So A can not
be a semi-open set (i.e, A /∈ τ) but A is quasi-open.

Definition 2.18 Let f : (X1, τ1, τ2) → (X2, τ
′
1, τ

′
2) be a mapping. Then f

is said to be quasi continuous if the inverse image of every quasi open set in
(X2, τ

′
1, τ

′
2) is quasi open in (X1, τ1, τ2).

Definition 2.19 A function f maps a bispace (X, τ1, τ2) into a bispace
(X

′
, τ

′
1, τ

′
2) is said to be (τ1τ

′
1, τ2τ

′
2) continuous or simply continuous if and

only if the induced mappings f1 : (X, τ1)→ (X
′
, τ

′
1) and f2 : (X, τ2)→ (X

′
, τ

′
2)

are continuous.
Clearly every continuous mapping is quasi continuous. But converse may not
be true as shown in the following example.

Example 2.20 Example of a function which is quasi continuous but not
continuous:

Let X = [0, 2] , τ1 = {X,φ,Gi, where Gi are countable subsets in [0, 1]−Q}
and τ2 = {X,φ, Fi, where Fi are countable subsets in [1, 2]−Q} and τ

′
2 = τ

′
1 =

{X,φ, Pi, where Pi are countable subsets in [0, 2] − Q}. Let f : (X, τ1, τ2) →
(X, τ

′
1, τ

′
2) be the identity mapping. Clearly {

√
2} ∈ τ ′

1 but f−1({
√

2}) = {
√

2}
/∈ τ1. Also { 1√

2
} ∈ τ ′

2 but f−1( 1√
2
) = { 1√

2
} /∈ τ2. So the identity mapping f is

not continuous.

Let G be any quasi open set in (X, τ
′
1, τ

′
2), let x ∈ f−1(G) = G, where G is

a countable set in [0, 2] − Q. So x is an irrational number in [0, 2] − Q. Now
if x ∈ [0, 1] − Q then {x} ∈ τ1 and if x ∈ [1, 2] − Q then {x} ∈ τ2. Thus in
any case, for any x ∈ f−1(G), there is τ1-open or τ2-open set {x} such that
x ∈ {x} ⊂ G. So f−1(G) is quasi open in (X, τ1, τ2) and hence f is quasi
continuous.

Definition 2.21 A space ( or a set ) is called bicompact if every open cover
of it has a finite subcover.

Definition 2.22 A set A ⊂ (X, τ1, τ2) is said to be semi-bicompact if it is
compact in the least upper bound space structure generated by τ1 and τ2; in
other words, A is semi-bicompact if and only if any given covering of A by
semi-open subsets of X there exists a finite sub-covering.
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In bitopological space the quasi-continuous image of a semi-compact set is
semi-compact. But in bispace it is not true.

Proposition 2.23 Let f : (X, τ1, τ2) → (X
′
, τ

′
1, τ

′
2) be continuous and sur-

jective and let (X, τ1, τ2) be semi-bicompact. Then (X
′
, τ

′
1, τ

′
2) is semi-bicompact.

Proof: Let {Uα}α∈Λ be a covering of X
′
, where each Uα is semi-open in

(X
′
, τ

′
1, τ

′
2). Then Uα is of the form

∞⋃
i,j=1

(Vαi ∩Wαj) where Vαi is τ
′
1-open and

Wαj is τ
′
2-open.

Then f−1(Uα) =
∞⋃

i,j=1
(f−1(Vαi) ∩ f−1(Wαj)). Since Vαi is τ

′
1-open, f−1(Vαi) is

τ1-open for each i = i1, i2, ........ik and similarly f−1(Wαj) is τ2-open for each
j = j1, j2,......jm. Therefore, {f−1(Uα)} is a covering of X where f−1(Uα)
is semi open in (X, τ1, τ2). Since X is semi-bicompact , there exists finite
subset Λ1 ⊂ Λ such that {f−1(Uα)}α∈Λ1 covers X. Therefore {Uα}α∈Λ1 is
finite subcovers of X

′
. Therefore X

′
is semi-bicompact.

3 Quasi-Hausdorff Space

Definition 3.1 A bispace (X, τ1, τ2) is said to be quasi Hausdorff if given
x1 6= x2, there exist quasi open sets U1, U2 such that x1 ∈ U1, x2 ∈ U2 and
U1 ∩ U2 = φ.

Theorem 3.2 Every quasi Hausdorff bispace (X, τ1, τ2) is Hausdorff with
respect to least upper bound space structure τ generated by τ1 and τ2.

Proof: Since (X, τ1, τ2) is quasi-Hausdorff, for every x1, x2 ∈ X, x1 6= x2 ,
there exist quasi-open sets U1 and U2 such that x1 ∈ U1, x2 ∈ U2, U1 ∩ U2 = φ
. So U1 and U2 is of the form U1 = (

⋃
i
Uxi)∪ (

⋃
j
Vxj) and U2 = (

⋃
i
Uyi)∪ (

⋃
j
Vyj)

where Uxi , Uyi ∈ τ1 and Vxj , Vyj ∈ τ2.
Since U1 ∩ U2 = φ, i.e, (

⋃
i
Uxi) ∪ (

⋃
j
Vxj)∩ (

⋃
i
Uyi) ∪ (

⋃
j
Vyj) = φ, and since

x1 ∈ U1 , there exists a Uxi( or Vxj) such that x1 ∈ Uxi( or Vxj) and since
x2 ∈ U2 implies there exists a Uyi (or Vyj) such that x2 ∈ Uyi( or Vyj).

So in any case (Uxi , Uyi) [or (Uxi , Vyj) or (Vxj , Uyi) or (Vxj , Vyj)] is a pair of
τ -open sets which separates strongly x1, x2, since Uxi ∩Uyi = φ , Uxi ∩Vyj = φ
, Vxj ∩ Uyi = φ ,Vxj ∩ Vyj = φ. So (X, τ) is Hausdorff.

Lemma 3.3 Let (X, τ1, τ2) be a quasi Hausdorff bispace and let U1 and U2

be two quasi open sets such that U1 ∩U2 = φ then U1 ∩U2 = φ where U1 is the
quasi closure of U1.
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Proof: Let U1 and U2 be quasi open sets such that U1 ∩ U2 = φ. Suppose
U1∩U2 6= φ. Let y ∈ U1∩U2. Now y ∈ U1 implies that every τ1-neighbourhood
and τ2-neighbourhood of y meet U1 .

But U2 is a quasi open set containing y. So there exists a τ1-open neighbour-
hood or a τ2-open neighbourhood W of y such that W ⊂ U2. Since U1∩U2 = φ
implies U1 ∩W = φ which contradicts the above fact. So U1 ∩ U2 = φ.

Theorem 3.4 A semi-bicompact subset in a quasi-Hausdorff bispace is quasi-
closed if the following condition ’C’ is satisfied.

’C’: Quasi-closure of every quasi-open set is quasi-open.

Proof: Let A be a semi-bicompact subset of a quasi-Hausdorff space
(X, τ1, τ2) which satisfies condition ’C’. We show X − A is quasi open.

Let s ∈ X − A . Then s 6= ai for each ai ∈ A. Since (X, τ1, τ2) is
quasi-Hausdorff there exist quasi-open sets Uai and Vai containing a and s re-
spectively such that Uai ∩ Vai = φ. So by lemma 3.3, we get Uai ∩ Vai = φ .
The collection {Uai}ai∈A is a quasi-open covering of A. Now Uai is of the form
Uai = (∪x∈Λ1U

ai
x )∪ (∪y∈Λ2V

ai
y ) where Uai

x and V ai
y are τ1-open and τ2-open sets

respectively. So ∪{(∪Uai
x ) ∪ (∪V ai

y ) : ai ∈ A} ⊃ A . Since Uai
x and V ai

y are
also semi-open sets, the collection {Uai

x , V
ai
y : ai ∈ A, x ∈ Λ1, y ∈ Λ2} form an

semi-open cover for A.

So there exist finite number of sets Ua1
x1
, Ua2

x2
, Ua3

x3
, ........Uan

xn , V
a
′
1

y1 , V
a
′
2

y2 , ...............V
a
′
m

ym

such that A ⊂ Ua1
x1
∪Ua2

x2
∪ .......∪Uan

xn ∪V
a
′
1

y1 ∪V
a
′
2

y2 .....∪V a
′
m

ym . Clearly Uai
xi
∩Vai =

φ, V
a
′
i

yi ∩ Vai = φ, since Uai
xi
⊂ Uai , V

a
′
i

yi ⊂ Uai .
Let Ws = Va1 ∩ Va2 ∩ ...... ∩ Van ∩ Va′1 ∩ Va′2 ∩ ....... ∩ Va′m .

Then Va1 ∩ Va2 ∩ ...... ∩ Van ∩ Va′1 ∩ ...... ∩ Va′m ⊂ Va1 ∩ Va2 ∩ ...... ∩ Van ∩ Va′1 ∩
Va′2
∩ ....... ∩ Va′m = Ws.

But Va1 ∩ Va2 ∩ ...... ∩ Van ∩ Va′1 ∩ ...... ∩ Va′m = W
′
s is quasi open, by con-

dition ’C’.

So Ws contain a quasi open set W
′
s containing s . Also A ∩ Ws ⊂ (Ua1

x1
∪

Ua2
x2
∪ ....... ∪ Uan

xn ∪ V
a
′
1

y1 ∪ V
a
′
2

y2 ..... ∪ V a
′
m

ym ) ∩Ws = φ.

Thus for each s ∈ X − A, there exists a quasi open set W
′
s ⊂ Ws such that

Ws ∩A = φ that is s ∈ W ′
s ⊂ Ws ⊂ X −A. Hence X −A is quasi open implies

A is quasi closed.
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