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Abstract

The primary purpose of the present study is to present the vector valued
sequence space F (A,Xk,M, p, s) and to study the closed subspace of it. Where,
F is a normal sequence algebra with absolutely monotone norm ‖.‖F and having
a Schauder base (ek) , where ek = (0, · · · , 0, 1, 0, · · · ) , with 1 in the k−th place;
A is a nonnegative matrix; Xk is seminormed space over the complex field C
with seminorm qk for each k ∈ N; M is an Orlicz function; p = (pk) be
any sequence of strictly positive real numbers and s be any non-negative real
number. We investigate important algebraic and topological characteristics of
this space and also examine some inclusion relations on it. Our results are
much more general than the corresponding results given by [23].
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1 Introduction

In recent years, the problems in Fourier series, power series and systems of
equations having many variables have resulted in the first attemps to find out
a theory of sequence spaces and infinite matrices. The theory of sequence
spaces has also many other applications related to several other branches of
functional analysis including theory of functions, summability theory and the
theory of locally convex spaces of many problems concerning sequence spaces,
the typical one is the inclusion problem (Abelian Theorems). That is, when
spaces λ and µ are given, try to find out whether µ contains λ or not. There
are many ways to introduce a sequence and a sequence space, but here we
have preferred to give the definition as: Let w we denote the space of all real-
valued sequences x = (xk)

∞
k=0. Any vector subspace of w is called a sequence

space. As usual, we write c0, c and l∞ denote the sets of sequences that
are convergent to zero, convergent and bounded, respectively. Also by l1 and
lp; we denote the spaces of absolutely and p− absolutely convergent series,
respectively; where 1 < p < ∞. We write e and e(n) (n = 0, 1, · · · ) for the

sequences with ek = 1 (k = 0, 1, · · · ) and e
(n)
n = 1 and e

(n)
k = 0 (k 6= n) . If

x ∈ w then x[m] =
m∑
k=0

xke
(k) denotes the m− section of x.

As well known, we call a sequence space X with a linear topology a
K−space if and only if each of the maps pn : X → R defined by pn(x) = xn is
continuous for all n ∈ N. A K−space X is called an FK−space if and only if
X is a complete linear metric space. On the other words; we can say that an
FK−space is a complete total paranormed space. An FK−space whose topol-
ogy is normable is called a BK−space, so a BK−space is a normed FK−space.

The space `p (1 ≤ p < ∞) is a BK−space with ‖x‖p = (
∑

k |xk|p)
1
p and c0,

c and `∞ are BK−space with ‖x‖∞ = supk|xk|. An FK−space X is said
to have AK− property, if φ ⊂ X and {e(k)} is a basis for X, where ek is a
sequence whose only non-zero term is a 1 in k−th place for each k ∈ N and
φ = span{ek}, the set of all finitely non-zero sequences. If φ is dense in X,
then X is called an AD−space, thus AK implies AD. We know that the spaces
c0, cs and `p are AK−spaces, where 1 ≤ p <∞.

A sequence (bn)∞n=0 in a linear metric space X is called Schauder basis if,
for every x ∈ X, there exists a unique sequence (λn)∞n=0 of scalars such that

x =
∞∑
n=0

λnbn.

Orlicz sequence spaces are one of the generalizations of well-known sequence
spaces `p, p > 1. They were examined by W. Orlicz in 1936. After that, the
idea of Orlicz function M to construct the sequence space `M of all sequences
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of scalars (xn) is used by J. Lindenstrauss and L. Tzafriri [21] such that

∞∑
k=1

M

(
|xk|
ρ

)
<∞ for some ρ > 0.

The space `M equipped with the norm

‖x‖ = inf

{
ρ > 0 :

∞∑
k=1

M

(
|xk|
ρ

)
≤ 1

}

is a BK− space usually called an Orlicz sequence space.
The space `M becomes a Banach space which is called an Orlicz sequence

space. The space `M is closely related to the space `p which is an Orlicz
sequence space with M (x) = xp, (1 6 p <∞) . In the present note, we intro-
duce and examine some properties of a sequence space defined by using Orlicz
function M, which generalizes the well known Orlicz sequence space `M . Be-
fore introducing this sequence space, let us give some fundamental concepts
contains essential definitions, results and terminological materials of which we
shall make frequent use later.

An algebra X is defined as a linear space having an internal operation of
multiplication of elements from X, provided that xy ∈ X, x (yz) = (xy) z,
x (y + z) = xy + xz, (x+ y) z = xz + yz and λ (xy) = (λx) y = x (λy), for
a given scalar λ, and a normed algebra is defined as a normed linear space
algebra where the inequality ‖xy‖ 6 ‖x‖ ‖y‖ holds for all x, y; [22].

The scalar-valued sequence space F is called normal or solid if y = (yk) ∈ F
whenever |yk| 6 |xk|, k ∈ N, for some x = (xk) ∈ F . Also F is called a
sequence algebra if it is closed under the multiplication defined by xy = (xiyi),
i ≥ 1. Should F is both normal and sequence algebra then it is called a normal
sequence algebra. For example, c is a sequence algebra but not normal. w, `∞,
c0 and `p (0 < p <∞) are normal sequence algebras.

A norm ‖·‖ on a normal sequence space F is said to be absolutely monotone
if x = (xk) , y = (yk) ∈ F and |xk| 6 |yk| for all k ∈ N implies ‖x‖ 6 ‖y‖, [19].
The norm

‖x‖∞ = sup |xk|

over `∞, c, c0 and the norm

‖x‖ =

(
∞∑
k=1

|xk|p
)1/p

over `p for p > 1 are absolutely monotone.
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We recall [20, 21] that an Orlicz function M is a function from [0,∞)
to [0,∞) which is continuous, non-decreasing and convex with M (0) = 0,
M (x) > 0 for all x > 0 and M (x) → ∞ as x → ∞. Here we note that
an Orlicz function is always unbounded and Orlicz function M can always be
represented in the following integral form:

M (x) =

x∫
0

p (t) dt,

where p, known as the kernel of M.
We easily obtain that M1 +M2 and M1 ◦M2 are Orlicz functions when M1

and M2 are Orlicz functions.
An Orlicz function M is said to satisfy the ∆2−condition for all values of u

if there exists a constant K > 0 such that M (2u) 6 KM (u) , u > 0. It is easy
to see always that K > 2. The ∆2−condition is equivalent to the inequality
M (`u) 6 K(`)M (u) which holds for all values of u and where l can be any
number greater than unity [20].

We now introduce and examine the vector valued sequence space F (A,Xk,
M, p, s).

Let A = (amk) be a nonnegative matrix, Xk be seminormed space over
the complex field C with seminorm qk for each k ∈ N, and F be a normal
sequence algebra with absolutely monotone norm ‖·‖F and having a Schauder
basis (ek), where ek = (0, . . . , 0, 1, 0, . . .), with 1 in k−th place. Let p = (pk) be
any sequence of strictly positive real numbers and s be any non-negative real
number. Let (Xk, qk) be an infinite sequence of seminormed spaces. Then we
may construct the most general sequence spaces s (Xk) such that x = (xk) ∈
s (Xk) if and only if xk ∈ Xk for each k ∈ N. If we take Xk = C for each
k ∈ N, then we have w, the space of all complex-valued sequences. This case is
called scalar-valued case. It is verification to show that s (Xk) is a linear space
over C under the coordinatewise operations. Let x ∈ s (Xk) and λ = (λk) be
a scalar sequence such that λx = (λkxk). We define for an Orlicz function M ,

F (A,Xk,M, p, s) =
{
x = (xk) ∈ s (Xk) : xk ∈ Xk for each k and m ∈ N(
amkk

−s
[
M
(
qk(xk)
ρ

)]pk)
∈ F for some ρ > 0

}
.

The approach to construct a new sequence space has recently been employed.
For instance, see [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. For more
detail certain sequence space, the reader may refer to Başar [2].

We now recall paranorm definition which will be used. The function g on
X satisfies the properties of a paranorm

i) g(θ) = 0,
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ii) g(x) = g(−x)

iii) g(x+ y) = g(x) + g(y)

iv) |αn − α| → 0 and g(xn − x)→ 0 imply g(αnxn − αx)→ 0

for all α ∈ R and all x ∈ X, where θ is the zero vector in the linear space X.
Recall that a linear topological space X over the real field R with a paranorm
obeying these rules (i-iv) is called a paranormed space.

A generalization of Minkowski inequality to normal sequence algebras hav-
ing absolutely monotone seminorm has been introduced by [25] . Lemma 2.3
stating this extension is going to be used in order to put forward a topology
of the space F (A,Xk,M, p, s). For each m, we describe

g(x) = inf

{
ρpn/H > 0:

∥∥∥∥(amkk−s [M (
qk (xk)

ρ

)]pk)∥∥∥∥1/H
F

6 1, m,n ∈ N

}
, (1)

for x = (xk) ∈ F (A,Xk,M, p, s) where H = max (1, sup pk) . It has been
indicated that F (A,Xk,M, p, s) is a complete paranormed space having the
paranorm given by (1) provided that the seminormed space Xk is complete
under the seminorm qk for each k ∈ N.

It is shown that if we can choose a suitable matrix A, sequence space
F, the seminormed space Xk, the sequence of strictly positive real numbers
(pk) , s > 0 and Orlicz function M, the space F (A,Xk,M, p, s) results in the
many number of known ordinary sequence spaces and as well as vector valued
sequence spaces, as a particular case. For instance, let F be `1, Xk = X (a
vector space over C) qk = q to be a seminorm on X in F (A,Xk,M, p, s) and
amk = 1 for all m, k ∈ N one gets the scalar valued sequence space `M (p, q, s)
defined by Ç. A. Bektaş & Y. Altın [1].

If Xk is taken as a normed space, amk = 1 and pk = 1 for all m, k ∈ N and
s = 0, then the class F (A,Xk,M, p, s) gives the class F (Xk,M) defined by D.
Ghosh & P. D. Srivastava [18]. Moreover, if F = `1, Xk = N, amk = 1 for all
m, k ∈ N and s = 0 in F (A,Xk,M, p, s), then one can easily derive the space
`M(p) defined by S. D. Parashar & B. Choudhary [24]. Thus, the generalized
sequence space F (A,Xk,M, p, s) results in several spaces studied by several
authors.

2 Linear Topological Structure of Vector Val-

ued Orlich Sequence Space F (A,Xk,M, p, s)

In this subsection, we establish some algebraic and topological characteristics
of vector valued Orlich sequence space with an infinite matrix F (A,Xk,M, p, s)
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and investigate some inclusion relations on it. In order for argue the important
characteristics of F (A,Xk,M, p, s), we suppose that (pk) is bounded. From
now on, let’s denote by h and C, the real numbers sup pk and max

(
1, 2h−1

)
,

respectively.
Let us begin with the theorem of one of our principal object of study.

Theorem 2.1 F (A,Xk,M, p, s) is a linear space over the complex field C.

Proof: Let’s suppose that x = (xk), y = (yk) ∈ F (A,Xk,M, p, s) and
α, β ∈ C. Hence, there exist ρ1, ρ2 > 0 such that(

amkk
−s
[
M

(
qk (xk)

ρ1

)]pk)
,

(
amkk

−s
[
M

(
qk (yk)

ρ2

)]pk)
∈ F .

Let ρ3 = max (2 |α| ρ1, 2 |β| ρ2). Due to the fact that M is non-decreasing and
convex, therefore, we can write

amkk
−s
[
M

(
qk (αxk + βyk)

ρ3

)]pk
6 C

{
amkk

−s
[
M

(
qk (xk)

ρ1

)]pk
+ amkk

−s
[
M

(
qk (yk)

ρ2

)]pk}
.

This newly derived inequality results in(
amkk

−s
[
M

(
qk (αxk + βyk)

ρ3

)]pk)
∈ F

Because F is a normal space. This clearly indicates αx+βy ∈ F (A,Xk,M, p, s).
This is exactly what we want to prove.

Theorem 2.2 F (A,Xk,M, p, s) is a topological linear space, paranormed
by g, defined by

g(x) = inf

{
ρpn/H > 0:

∥∥∥∥(amkk−s [M (
qk (xk)

ρ

)]pk)∥∥∥∥1/H
F

6 1, m,n ∈ N

}
,

for each m, where H = max (1, h).

To prove this theorem we need the following lemma.

Lemma 2.3 Let F be a normal sequence algebra, ‖·‖F be an absolutely
monotone seminorm on F and let p > 1. Then

‖(u+ v)p‖1/pF 6 ‖up‖1/pF + ‖vp‖1/pF ,

for every u = (un) , v = (vn) ∈ F ; [25].
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Proof: (Proof of Theorem 2.2) We use a standard type procedure in proof
of the theorem. Let’s assume that x = (xk), y = (yk) ∈ F (A,Xk,M, p, s). The
reader can obviously see that g(x) = g(−x) and g(θ) = 0 for θ = (θ1, θ2, . . .)
the null element of F (A,Xk,M, p, s) where θi is the zero element of Xi for each
i.

Now, let us show the subadditivity of g. If we take α = β = 1 in Theorem
2.1, we can easily get

amkk
−s
[
M

(
qk (xk + yk)

ρ3

)]pk
6

(
amkk

−s/H
[
M

(
qk (xk)

ρ1

)]pk/H

+ amkk
−s/H

[
M

(
qk (yk)

ρ2

)]pk/H)H

.

Lemma 2.3 allows us to write the following inequality∥∥∥∥(amkk−s [M (
qk (xk + yk)

ρ3

)]pk)∥∥∥∥1/H
F

6

∥∥∥∥(amkk−s [M (
qk (xk)

ρ1

)]pk)∥∥∥∥1/H
F

+

∥∥∥∥(amkk−s [M (
qk (yk)

ρ2

)]pk)∥∥∥∥1/H
F

in other words g(x+ y) 6 g(x) + g(y).
Now, let’s show that the scalar multiplication is continuous. Let λ be any

complex number. By (1), we get

g(λx) = inf

{
ρpn/H > 0:

∥∥∥∥(amkk−s [M (
qk (λxk)

ρ

)]pk)∥∥∥∥1/H
F

6 1, m,n ∈ N

}
.

Therefore

g(λx) = inf

{
(|λ| r)pn/H > 0:

∥∥∥∥(amkk−s [M (
qk (xk)

r

)]pk)∥∥∥∥1/H
F

6 1, m,n ∈ N

}
,

where r = ρ/ |λ|. For |λ|pn 6 max (1, |λ|sup pn), we easily obtain

g(λx) = max (1, |λ|sup pn)
1/H

. inf

{
rpn/H > 0:

∥∥∥∥(amkk−s [M (
qk (xk)

r

)]pk)∥∥∥∥1/H
F

6 1, m,n ∈ N

}
,

which converges to zero whenever x converges to zero in F (A,Xk,M, p, s).
Let’s assume that λn → 0 and x is fixed in F (A,Xk,M, p, s). Therefore,

t = (tk) =

(
amkk

−s
[
M

(
qk (xk)

ρ

)]pk)
∈ F
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for each m, for some ρ > 0. For arbitrary ε > 0, let N be a positive integer
such that ∥∥∥∥∥t−

N∑
k=1

tkek

∥∥∥∥∥
F

=

∥∥∥∥∥
∞∑

k=N+1

tkek

∥∥∥∥∥
F

<
(ε

2

)H
,

because (ek) is a Schauder basis for F . Let 0 < |λ| < 1, using convexity of M
and absolutely monotonicity of ‖·‖F we easly obtain∥∥∥∥∥

∞∑
k=N+1

amkk
−s
[
M

(
qk (λxk)

ρ

)]pk
ek

∥∥∥∥∥
F

6

∥∥∥∥∥
∞∑

k=N+1

amkk
−s
[
|λ|M

(
qk (xk)

ρ

)]pk
ek

∥∥∥∥∥
F

<
(ε

2

)H
.

Due to the fact that M is continuous everywhere in [0,∞], it results in

f(u) =:

∥∥∥∥∥
N∑
k=1

amkk
−s
[
M

(
qk (uxk)

ρ

)]pk
ek

∥∥∥∥∥
F

is continuous at 0. Thus there is 0 < δ < 1 such that f(u) < (ε/2)H for
0 < u < δ. Let K be a positive integer such that |λn| < δ for n > K, then for
n > K ∥∥∥∥∥

N∑
k=1

amkk
−s
[
M

(
qk (λnxk)

ρ

)]pk
ek

∥∥∥∥∥
1/H

F

<
ε

2
.

So ∥∥∥∥(amkk−s [M (
qk (λnxk)

ρ

)]pk)∥∥∥∥1/H
F

<
ε

2

for n > K, so that g(λx) → 0 as λ → 0. This means that the scalar
multiplication is continuous. As a conclusion, g is a paranorm on the space
F (A,Xk,M, p, s).

Remark 2.4 If we take F = `1, amk = 1 for all m, k ∈ N, (Xk, qk) =
(C, |·|), pk = 1 for each k ∈ N and s = 0, then the paranorms defined on
F (A,Xk,M, p, s) and `M(p) will be same, and at the same time taking amk = 1
for all m, k ∈ N, qk = ‖·‖Xk

, pk = 1 for each k ∈ N and s = 0 in (1), one can
easily obtain the norm of F (Xk,M).

Theorem 2.5 If Xk is complete under the seminorm qk for each k ∈ N,
then F (A,Xk,M, p, s) is complete with the paranorm (1).
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Proof: Let’s suppose that (xi) be any Cauchy sequence of the points lying
in F (A,Xk,M, p, s). We derived from (1) that∥∥∥∥∥

(
amkk

−s

[
M

(
qk
(
xik − x

j
k

)
g (xi − xj)

)]pk)∥∥∥∥∥
1/H

F

6 1.

Since F is a normal space and (ek) is a Schauder basis of F , we obtain that

amkk
−s

[
M

(
qk(x

i
k − x

j
k)

g(xi − xj)

)]pk
‖ek‖F 6

∥∥∥∥∥
(
amkk

−s

[
M

(
qk(x

i
k − x

j
k)

g(xi − xj)

)]pk)∥∥∥∥∥
F

6 1.

We choose γ with γH ‖ek‖F > 1 and x0 > 0, such that

γH ‖ek‖F
xH0
2

[
p
(x0

2

)]pk
> 1,

where p is the kernel associated with M . So,

amkk
−s

[
M

(
qk(x

i
k − x

j
k)

g(xi − xj)

)]pk
‖ek‖F 6 γH ‖ek‖F

xH0
2

[
p
(x0

2

)]pk
for each k ∈ N. Using the integral representation of Orlicz function M we have

amkk
−s [qk(xik − xjk)]pk 6 γHxH0

[
g(xi − xj)

]H
. (2)

For given ε > 0 we choose an integer i0 such that

g(xi − xj) < ε1/H

γx0
for all i, j > i0. (3)

From (2) and (3) we derive from

amkk
−s [qk(xik − xjk)]pk < ε for all i, j > i0

and so,
qk(x

i
k − x

j
k) < ε for all i, j > i0.

Therefore, there exists a sequence x = (xk) such that xk ∈ Xk for each k ∈ N
and

qk(x
i
k − xk) < ε as i→∞,

for each fixed k ∈ N. For given ε > 0, choose an integer n > 1 such that
g(xi − xj) < ε/2, for all i, j > n and a ρ > 0, such that g(xi − xj) < ρ < ε/2.
Because F is a normal space and (ek) is a Schauder basis of F ,∥∥∥∥∥

n∑
k=1

amkk
−s

[
M

(
qk(x

i
k − x

j
k)

ρ

)]pk
ek

∥∥∥∥∥
F

6

∥∥∥∥∥
(
amkk

−s

[
M

(
qk(x

i
k − x

j
k)

ρ

)]pk)∥∥∥∥∥
F

6 1.
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For M is continuous, so by taking j →∞ and i, j > n in the above inequality
we easly obtain ∥∥∥∥∥

n∑
k=1

amkk
−s
[
M

(
qk(x

i
k − xk)
2ρ

)]pk
ek

∥∥∥∥∥
F

< 1.

Letting n→∞, we have g(xi−x) < 2ρ < ε for all i > n. This means that (xi)
converges to x in the paranorm of F (A,Xk,M, p, s). Now, if we prove that x ∈
F (A,Xk,M, p, s), then the proof ends. Since xi = (xik) ∈ F (A,Xk,M, p, s),
there exists a ρ > 0 such that(

amkk
−s
[
M

(
qk(x

i
k)

ρ

)]pk)
∈ F .

Because of qk(x
i
k−xk)→ 0 as i→∞, for each fixed k we can choose a positive

number δik satisfying 0 < δik < 1 such that

amkk
−s
[
M

(
qk(x

i
k − xk)
ρ

)]pk
< δikamkk

−s
[
M

(
qk(x

i
k)

ρ

)]pk
.

Consider

M

(
qk(xk)

2ρ

)
6M

(
qk(x

i
k)

ρ

)
+M

(
qk(x

i
k − xk)
ρ

)
.

In that case,

amkk
−s
[
M

(
qk(xk)

2ρ

)]pk
< C

(
1 + δik

)
amkk

−s
[
M

(
qk(x

i
k)

ρ

)]pk
.

This newly obtained formula results in(
amkk

−s
[
M

(
qk(xk)

2ρ

)]pk)
∈ F ,

because F is normal. That is, x = (xk) ∈ F (A,Xk,M, p, s). This in fact,
concludes the proof.

Now, we examine some algebraic properties of the sequence spaces defined
above and investigate some inclusion relations.

Theorem 2.6 Let M and M1 be two Orlicz functions. If M satisfies the
∆2−condition, then

F (A,Xk,M1, p, s) ⊆ F (A,Xk,M ◦M1, p, s) .
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Proof: To see that the inclusion in the theorem, let’s assume that x ∈
F (A,Xk,M1, p, s). Therefore(

amkk
−s
[
M1

(
qk(xk)

ρ

)]pk)
∈ F

for some ρ > 0. Since M and F satisfy the ∆2−condition and normal, respec-
tively, it is easy to see that following inequalities

amkk
−s
[
M

(
M1

(
qk(xk)

ρ

))]pk
6 amkk

−s
[
KM1

(
qk(xk)

ρ

)
M(1)

]pk
6 max

(
1, [KM(1)]h

)
amkk

−s
[
M1

(
qk(xk)

ρ

)]pk
.

So, the previous computations show that x ∈ F (A,Xk,M ◦M1, p, s) and this
completes the proof of the theorem.

Theorem 2.7 Let M1 and M2 be two Orlicz functions. Then the following
inclusions are hold for non-negative real numbers s1, s2, s:

(i) F (A,Xk,M1, p, s) ∩ F (A,Xk,M2, p, s) ⊆ F (A,Xk,M1 +M2, p, s),

(ii) If lim sup
t→∞

M1(t)/M2(t) <∞, then F (A,Xk,M2, p, s) ⊆ F (A,Xk,M1, p, s),

(iii) If s1 6 s2, then F (A,Xk,M1, p, s1) ⊆ F (A,Xk,M1, p, s2),

(iv) If F1 ⊆ F2, then F1 (A,Xk,M1, p, s) ⊆ F2 (A,Xk,M1, p, s).

Proof: Since they are similar to each other, we will only prove part(i) and
leave part (iii-iv) to reader.

(i) Let’s suppose that x ∈ F (A,Xk,M1, p, s)∩F (A,Xk,M2, p, s). Therefore
there exist some ρ1, ρ2 > 0 such that(

amkk
−s
[
M1

(
qk(xk)

ρ1

)]pk)
,

(
amkk

−s
[
M2

(
qk(xk)

ρ2

)]pk)
∈ F .

Letting ρ = max(ρ1, ρ2), we easly obtain

amkk
−s
[
(M1 +M2)

(
qk(xk)

ρ

)]pk
6 C

{
amkk

−s
[
M1

(
qk(xk)

ρ1

)]pk
+ amkk

−s
[
M2

(
qk(xk)

ρ2

)]pk}
.

Because of the fact that F is a normal space, x ∈ F (A,Xk,M1 +M2, p, s).
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(ii) It is easly find K > 0 such that M1(t)/M2(t) 6 K for all t > 0, for
lim sup
t→∞

M1(t)/M2(t) < ∞. Let’s suppose that x ∈ F (A,Xk,M2, p, s) . Then,

there exists a ρ > 0 such that

M1

(
qk(xk)
ρ

)
M2

(
qk(xk)
ρ

) 6 K.

So

amkk
−s
[
M1

(
qk(xk)

ρ

)]pk
6 max

(
1, Kh

)
amkk

−s
[
M2

(
qk(xk)

ρ

)]pk
.

Due to the fact that F is normal, x ∈ F (A,Xk,M1, p, s). This ends the proof.

Corollary 2.8 We have

(i) F (A,Xk, p, s) ⊆ F (A,Xk,M, p, s) for any Orlicz function M satisfying
the ∆2−condition,

(ii) F (A,Xk,M, p) ⊆ F (A,Xk,M, p, s) for any Orlicz function M.

3 A Closed Subspace of Vector Valued Orlicz

Sequence Space F (A,Xk,M, p, s)

We describe [F (A,Xk,M, p, s)] with the following

[F (A,Xk,M, p, s)] =
{
x = (xk) : xk ∈ Xk for each k ∈ N and m ∈ N(
amkk

−s
[
M

(
qk(xk)

ρ

)]pk)
∈ F for every ρ > 0

}
.

Thus, the space [F (A,Xk,M, p, s)] is obviously a subspace of F (A,Xk,M, p, s),
and its topology is introduced by the paranorm of F (A,Xk,M, p, s) given by
(1).

Theorem 3.1 [F (A,Xk,M, p, s)] is a complete paranormed space with the
paranorm given by (1) if (Xk, qk) is complete seminormed space for each k ∈ N.

Proof: Because F (A,Xk,M, p, s) has just been a complete paranormed
space under the paranorm (1) and [F (A,Xk,M, p, s)] has been a subspace of
F (A,Xk,M, p, s), it is enough to show that it is closed. For this purpose, let
us consider (xi) = ((xik)) ∈ [F (A,Xk,M, p, s)] such that g (xi − x) → 0 as
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i → ∞, where x = (xk) ∈ F (A,Xk,M, p, s). Thus for a given ξ > 0, we can
choose an integer i0 such that

g
(
xi − x

)
< ξ/2, ∀i > i0.

Let’s consider

amkk
−s
[
M

(
qk(xk)

ξ

)]pk
6 amkk

−s
[

1

2
M

(
qk(x

i
k − xk)
ξ/2

)
+

1

2
M

(
qk(x

i
k)

ξ/2

)]pk
6 Camkk

−s
{[

M

(
qk(x

i
k − xk)

g (xi − x)

)]pk
+

[
M

(
qk(x

i
k)

ξ/2

)]pk}
.

Because(
amkk

−s
[
M

(
qk(x

i
k − xk)

g (xi − x)

)]pk)
,

(
amkk

−s
[
M

(
qk(x

i
k)

ξ/2

)]pk)
∈ F

and F is normal space,(
amkk

−s
[
M

(
qk(xk)

ξ

)]pk)
∈ F .

This requires x = (xk) ∈ [F (A,Xk,M, p, s)] which clearly indicates that
[F (A,Xk,M, p, s)] is complete. In fact, this is exactly what we want to prove.

Theorem 3.2 [F (A,Xk,M, p, s)] is an AK-space.

Proof: Let’s suppose that x = (xk) ∈ [F (A,Xk,M, p, s)]. Then,(
amkk

−s
[
M

(
qk(xk)

ρ

)]pk)
∈ F

for every ρ > 0. As (ek) is a Schauder basis of F , for a given ε ∈ (0, 1), we are
able to find out an arbitrary positive integer t0 such that∥∥∥∥∥

∞∑
k=t0

amkk
−s
[
M

(
qk(xk)

ε

)]pk
ek

∥∥∥∥∥
F

< 1. (4)

If we use the paranorm definition, then we obtain

g
(
x− x[t]

)
=inf

ξpn/H> 0:

∥∥∥∥∥
∞∑

k=t+1

amkk
−s
[
M

(
qk(xk)

ξ

)]pk
ek

∥∥∥∥∥
1/H

F

6 1, m,n ∈ N

 ,

where x[t] represents the t−th section of x. Using this equality and (4), it is
clear that

g
(
x− x[t]

)
< ε for all t > t0.

Thus [F (A,Xk,M, p, s)] is an AK-space.
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Theorem 3.3 Let (xi) = ((xik)) be a sequence of the elements of [F (A,Xk,M, p, s)]
and x = (xk) ∈ [F (A,Xk,M, p, s)]. Then xi → x in [F (A,Xk,M, p, s)] if and
only if

(i) xik → xk in Xk for each k > 1,

(ii) g(xi)→ g(x) as i→∞.

Proof: The necessity part is clear.
Sufficiency. Let’s assume that (i) and (ii) hold, and let t be an arbitrary

positive integer. In this case

g(xi − x) 6 g(xi − xi[t]) + g(xi[t] − x[t]) + g(x[t] − x),

where xi[t], x[t] denote the t−th sections of xi and x, respectively. Letting
i→∞, we obtain

lim sup
i→∞

g(xi − x) 6 lim sup
i→∞

g(xi − xi[t]) + lim sup
i→∞

g(xi[t] − x[t]) + g(x[t] − x)

6 2g(x[t] − x).

For t is arbitrary, letting t→∞, we get lim sup
i→∞

g (xi − x) = 0, i.e., g (xi − x)→
0 as i→∞.

Theorem 3.4 If Xk is separable for each k ∈ N, then [F (A,Xk,M, p, s)] is
separable.

Proof: Let’s assume that Xk is separable for each k ∈ N. In that case,
there exists a countable dense subset Uk of Xk. Let Z denotes the set of finite
sequences z = (zk) where zk ∈ Uk for each k ∈ N and

(zk) = (z1, z2, . . . , zt, θt+1, θt+2, . . .)

for arbitrary t ∈ N. Clearly, Z is a countable subset of [F (A,Xk,M, p, s)].
We shall prove that Z is dense in [F (A,Xk,M, p, s)]. Let’s suppose that x ∈
[F (A,Xk,M, p, s)]. Because [F (A,Xk,M, p, s)] is an AK-space, g

(
x− x[t]

)
→

0 as t→∞. So for a given ε > 0, there exists an integer t1 > 1 such that

g
(
x− x[t]

)
< ε/2 for all t > t1.

If t = t1 is taken, then
g
(
x− x[t1]

)
< ε/2.

Let us choose y = (yk) = (y1, y2, . . . , yt1 , θt1+1, θt1+2, . . .) ∈ Z such that

qk

(
x
[t1]
k − yk

)
<

ε

2M (1) t1 ‖ek‖F
for each k ∈ N.

Now
g (x− y) 6 g

(
x− x[t1]

)
+ g

(
x[t1] − y

)
< ε.

This requires that Z is dense in [F (A,Xk,M, p, s)]. Thus [F (A,Xk,M, p, s)]
is separable. This marks the end of the proof.
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[3] Y. Yılmaz, M.K. Özdemir, İ. Solak and M. Candan, Operators on some
vector-valued Orlicz sequence spaces, F.Ü. Fen ve Mühendislik Dergisi,
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