

Gen. Math. Notes, Vol. 28, No. 2, June 2015, pp.1-8 ISSN 2219-7184; Copyright ©ICSRS Publication, 2015 www.i-csrs.org Available free online at http://www.geman.in

An Algorithm to Solve a Pell Equation

Alexandre Junod

Lycée Denis-de-Rougemont 2000 Neuchâtel, Switzerland E-mail: alexandre.junod@rpn.ch

(Received: 9-4-15 / Accepted: 28-5-15)

Abstract

Given a non-square positive integer n, we want to find two integers x and y such that $x^2 - ny^2 = \pm 1$. We present an elementary method to do this and we make the well-known link with the continued fraction of \sqrt{n} with a new pedagogical point of view. Finally we give a generalization to deal with equations $mx^2 - ny^2 = \pm 1$ when m and n are positive integers whose product is not a perfect square.

Keywords: Pell equation, Continued fractions.

1 Introduction

The equations $x^2 - ny^2 = \pm 1$ (where *n* is a non-square positive integer) have been studied by several Indian mathematicians. From a solution (x; y) of an equation $x^2 - ny^2 = \varepsilon$ with $\varepsilon \in \{\pm 1, \pm 2, \pm 4\}$, Brahmagupta (598–668) could find a solution (x'; y') with x' > x for the case $\varepsilon = 1$ and could deduce infinitely many solutions for this case. Later, Bhāskara II (1114–1185) developed a cyclic algorithm (called *chakravala method*) to produce a solution of an equation $x^2 - ny^2 = 1$. The topic interessed the European mathematicians (ignorant of the Indians' work) after a challenge given in 1657 by Pierre de Fermat (1601–1665). William Brouncker (1620–1684) found an empirical method related to the continued fractions

$$[a_0; a_1, \dots, a_n] = a_0 + \frac{1}{a_1 + \frac{1}{\ddots \frac{1}{a_{n-1} + \frac{1}{a_n}}}}$$

John Wallis (1616–1703) published and completed the work of Brouncker. Leonhard Euler (1707-1783) named the equation after John Pell by mistake, studied the infinite continued fractions and proved that a finally periodic continued fraction describes an irrational quadratic. Joseph-Louis Lagrange (1736–1813) proved the reciprocal : every irrational zero of a quadratic polynomial has a finally periodic continued fraction $[a_0; a_1, \ldots, a_m, \overline{a_{m+1}, \ldots, a_n}]$. He published a rigorous version of the continued fractions approach to solve an equation $x^2 - ny^2 = 1$ and proved the infinity of solutions (x; y) for every n. Evariste Galois (1811–1832) described the irrational quadratics whose continued fractions are purely periodic (m = 0 in the above continued fraction)and Adrien-Marie Legendre (1752–1833) found the continued fraction of \sqrt{n} for a non-square integer n > 1. The solutions of a Pell equation depend on this expansion. In fact, the relation $x^2 - ny^2 = \pm 1$ (where x and y are positive integers) implies that $\left|\sqrt{n} - \frac{x}{y}\right| < \frac{1}{2y^2}$ and this inequality allows to say that x/yhas a (finite) continued fraction which coincides with the beginning of that of \sqrt{n} .

2 Algorithm

Given a non-square integer n, we consider the following algorithm :

Initialization :
$$\begin{vmatrix} a_{i-1} & b_{i-1} & c_{i-1} \\ a_i & b_i & c_i \end{vmatrix} = \begin{vmatrix} 0 & 1 & n \\ 1 & 0 & 1 \end{vmatrix} \text{ for } i = 0.$$

Iteration :
$$\Downarrow$$
$$\boxed{q_i a_i + a_{i-1} & q_i b_i + b_{i-1} & c_{i+1} \\ and c_{i+1} = 2q_i \sqrt{n - c_{i-1} c_i} + c_{i-1} - q_i^2 c_i.$$

In this paper, we first prove the theorem of Legendre :

Theorem 1. There exists an index m such that $q_m = 2q_0$. Then we have the periodic continued fraction

$$\sqrt{n} = [q_0; q_1, q_2, \ldots] = [q_0; \overline{q_1, \ldots, q_m}] = [q_0; \overline{q_1, \ldots, q_1}, 2q_0].$$

Then we make the link with Pell's equations $x^2 - ny^2 = \pm 1$:

Theorem 2. For each $i \ge 0$, we have the relation $a_i^2 - nb_i^2 = (-1)^i c_i$ and the continued fraction $\frac{a_{i+1}}{b_{i+1}} = [q_0; q_1, \ldots, q_i]$.

	i	a_i	b_i	c_i	q_i
Initialization {	-1	0	1	23	
	0	1	0	1	$q_0 = \lfloor (0 + \sqrt{23})/1 \rfloor = 4$
	1	4	1	7	$q_1 = \lfloor (4 + \sqrt{23})/7 \rfloor = 1$
	2	5	1	2	$q_2 = \lfloor (3 + \sqrt{23})/2 \rfloor = 3$
	3	19	4	7	$q_3 = \lfloor (3 + \sqrt{23})/7 \rfloor = 1$
	4	24	5	1	$q_4 = \lfloor (4 + \sqrt{23})/1 \rfloor = 8$
	:	•	÷	:	:

The continued fraction of $\sqrt{23}$ is $[4; \overline{1, 3, 1, 8}]$ and the equation $x^2 - 23y^2 = 1$ has the solution x = 24, y = 5.

Shortcuts. To solve an equation $x^2 - ny^2 = 1$, we can stop the algorithm as soon as c_i divides $2a_i$: the relation $a_i^2 - nb_i^2 = (-1)^i c_i$ implies that

$$(a_i^2 - nb_i^2)^2 = (a_i^2 + nb_i^2)^2 - n(2a_ib_i)^2 = (2a_i^2 + (-1)^{i+1}c_i)^2 - n(2a_ib_i)^2$$

is equal to c_i^2 , hence we get the solution $x = \frac{2a_i^2}{c_i} + (-1)^{i+1}$ and $y = \frac{2a_ib_i}{c_i}$. The condition is automatic for $c_i \in \{1, 2\}$ and for $c_i = 4$ if a_i is even. The case where a_i is odd (and $c_i = 4$) can also be solved : the numbers $\alpha = \frac{1}{2}a_i(a_i^2 - 3(-1)^i)$ and $\beta = \frac{1}{2}b_i(a_i^2 - (-1)^i)$ are integers and we can check that $\alpha^2 - n\beta^2 = (-1)^i$, getting a previous case.

3 Relevance

At first, we have to show that the algorithm is well-defined.

Proposition 1. The numbers c_{i-1} , c_i , q_i are strictly positive integers and $\sqrt{n-c_{i-1}c_i}$ is also an integer (i.e. $n-c_{i-1}c_i$ is a perfect square).

Proof. The assertion is true for i = 0. Proceeding by induction, let us suppose that it is true for an index i and let us prove its validity for the index i + 1.

• $\sqrt{n - c_i c_{i+1}}$ is an integer: The equation $c_i x^2 - 2\sqrt{n - c_{i-1} c_i} x + c_{i+1} - c_{i-1} = 0$ has integral coefficients and admits a solution $(x = q_i)$. Then its discriminant $\Delta = 4(n - c_i c_{i+1})$ is non-negative and the number $\sqrt{n - c_i c_{i+1}}$ is well-defined. We can check that

$$|c_i q_i - \sqrt{n - c_{i-1} c_i}| = \sqrt{n - c_i c_{i+1}}$$

because both members of the equality have the same square (independently of the definition of the numbers q_i). We deduce that $\sqrt{n - c_i c_{i+1}}$ is an integer.

• c_{i+1} is a positive integer: The obvious relation $0 < \frac{\sqrt{n-c_{i-1}c_i} + \sqrt{n}}{c_i} - q_i < 1$ can be written in the form

$$-\sqrt{n} < \underbrace{\sqrt{n - c_{i-1}c_i} - c_i q_i}_{\pm \sqrt{n - c_i c_{i+1}}} < c_i - \sqrt{n} \qquad (*)$$

because $c_i > 0$. As $q_i \ge 1$ and $c_i c_{i-1} > 0$, we have $c_i < \sqrt{n - c_{i-1}c_i} + \sqrt{n} < 2\sqrt{n}$. Hence $c_i - \sqrt{n} < \sqrt{n}$ and the relation (*) implies $\sqrt{n - c_i c_{i+1}} < \sqrt{n}$. We deduce that $c_i c_{i+1} > 0$ and thus the number c_{i+1} is a positive integer.

• q_{i+1} is a positive integer : The map $x \mapsto x^2 - c_i x - n$ is decreasing on the interval $]-\infty; \frac{1}{2}c_i]$. We can apply it to (*) by inversing the inequalities (because $c_i - \sqrt{n} < c_i - \frac{1}{2}c_i = \frac{1}{2}c_i$). We get

$$c_i\sqrt{n} > -c_ic_{i+1} + c_i^2q_i - c_i\sqrt{n - c_{i-1}c_i} > -c_i\sqrt{n},$$

that is $|c_{i+1} + \sqrt{n - c_{i-1}c_i} - c_i q_i| < \sqrt{n}$. Using the triangular inequality, we deduce

$$|c_{i+1}| \leq \underbrace{|c_{i+1} + \sqrt{n - c_{i-1}c_i} - c_i q_i|}_{<\sqrt{n}} + \underbrace{|c_i q_i - \sqrt{n - c_{i-1}c_i}|}_{=\sqrt{n - c_i c_{i+1}}}.$$

We have $c_{i+1} < \sqrt{n} + \sqrt{n - c_i c_{i+1}}$, hence the obviously integer q_{i+1} is ≥ 1 . \Box

We have seen that the integers $c_i q_i - \sqrt{n - c_{i-1}c_i}$ and $\sqrt{n - c_i c_{i+1}}$ are equal or opposite. We can now show that they are really the same :

- If $c_i > \sqrt{n}$, then $c_i q_i \sqrt{n c_i c_{i+1}} > \sqrt{n} \sqrt{n c_i c_{i+1}} > 0$.
- If $c_i < \sqrt{n}$, then (*) shows that $c_i q_i \sqrt{n c_{i-1}c_i} > \sqrt{n} c_i > 0$.

An Algorithm to Solve a Pell Equation

4 Continued Fraction of \sqrt{n}

Theorem 1. There exists an index m such that $q_m = 2q_0$. Then the sequence $(q_i)_{i \ge 1}$ is m-periodic and we have the periodic continued fraction

$$\sqrt{n} = [q_0; q_1, q_2, \ldots] = [q_0; \overline{q_1, \ldots, q_m}] = [q_0; \underbrace{\overline{q_1, \ldots, q_1}}_{palindrome}, 2q_0]$$

Proof. Let us consider the positive real numbers $\theta_i = \frac{\sqrt{n - c_{i-1}c_i} + \sqrt{n}}{c_i}$ present in the definition of q_i . As $\sqrt{n - c_{i-1}c_i} = c_iq_i - \sqrt{n - c_ic_{i+1}}$, we have

$$\theta_i = \frac{c_i q_i - \sqrt{n - c_i c_{i+1}} + \sqrt{n}}{c_i} = q_i + \frac{\sqrt{n} - \sqrt{n - c_i c_{i+1}}}{c_i}$$

and amplifying the last fraction by $\sqrt{n} + \sqrt{n - c_i c_{i+1}}$, we get

$$\theta_i = q_i + \frac{c_i c_{i+1}}{c_i (\sqrt{n} + \sqrt{n - c_i c_{i+1}})} = q_i + \frac{c_{i+1}}{\sqrt{n} + \sqrt{n - c_i c_{i+1}}} = q_i + \frac{1}{\theta_{i+1}}$$

As all q_i 's are strictly positive integers, we then have $\theta_i = [q_i; q_{i+1}, q_{i+2}, \ldots]$. In the same way, the numbers $\theta'_i = \frac{\sqrt{n - c_{i-1}c_i} + \sqrt{n}}{c_{i-1}}$ satisfy

$$\theta_{i+1}' = \frac{\sqrt{n - c_i c_{i+1}} + \sqrt{n}}{c_i} = q_i + \frac{\sqrt{n} - \sqrt{n - c_{i-1} c_i}}{c_i} = q_i + \frac{1}{\theta_i'}$$

hence $\theta'_{i+1} = [q_i, q_{i-1}, \dots, q_0, \theta'_0]$ with $\theta'_0 = \sqrt{n}$. We can also deduce that $q_i = \lfloor \theta'_{i+1} \rfloor$.

• Periodicity : As the sequence $(c_i)_{i\geq 0}$ of integers is bounded, we can find two indices $m > i \ge 0$ with *i* minimal, such that $c_m = c_i$ and $c_{m+1} = c_{i+1}$. Then we have $\theta'_{m+1} = \theta'_{i+1}$, $q_m = \lfloor \theta'_{m+1} \rfloor = \lfloor \theta'_{i+1} \rfloor = q_i$ and $c_{m-1} = q_m^2 c_m - 2q_m\sqrt{n - c_m c_{m+1}} + c_{m+1}$ coincides with c_{i-1} . To respect the minimality of *i*, we deduce that i = 0, $c_m = c_0 = 1$ and $c_{m+1} = c_1 = n - q_0^2$. We also have the continued fraction

$$\theta_{m+1} = \theta_1 = [q_1, q_2, \dots, q_m, \theta_{m+1}] = [\overline{q_1, q_2, \dots, q_m}]$$

• Palindromy : Let us remark that $\theta_1 = \frac{\sqrt{n} + q_0}{n - q_0^2} = \frac{1}{\sqrt{n} - q_0} = \frac{1}{\theta_1' - 2q_0}$. With the above continued fraction, we have

$$\theta'_1 - 2q_0 = [0, \overline{q_1, q_2, \dots, q_m}], \qquad \theta'_1 = [2q_0, \overline{q_1, q_2, \dots, q_m}].$$

Comparing with $\theta'_1 = \theta'_{m+1} = [q_m, q_{m-1}, \dots, q_1, \theta'_1] = [\overline{q_m, q_{m-1}, \dots, q_1}]$, we get $q_m = 2q_0, q_{m-1} = q_1, q_{m-2} = q_2$, and so on. \Box

5 The Pell Equation

Theorem 3. For each index $i \ge 0$, we have the relation $a_i^2 - nb_i^2 = (-1)^i c_i$ and the continued fraction $\frac{a_{i+1}}{b_{i+1}} = [q_0; q_1, \ldots, q_i]$.

Proof. With the relations $a_{i+1} = q_i a_i + a_{i-1}$ and $\theta_{i+1} = 1/(\theta_i - q_i)$, we get

$$a_{i+1}\theta_{i+1} + a_i = \theta_{i+1}(q_i a_i + a_{i-1} + a_i(\theta_i - q_i)) = \theta_{i+1}(a_i \theta_i + a_{i-1})$$

and a similar relation is valid for the b_i 's. By iteration and using the initial values $a_0\theta_0 + a_{-1} = \theta_0 = \sqrt{n}$, resp. $b_0\theta_0 + b_{-1} = 1$, we can write

$$a_{i+1}\theta_{i+1} + a_i = \theta_{i+1}\theta_i \cdots \theta_2 \theta_1 \sqrt{n}$$
 and $b_{i+1}\theta_{i+1} + b_i = \theta_{i+1}\theta_i \cdots \theta_2 \theta_1$

We deduce that $a_i\theta_i + a_{i-1} = (b_i\theta_i + b_{i-1})\sqrt{n}$. Let us explicit θ_i and multiply this last relation by c_i :

$$a_i\sqrt{n-c_{i-1}c_i} + a_i\sqrt{n} + c_ia_{i-1} = (b_i\sqrt{n-c_{i-1}c_i} + c_ib_{i-1})\sqrt{n} + b_in.$$

Let us now compare the integer parts and the irrational parts :

$$\begin{cases} a_i = b_i \sqrt{n - c_{i-1}c_i} + c_i b_{i-1} \\ nb_i = a_i \sqrt{n - c_{i-1}c_i} + c_i a_{i-1} \end{cases}$$

Multiplying the first equation by a_i , the second one by b_i and subtracting the obtained relations, we get $a_i^2 - nb_i^2 = c_i(a_ib_{i-1} - a_{i-1}b_i)$. The first part of the theorem is then proved if we remark that

$$a_{i+1}b_i - a_ib_{i+1} = (q_ia_i + a_{i-1})b_i - a_i(q_ib_i + b_{i-1}) = a_{i-1}b_i - a_ib_{i-1}$$

= $-(a_ib_{i-1} - a_{i-1}b_i) = \dots = (-1)^{i+1}(a_0b_{-1} - a_{-1}b_0) = (-1)^{i+1}.$

We can also find this relation by considering the determinant in the matrix relation

$$\begin{pmatrix} a_{i+1} & a_i \\ b_{i+1} & b_i \end{pmatrix} = \begin{pmatrix} a_i & a_{i-1} \\ b_i & b_{i-1} \end{pmatrix} \begin{pmatrix} q_i & 1 \\ 1 & 0 \end{pmatrix} = \dots = \underbrace{\begin{pmatrix} a_0 & a_{-1} \\ b_0 & b_{-1} \end{pmatrix}}_{\text{Identity matrix}} \begin{pmatrix} q_0 & 1 \\ 1 & 0 \end{pmatrix} \dots \begin{pmatrix} q_i & 1 \\ 1 & 0 \end{pmatrix}.$$

Given a matrix $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and a number x, we define $M * x = \frac{ax+b}{cx+d}$. We have for example $\begin{pmatrix} q & 1 \\ 1 & 0 \end{pmatrix} * x = q + \frac{1}{x}$ and we can check that $M_1 * (M_2 * x) = M_1 M_2 * x$. Let us apply the map $M \longmapsto M * x$ to the above matrix relation :

$$\frac{a_{i+1}x + a_i}{b_{i+1}x + b_i} = [q_0; q_1, \dots, q_i, x].$$

If we take the limit as x tends to infinity, we get $\frac{a_{i+1}}{b_{i+1}} = [q_0; q_1, \dots, q_i]$ and the proof is complete. \Box

Corollary. Let m be the period of the continued fraction of \sqrt{n} as defined in theorem 1. We then have $c_{km} = c_0 = 1$ and $a_{km}^2 - nb_{km}^2 = (-1)^{km}$ for every integer $k \ge 0$. Hence, the Pell equation $x^2 - ny^2 = -1$ can be solved only if m is odd (by considering odd values of k) whereas the equation $x^2 - ny^2 = 1$ can always be solved (by choosing even values of k if m is odd).

Remark. The number $\theta_i = [q_i; q_{i+1}, q_{i+2}, \ldots]$ is called the *i*-th complete quotient of $\sqrt{n} = [q_0; q_1, q_2, \ldots]$. The expression $\theta_i = (P_i + \sqrt{n})/Q_i$ for some integers P_i and Q_i is well-known and this paper gives a more precise connection between P_i and Q_i .

6 The Generalized Pell Equation

1. We consider a quadratic irrational $\theta_0 = \frac{\gamma + \sqrt{\beta}}{\alpha}$ with positive integers α , β and γ . With the previous notations, the number θ_0 is obtained with $n = \beta \alpha^2$, $c_{-1} = \beta - \gamma^2$ and $c_0 = \alpha^2$. If $c_{-1} > 0$ and $\theta_0 > 1$, then the previous results about the continued fractions are all valid because the inductive proof of the proposition is well-initialized. We get the continued fraction of θ_0 (instead of \sqrt{n}) and we can check that the Pell relation becomes

$$(\alpha a_i - \gamma b_i)^2 - \beta b_i^2 = (-1)^i c_i$$

Replacing β with $\gamma^2 + \beta \alpha > 0$ leads to the relation $\alpha a_i^2 - 2\gamma a_i b_i - \beta b_i^2 = (-1)^i \frac{c_i}{\alpha}$.

2. In the same way, the continued fraction of a number $\theta_0 = \sqrt{\alpha/\beta}$ with $\alpha > \beta \ge 1$ can be found with $n = \alpha\beta$, $c_{-1} = \alpha$ and $c_0 = \beta$. If *n* is a non-square integer, the previous results about the continued fractions (of θ_0 instead of \sqrt{n}) are all valid and the Pell relation becomes

$$\beta a_i^2 - \alpha b_i^2 = (-1)^i c_i.$$

Example. Can we find two integers x and y such that $11x^2 - 7y^2 = 1$?

If we consider the equation 11X - 7Y = 1, the usual extended euclidean algorithm (connected with the continued fraction of 11/7) gives the general solution X = 2 + 7k and Y = 3 + 11k with $k \in \mathbb{Z}$ but it is not easy to find some values of k for which X and Y are both perfect squares. So we use the continued fraction of $\theta_0 = \sqrt{11/7} = \sqrt{77}/7$. We consider n = 77, $c_{-1} = 11$ and $c_0 = 7$ in the algorithm :

i	a_i	b_i	c_i	q_i	i	a_i	b_i	c_i	q_i
-1	0	1	11		5	89	71	4	3
0	1	0	7	1	6	351	280	$\overline{7}$	2
1	1	1	4	3	7	791	631	4	3
2	4	3	13	1	8	2724	2173	13	1
3	5	4	1	16	9	3515	2804	1	16
4	84	67	13	1	•	:	:	:	÷

We get the continued fraction $\sqrt{11/7} = [1; \overline{3, 1, 16, 1, 3, 2}]$ and the considered equation has the solutions (4; 5) and (2804; 3515) corresponding to the values k = 2 and k = 1'123'202. There is no other solution for k < 1'123'202 and the next one is (1968404; 2467525), corresponding to k = 553'516'329'602.

References

- M.G. Duman, Positive integer solutions of some Pell equations, *Matem-atika*, 30(1) (2014), 97-108.
- H.W. Lenstra Jr., Solving the Pell equation, Notices of the AMS, 49(2) (2002), 182-192.
- [3] K.R. Matthews, The diophantine equation $x^2 Dy^2 = N$, D > 1, in integers, *Expositiones Mathematicae*, 18(2000), 323-331.
- [4] R.A. Mollin, Simple continued fraction solutions for Diophantine equations, Expositiones Mathematicae, 19(2001), 55-73.