Gen. Math. Notes, Vol. 28, No. 2, June 2015, pp.1-8
ISSN 2219-7184; Copyright © ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

An Algorithm to Solve a Pell Equation

Alexandre Junod
Lycée Denis-de-Rougemont
2000 Neuchâtel, Switzerland
E-mail: alexandre.junod@rpn.ch

(Received: 9-4-15 / Accepted: 28-5-15)

Abstract

Given a non-square positive integer n, we want to find two integers x and y such that $x^{2}-n y^{2}= \pm 1$. We present an elementary method to do this and we make the well-known link with the continued fraction of \sqrt{n} with a new pedagogical point of view. Finally we give a generalization to deal with equations $m x^{2}-n y^{2}= \pm 1$ when m and n are positive integers whose product is not a perfect square.

Keywords: Pell equation, Continued fractions.

1 Introduction

The equations $x^{2}-n y^{2}= \pm 1$ (where n is a non-square positive integer) have been studied by several Indian mathematicians. From a solution $(x ; y)$ of an equation $x^{2}-n y^{2}=\varepsilon$ with $\varepsilon \in\{ \pm 1, \pm 2, \pm 4\}$, Brahmagupta (598-668) could find a solution $\left(x^{\prime} ; y^{\prime}\right)$ with $x^{\prime}>x$ for the case $\varepsilon=1$ and could deduce infinitely many solutions for this case. Later, Bhāskara II (1114-1185) developed a cyclic algorithm (called chakravala method) to produce a solution of an equation $x^{2}-n y^{2}=1$. The topic interessed the European mathematicians (ignorant of the Indians' work) after a challenge given in 1657 by Pierre de Fermat (1601-1665). William Brouncker (1620-1684) found an empirical
method related to the continued fractions

$$
\left[a_{0} ; a_{1}, \ldots, a_{n}\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{\ddots} \frac{1}{a_{n-1}+\frac{1}{a_{n}}}}
$$

John Wallis (1616-1703) published and completed the work of Brouncker. Leonhard Euler (1707-1783) named the equation after John Sell by mestake, studied the infinite continued fractions and proved that a finally periodic continued fraction describes an irrational quadratic. Joseph-Louis Lagrange (1736-1813) proved the reciprocal : every irrational zero of a quadratic polynomial has a finally periodic continued fraction $\left[a_{0} ; a_{1}, \ldots, a_{m}, \overline{a_{m+1}, \ldots, a_{n}}\right]$. He published a rigorous version of the continued fractions approach to solve an equation $x^{2}-n y^{2}=1$ and proved the infinity of solutions $(x ; y)$ for every n. Evariste Galois (1811-1832) described the irrational quadratics whose continued fractions are purely periodic ($m=0$ in the above continued fraction) and Adrien-Marie Legendre (1752-1833) found the continued fraction of \sqrt{n} for a non-square integer $n>1$. The solutions of a Pell equation depend on this expansion. In fact, the relation $x^{2}-n y^{2}= \pm 1$ (where x and y are positive integers) implies that $\left|\sqrt{n}-\frac{x}{y}\right|<\frac{1}{2 y^{2}}$ and this inequality allows to say that x / y has a (finite) continued fraction which coincides with the beginning of that of \sqrt{n}.

2 Algorithm

Given a non-square integer n, we consider the following algorithm :

$$
\begin{aligned}
& \text { Initialization: } \begin{array}{|ccc|}
\hline \begin{array}{ccc}
a_{i-1} & b_{i-1} & c_{i-1} \\
a_{i} & b_{i} & c_{i}
\end{array} & =\begin{array}{|ccc|}
\hline 0 & 1 & n \\
1 & 0 & 1
\end{array} \text { for } i=0 \\
\text { Iteration: } \\
\qquad \begin{array}{|l}
q_{i} a_{i}+a_{i-1} \\
\Downarrow
\end{array} q_{i} b_{i}+b_{i-1} & c_{i+1} & \text { with } q_{i}=\left\lfloor\frac{\sqrt{n-c_{i-1} c_{i}}+\sqrt{n}}{c_{i}}\right\rfloor \\
\text { and } c_{i+1} & =2 q_{i} \sqrt{n-c_{i-1} c_{i}}+c_{i-1}-q_{i}^{2} c_{i}
\end{array}
\end{aligned}
$$

In this paper, we first prove the theorem of Legendre :
Theorem 1. There exists an index m such that $q_{m}=2 q_{0}$. Then we have the periodic continued fraction

$$
\sqrt{n}=\left[q_{0} ; q_{1}, q_{2}, \ldots\right]=\left[q_{0} ; \overline{q_{1}, \ldots, q_{m}}\right]=[q_{0} ; \underbrace{\overline{q_{1}, \ldots, q_{1}}, 2 q_{0}}_{\text {palindrome }}] .
$$

Then we make the link with Pell's equations $x^{2}-n y^{2}= \pm 1$:

Theorem 2. For each $i \geqslant 0$, we have the relation $a_{i}^{2}-n b_{i}^{2}=(-1)^{i} c_{i}$ and the continued fraction $\frac{a_{i+1}}{b_{i+1}}=\left[q_{0} ; q_{1}, \ldots, q_{i}\right]$.

Example : Let us consider $n=23$

$$
\text { Initialization }\left\{\begin{array}{c|ccc|c|}
\hline i & a_{i} & b_{i} & c_{i} & q_{i} \\
\hline \begin{array}{c}
-1 \\
0
\end{array} & 0 & 1 & 23 \\
0 & 1 & 0 & 1 \\
\hline 1 & 4 & 1 & 7 & q_{0}=\lfloor(0+\sqrt{23}) / 1\rfloor=4 \\
2 & 5 & 1 & 2 & q_{1}=\lfloor(4+\sqrt{23}) / 7\rfloor=1 \\
3 & 19 & 4 & 7 & q_{2}=\lfloor(3+\sqrt{23}) / 2\rfloor=3 \\
4 & 24 & 5 & 1 & q_{3}=\lfloor(3+\sqrt{23}) / 7\rfloor=1 \\
\vdots & \vdots & \vdots & \vdots & q_{4}=\lfloor(4+\sqrt{23}) / 1\rfloor=8 \\
\vdots \\
\hline
\end{array}\right.
$$

The continued fraction of $\sqrt{23}$ is $[4 ; \overline{1,3,1,8}]$ and the equation $x^{2}-23 y^{2}=1$ has the solution $x=24, y=5$.

Shortcuts. To solve an equation $x^{2}-n y^{2}=1$, we can stop the algorithm as soon as c_{i} divides $2 a_{i}$: the relation $a_{i}^{2}-n b_{i}^{2}=(-1)^{i} c_{i}$ implies that

$$
\left(a_{i}^{2}-n b_{i}^{2}\right)^{2}=\left(a_{i}^{2}+n b_{i}^{2}\right)^{2}-n\left(2 a_{i} b_{i}\right)^{2}=\left(2 a_{i}^{2}+(-1)^{i+1} c_{i}\right)^{2}-n\left(2 a_{i} b_{i}\right)^{2}
$$

is eqal to c_{i}^{2}, hence we get the solution $x=\frac{2 a_{i}^{2}}{c_{i}}+(-1)^{i+1}$ and $y=\frac{2 a_{i} b_{i}}{c_{i}}$. The condition is automatic for $c_{i} \in\{1,2\}$ and for $c_{i}=4$ if a_{i} is even. The case where a_{i} is odd (and $c_{i}=4$) can also be solved : the numbers $\alpha=\frac{1}{2} a_{i}\left(a_{i}^{2}-3(-1)^{i}\right)$ and $\beta=\frac{1}{2} b_{i}\left(a_{i}^{2}-(-1)^{i}\right)$ are integers and we can check that $\alpha^{2}-n \beta^{2}=(-1)^{i}$, getting a previous case.

3 Relevance

At first, we have to show that the algorithm is well-defined.

Proposition 1. The numbers c_{i-1}, c_{i}, q_{i} are strictly positive integers and $\sqrt{n-c_{i-1} c_{i}}$ is also an integer (i.e. $n-c_{i-1} c_{i}$ is a perfect square).

Proof. The assertion is true for $i=0$. Proceeding by induction, let us suppose that it is true for an index i and let us prove its validity for the index $i+1$.

- $\sqrt{n-c_{i} c_{i+1}}$ is an integer: The equation $c_{i} x^{2}-2 \sqrt{n-c_{i-1} c_{i}} x+c_{i+1}-c_{i-1}=0$ has integral coefficients and admits a solution $\left(x=q_{i}\right)$. Then its discriminant $\Delta=4\left(n-c_{i} c_{i+1}\right)$ is non-negative and the number $\sqrt{n-c_{i} c_{i+1}}$ is well-defined. We can check that

$$
\left|c_{i} q_{i}-\sqrt{n-c_{i-1} c_{i}}\right|=\sqrt{n-c_{i} c_{i+1}}
$$

because both members of the equality have the same square (independently of the definition of the numbers q_{i}). We deduce that $\sqrt{n-c_{i} c_{i+1}}$ is an integer.

- c_{i+1} is a positive integer: The obvious relation $0<\frac{\sqrt{n-c_{i-1} c_{i}}+\sqrt{n}}{c_{i}}-q_{i}<1$ can be written in the form

$$
\begin{equation*}
-\sqrt{n}<\underbrace{\sqrt{n-c_{i-1} c_{i}}-c_{i} q_{i}}_{ \pm \sqrt{n-c_{i} c_{i+1}}}<c_{i}-\sqrt{n} \tag{*}
\end{equation*}
$$

because $c_{i}>0$. As $q_{i} \geqslant 1$ and $c_{i} c_{i-1}>0$, we have $c_{i}<\sqrt{n-c_{i-1} c_{i}}+\sqrt{n}<$ $2 \sqrt{n}$. Hence $c_{i}-\sqrt{n}<\sqrt{n}$ and the relation (*) implies $\sqrt{n-c_{i} c_{i+1}}<\sqrt{n}$. We deduce that $c_{i} c_{i+1}>0$ and thus the number c_{i+1} is a positive integer.

- q_{i+1} is a positive integer : The map $x \longmapsto x^{2}-c_{i} x-n$ is decreasing on the interval $\left.]-\infty ; \frac{1}{2} c_{i}\right]$. We can apply it to $(*)$ by inversing the inequalities (because $c_{i}-\sqrt{n}<c_{i}-\frac{1}{2} c_{i}=\frac{1}{2} c_{i}$). We get

$$
c_{i} \sqrt{n}>-c_{i} c_{i+1}+c_{i}^{2} q_{i}-c_{i} \sqrt{n-c_{i-1} c_{i}}>-c_{i} \sqrt{n}
$$

that is $\left|c_{i+1}+\sqrt{n-c_{i-1} c_{i}}-c_{i} q_{i}\right|<\sqrt{n}$. Using the triangular inequality, we deduce

$$
\left|c_{i+1}\right| \leqslant \underbrace{\left|c_{i+1}+\sqrt{n-c_{i-1} c_{i}}-c_{i} q_{i}\right|}_{<\sqrt{n}}+\underbrace{\mid c_{i} q_{i}-\sqrt{n-c_{i-1} c_{i}}}_{=\sqrt{n-c_{i} c_{i+1}}} \mid .
$$

We have $c_{i+1}<\sqrt{n}+\sqrt{n-c_{i} c_{i+1}}$, hence the obviously integer q_{i+1} is $\geqslant 1$.
We have seen that the integers $c_{i} q_{i}-\sqrt{n-c_{i-1} c_{i}}$ and $\sqrt{n-c_{i} c_{i+1}}$ are equal or opposite. We can now show that they are really the same :

- If $c_{i}>\sqrt{n}$, then $c_{i} q_{i}-\sqrt{n-c_{i} c_{i+1}}>\sqrt{n}-\sqrt{n-c_{i} c_{i+1}}>0$.
- If $c_{i}<\sqrt{n}$, then $(*)$ shows that $c_{i} q_{i}-\sqrt{n-c_{i-1} c_{i}}>\sqrt{n}-c_{i}>0$.

4 Continued Fraction of \sqrt{n}

Theorem 1. There exists an index m such that $q_{m}=2 q_{0}$. Then the sequence $\left(q_{i}\right)_{i \geqslant 1}$ is m-periodic and we have the periodic continued fraction

$$
\sqrt{n}=\left[q_{0} ; q_{1}, q_{2}, \ldots\right]=\left[q_{0} ; \overline{q_{1}, \ldots, q_{m}}\right]=[q_{0} ; \underbrace{\overline{q_{1}, \ldots, q_{1}}, 2 q_{0}}_{\text {palindrome }}]
$$

Proof. Let us consider the positive real numbers $\theta_{i}=\frac{\sqrt{n-c_{i-1} c_{i}}+\sqrt{n}}{c_{i}}$ present in the definition of q_{i}. As $\sqrt{n-c_{i-1} c_{i}}=c_{i} q_{i}-\sqrt{n-c_{i} c_{i+1}}$, we have

$$
\theta_{i}=\frac{c_{i} q_{i}-\sqrt{n-c_{i} c_{i+1}}+\sqrt{n}}{c_{i}}=q_{i}+\frac{\sqrt{n}-\sqrt{n-c_{i} c_{i+1}}}{c_{i}}
$$

and amplifying the last fraction by $\sqrt{n}+\sqrt{n-c_{i} c_{i+1}}$, we get

$$
\theta_{i}=q_{i}+\frac{c_{i} c_{i+1}}{c_{i}\left(\sqrt{n}+\sqrt{n-c_{i} c_{i+1}}\right)}=q_{i}+\frac{c_{i+1}}{\sqrt{n}+\sqrt{n-c_{i} c_{i+1}}}=q_{i}+\frac{1}{\theta_{i+1}}
$$

As all q_{i} 's are strictly positive integers, we then have $\theta_{i}=\left[q_{i} ; q_{i+1}, q_{i+2}, \ldots\right]$.
In the same way, the numbers $\theta_{i}^{\prime}=\frac{\sqrt{n-c_{i-1} c_{i}}+\sqrt{n}}{c_{i-1}}$ satisfy

$$
\theta_{i+1}^{\prime}=\frac{\sqrt{n-c_{i} c_{i+1}}+\sqrt{n}}{c_{i}}=q_{i}+\frac{\sqrt{n}-\sqrt{n-c_{i-1} c_{i}}}{c_{i}}=q_{i}+\frac{1}{\theta_{i}^{\prime}}
$$

hence $\theta_{i+1}^{\prime}=\left[q_{i}, q_{i-1}, \ldots, q_{0}, \theta_{0}^{\prime}\right]$ with $\theta_{0}^{\prime}=\sqrt{n}$. We can also deduce that $q_{i}=\left\lfloor\theta_{i+1}^{\prime}\right\rfloor$.

- Periodicity : As the sequence $\left(c_{i}\right)_{i \geqslant 0}$ of integers is bounded, we can find two indices $m>i \geqslant 0$ with i minimal, such that $c_{m}=c_{i}$ and $c_{m+1}=c_{i+1}$. Then we have $\theta_{m+1}^{\prime}=\theta_{i+1}^{\prime}, q_{m}=\left\lfloor\theta_{m+1}^{\prime}\right\rfloor=\left\lfloor\theta_{i+1}^{\prime}\right\rfloor=q_{i}$ and $c_{m-1}=q_{m}^{2} c_{m}-$ $2 q_{m} \sqrt{n-c_{m} c_{m+1}}+c_{m+1}$ coincides with c_{i-1}. To respect the minimality of i, we deduce that $i=0, c_{m}=c_{0}=1$ and $c_{m+1}=c_{1}=n-q_{0}^{2}$. We also have the continued fraction

$$
\theta_{m+1}=\theta_{1}=\left[q_{1}, q_{2} \ldots, q_{m}, \theta_{m+1}\right]=\left[\overline{q_{1}, q_{2}, \ldots, q_{m}}\right] .
$$

- Palindromy : Let us remark that $\theta_{1}=\frac{\sqrt{n}+q_{0}}{n-q_{0}^{2}}=\frac{1}{\sqrt{n}-q_{0}}=\frac{1}{\theta_{1}^{\prime}-2 q_{0}}$. With the above continued fraction, we have

$$
\theta_{1}^{\prime}-2 q_{0}=\left[0, \overline{q_{1}, q_{2}, \ldots, q_{m}}\right], \quad \theta_{1}^{\prime}=\left[2 q_{0}, \overline{q_{1}, q_{2}, \ldots, q_{m}}\right]
$$

Comparing with $\theta_{1}^{\prime}=\theta_{m+1}^{\prime}=\left[q_{m}, q_{m-1}, \ldots, q_{1}, \theta_{1}^{\prime}\right]=\left[\overline{q_{m}, q_{m-1}, \ldots, q_{1}}\right]$, we get $q_{m}=2 q_{0}, q_{m-1}=q_{1}, q_{m-2}=q_{2}$, and so on.

5 The Pell Equation

Theorem 3. For each index $i \geqslant 0$, we have the relation $a_{i}^{2}-n b_{i}^{2}=(-1)^{i} c_{i}$ and the continued fraction $\frac{a_{i+1}}{b_{i+1}}=\left[q_{0} ; q_{1}, \ldots, q_{i}\right]$.

Proof. With the relations $a_{i+1}=q_{i} a_{i}+a_{i-1}$ and $\theta_{i+1}=1 /\left(\theta_{i}-q_{i}\right)$, we get

$$
a_{i+1} \theta_{i+1}+a_{i}=\theta_{i+1}\left(q_{i} a_{i}+a_{i-1}+a_{i}\left(\theta_{i}-q_{i}\right)\right)=\theta_{i+1}\left(a_{i} \theta_{i}+a_{i-1}\right)
$$

and a similar relation is valid for the b_{i} 's. By iteration and using the initial values $a_{0} \theta_{0}+a_{-1}=\theta_{0}=\sqrt{n}$, resp. $b_{0} \theta_{0}+b_{-1}=1$, we can write

$$
a_{i+1} \theta_{i+1}+a_{i}=\theta_{i+1} \theta_{i} \cdots \theta_{2} \theta_{1} \sqrt{n} \quad \text { and } \quad b_{i+1} \theta_{i+1}+b_{i}=\theta_{i+1} \theta_{i} \cdots \theta_{2} \theta_{1}
$$

We deduce that $a_{i} \theta_{i}+a_{i-1}=\left(b_{i} \theta_{i}+b_{i-1}\right) \sqrt{n}$. Let us explicit θ_{i} and multiply this last relation by c_{i} :

$$
a_{i} \sqrt{n-c_{i-1} c_{i}}+a_{i} \sqrt{n}+c_{i} a_{i-1}=\left(b_{i} \sqrt{n-c_{i-1} c_{i}}+c_{i} b_{i-1}\right) \sqrt{n}+b_{i} n .
$$

Let us now compare the integer parts and the irrational parts :

$$
\left\{\begin{array}{l}
a_{i}=b_{i} \sqrt{n-c_{i-1} c_{i}}+c_{i} b_{i-1} \\
n b_{i}=a_{i} \sqrt{n-c_{i-1} c_{i}}+c_{i} a_{i-1}
\end{array}\right.
$$

Multiplying the first equation by a_{i}, the second one by b_{i} and substracting the obtained relations, we get $a_{i}^{2}-n b_{i}^{2}=c_{i}\left(a_{i} b_{i-1}-a_{i-1} b_{i}\right)$. The first part of the theorem is then proved if we remark that

$$
\begin{aligned}
a_{i+1} b_{i} & -a_{i} b_{i+1}=\left(q_{i} a_{i}+a_{i-1}\right) b_{i}-a_{i}\left(q_{i} b_{i}+b_{i-1}\right)=a_{i-1} b_{i}-a_{i} b_{i-1} \\
& =-\left(a_{i} b_{i-1}-a_{i-1} b_{i}\right)=\ldots=(-1)^{i+1}\left(a_{0} b_{-1}-a_{-1} b_{0}\right)=(-1)^{i+1} .
\end{aligned}
$$

We can also find this relation by considering the determinant in the matrix relation

$$
\left(\begin{array}{cc}
a_{i+1} & a_{i} \\
b_{i+1} & b_{i}
\end{array}\right)=\left(\begin{array}{cc}
a_{i} & a_{i-1} \\
b_{i} & b_{i-1}
\end{array}\right)\left(\begin{array}{cc}
q_{i} & 1 \\
1 & 0
\end{array}\right)=\cdots=\underbrace{\left(\begin{array}{cc}
a_{0} & a_{-1} \\
b_{0} & b_{-1}
\end{array}\right)}_{\text {Identity matrix }}\left(\begin{array}{cc}
q_{0} & 1 \\
1 & 0
\end{array}\right) \cdots\left(\begin{array}{cc}
q_{i} & 1 \\
1 & 0
\end{array}\right) .
$$

Given a matrix $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ and a number x, we define $M * x=\frac{a x+b}{c x+d}$. We have for example $\left(\begin{array}{cc}q & 1 \\ 1 & 0\end{array}\right) * x=q+\frac{1}{x}$ and we can check that $M_{1} *\left(M_{2} * x\right)=$ $M_{1} M_{2} * x$. Let us apply the map $M \longmapsto M * x$ to the above matrix relation :

$$
\frac{a_{i+1} x+a_{i}}{b_{i+1} x+b_{i}}=\left[q_{0} ; q_{1}, \ldots, q_{i}, x\right] .
$$

If we take the limit as x tends to infinity, we get $\frac{a_{i+1}}{b_{i+1}}=\left[q_{0} ; q_{1}, \ldots, q_{i}\right]$ and the proof is complete.

Corollary. Let m be the period of the continued fraction of \sqrt{n} as defined in theorem 1. We then have $c_{k m}=c_{0}=1$ and $a_{k m}^{2}-n b_{k m}^{2}=(-1)^{k m}$ for every integer $k \geqslant 0$. Hence, the Pell equation $x^{2}-n y^{2}=-1$ can be solved only if m is odd (by considering odd values of k) whereas the equation $x^{2}-n y^{2}=1$ can always be solved (by choosing even values of k if m is odd).

Remark. The number $\theta_{i}=\left[q_{i} ; q_{i+1}, q_{i+2}, \ldots\right]$ is called the i-th complete quotient of $\sqrt{n}=\left[q_{0} ; q_{1}, q_{2}, \ldots\right]$. The expression $\theta_{i}=\left(P_{i}+\sqrt{n}\right) / Q_{i}$ for some integers P_{i} and Q_{i} is well-known and this paper gives a more precise connection between P_{i} and Q_{i}.

6 The Generalized Pell Equation

1. We consider a quadratic irrational $\theta_{0}=\frac{\gamma+\sqrt{\beta}}{\alpha}$ with positive integers α, β and γ. With the previous notations, the number θ_{0} is obtained with $n=\beta \alpha^{2}$, $c_{-1}=\beta-\gamma^{2}$ and $c_{0}=\alpha^{2}$. If $c_{-1}>0$ and $\theta_{0}>1$, then the previous results about the continued fractions are all valid because the inductive proof of the proposition is well-initialized. We get the continued fraction of θ_{0} (instead of $\sqrt{n})$ and we can check that the Pell relation becomes

$$
\left(\alpha a_{i}-\gamma b_{i}\right)^{2}-\beta b_{i}^{2}=(-1)^{i} c_{i} .
$$

Replacing β with $\gamma^{2}+\beta \alpha>0$ leads to the relation $\alpha a_{i}^{2}-2 \gamma a_{i} b_{i}-\beta b_{i}^{2}=(-1)^{i} \frac{c_{i}}{\alpha}$.
2. In the same way, the continued fraction of a number $\theta_{0}=\sqrt{\alpha / \beta}$ with $\alpha>\beta \geqslant 1$ can be found with $n=\alpha \beta, c_{-1}=\alpha$ and $c_{0}=\beta$. If n is a nonsquare integer, the previous results about the continued fractions (of θ_{0} instead of \sqrt{n}) are all valid and the Pell relation becomes

$$
\beta a_{i}^{2}-\alpha b_{i}^{2}=(-1)^{i} c_{i} .
$$

Example. Can we find two integers x and y such that $11 x^{2}-7 y^{2}=1$?
If we consider the equation $11 X-7 Y=1$, the usual extended euclidean algorithm (connected with the continued fraction of $11 / 7$) gives the general solution $X=2+7 k$ and $Y=3+11 k$ with $k \in \mathbb{Z}$ but it is not easy to find some values of k for which X and Y are both perfect squares. So we use the continued fraction of $\theta_{0}=\sqrt{11 / 7}=\sqrt{77} / 7$. We consider $n=77, c_{-1}=11$ and $c_{0}=7$ in the algorithm :

i	a_{i}	b_{i}	c_{i}	q_{i}						
-1	0	1	11							
0	1	0	7	1						
1	1	1	4	3						
2	4	3	13	1						
3	5	4	1	16						
4	84	67	13	1	\quad	i	a_{i}	b_{i}	c_{i}	q_{i}
:---:	:---:	:---:	:---:	:---:						
5	89	71	4	3						
6	351	280	7	2						
7	791	631	4	3						
8	2724	2173	13	1						
9	3515	2804	1	16						
\vdots	\vdots	\vdots	\vdots	\vdots						

We get the continued fraction $\sqrt{11 / 7}=[1 ; \overline{3,1,16,1,3,2}]$ and the considered equation has the solutions $(4 ; 5)$ and $(2804 ; 3515)$ corresponding to the values $k=2$ and $k=1^{\prime} 123^{\prime} 202$. There is no other solution for $k<1^{\prime} 123^{\prime} 202$ and the next one is $(1968404 ; 2467525)$, corresponding to $k=553^{\prime} 516^{\prime} 329^{\prime} 602$.

References

[1] M.G. Duman, Positive integer solutions of some Pell equations, Matematika, 30(1) (2014), 97-108.
[2] H.W. Lenstra Jr., Solving the Pell equation, Notices of the AMS, 49(2) (2002), 182-192.
[3] K.R. Matthews, The diophantine equation $x^{2}-D y^{2}=N, D>1$, in integers, Expositiones Mathematicae, 18(2000), 323-331.
[4] R.A. Mollin, Simple continued fraction solutions for Diophantine equations, Expositiones Mathematicae, 19(2001), 55-73.

