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Abstract
Let Fn denote the free group of finite rank n. A word w ∈ Fn is called min-

imal if no type 2 Whitehead automorphism can reduce its length. We explore
the Whitehead algorithm in classifying minimal words of small lengths in Fn
up to equivalence.

Keywords: Whitehead automorphisms, Minimal words, Equivalence.

1 Introduction

In 1936, J. H. C. Whitehead ([4], [5]) used topological means to introduce a the-
orem which can be used to decide whether two elements of a finitely generated
free group are equivalent under an automorphism of the group. Twenty-two
years later, E. S. Rapaport gave an algebraic proof of Whitehead’s result, and
her work was further simplified by Higgins and Lyndon in [1].

In this paper, the corresponding algorithm for classifying all minimal words of
any given length in Fn up to equivalence will be introduced. Furthermore, we
investigate the equivalence classes of minimal words of lengths 2, 3, 4 and 5 in
Fn, and conclude by establishing some results on the classification.

Definition 1.1. • For w1, w2 ∈ Fn, we denote equivalence by ∼, and
write w1 ∼α w2 if α ∈ Aut(Fn) such that α(w1) = w2.
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• The set Ln of generators and inverses of Fn is defined as:
Ln = {x1, · · · , xn, x̄1, · · · , x̄n} with x̄i = x−1

i for 1 ≤ i ≤ n. We define
L∗
n as the set of words over Ln.

• A word w ∈ Fn is said to be minimal if |w| ≤ |α(w)| ∀ α ∈ Aut(Fn).

Theorem 1.2 (Whitehead). If w1, w2 ∈ Fn such that w1 ∼ w2, and w2

is minimal, then there exists a sequence α1, α2, · · · , αl of Whitehead automor-
phisms such that the following conditions are satisfied:

• (K1) αlαl−1 · · ·α1(w1) = w2 ;

• (K2) |αi+1αi · · ·α1(w1)| ≤ |αi · · ·α1(w1)| for 0 ≤ i ≤ (l − 1), and with
strict inequality unless αi · · ·α1(w1) is minimal.

We define the Whitehead automorphisms described above as follows:

Definition 1.3 (Whitehead Automorphisms). • A type 1 Whitehead
automorphism, α is a permutation which acts on elements of Ln, and
preserves inverses as follows: α(x̄) = α(x) ∀ x ∈ Ln.

• A type 2 Whitehead automorphism, β is that which for a fixed a ∈ Ln
and β(a) = a, β carries each generator x of Ln (with x 6= a, ā) into one
of x, xa, āx or āxa.

Remark 1.4. As type 1 automorphisms are permutations, they do not de-
crease the length of a word in Fn. In the Whitehead theorem, the automor-
phisms in condition (K2) can only be type 2 Whitehead automorphisms (the
likely length decreasing ones). We refer to either type 1 or 2 Whitehead
automorphisms as Whitehead automorphisms.

We denote the set of all Whitehead automorphisms of Fn by Ωn, and the set
of Whitehead automorphisms of types 1 and 2 by 1Ωn and 2Ωn respectively.
|Ωn| <∞. In particular, there are 2n(4n−1 − 1) non-trivial type 2 Whitehead
automorphisms for any given Fn. On the other hand, |1Ωn| = 2nn!. See [3] for
more details. Let β be a type 2 Whitehead automorphism as described in the
definition above. We write β = (A, a), where A = {a, y : β(y) = ya or β(y) =
āya} ⊆ Ln with y 6= a, ā. So, if x 7→ āx, then x̄ ∈ A, and if x 7→ āxa, then
x, x̄ ∈ A.

Proposition 1.5 ([2]). Let β be a type 2 Whitehead automorphism (with
a ∈ Ln fixed). For each x ∈ Ln, β acts on x as follows:

β(x) = (A, a)(x) :=


x if x, x̄ /∈ A
xa if x ∈ A and x̄ /∈ A
āx if x /∈ A and x̄ ∈ A
āxa if x, x̄ ∈ A.
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The following is an immediate consequence of Proposition 1.5.

Corollary 1.6. (A, a) never reduces length of a word w if both a and ā are
not in w.

Notation 1.7. Given a word w ∈ Fn. We denote the set of type 2 White-
head automorphisms that do not reduce the length of w as described in Corol-
lary 1.6 by 2Ωn(w) (or 2Ωn for short), and called the “bad type 2 Whitehead
automorphisms”. Similarly, the complement of 2Ωn in 2Ωn will be denoted by

2Ωn, and called the “maybe good type 2 Whitehead automorphisms”. A subset
of 2Ωn consisting of only the length reducing type 2 Whitehead automorphisms

will be called the “good type 2 Whitehead automorphisms”, and denoted by 2Ωn.

McCool in [2] demonstrated that Aut(Fn) is finitely presented, with the White-
head automorphisms as the generators.

2 Main Results

From the Whitehead’s theorem and its consequences studied in the last section,
it is evident that the Whitehead algorithm is a powerful tool for determining
equivalence classes of minimal words in a finitely generated free group.

Definition 2.1. • A word w ∈ Fn is said to be Whitehead reducible
if it is non-minimal; i.e. if there exist a type 2 Whitehead automor-
phism β such that |β(w)| < |w|. On the other hand, w is Whitehead
irreducible if it is not Whitehead reducible.

• A word w ∈ Fn is said to be Whitehead equivalent to another word
w∗ ∈ Fn if there exist Whitehead automorphisms γ1, · · · , γk such that
γk · · · γ1(w) = w∗.

From now onwards, whenever we mention reducible (irreducible), we mean
Whitehead reducible (irreducible). Similar statement holds for equivalence.

Lemma 2.2. Two irreducible words of different lengths are not equivalent.

Proof: Let w and w∗ be two irreducible words of different lengths. With-
out loss of generality, suppose for contradiction that w∗ is gotten from w by
Whitehead equivalence, and |w| > |w∗|. By Remark 1.4 and Notation 1.7,
the automorphisms that induce the equivalence must involve a good type 2
Whitehead automorphism. This further implies that w is reducible; thus con-
tradicting the hypothesis that w is irreducible.
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2.1 Algorithm Developments

We introduce the Whitehead algorithm aimed at classifying all minimal words
of any given length in Fn up to equivalence. First and foremost, construct
algorithms for the set of Whitehead automorphisms 1Ωn and 2Ωn as well as a
function “IsMin” for checking whether a word w ∈ Fn is minimal or not. Find
all the reduced words of length l in Fn, and call it Rln. Finally, use the IsMin
function to find all corresponding minimal words of length l in Fn from Rln,
and denote them by Mln. Then follow the procedures below.

Algorithm 2.3. For finding a minimal word equivalent to a word w ∈ Fn.

• Step 1. Use the IsMin function constructed to check whether w is mini-
mal. If yes, return w and call it wlast; else proceed to Step 2.

• Step 2. Substitute β(w) for w whenever |β(w)| < |w| for β ∈ 2Ωn (may
take β ∈ 2Ω2 for faster computation). Repeat until no further reduction
is obtainable. Return the resulting irreducible word wlast.

Algorithm 2.4. For finding a list of minimal words equivalent to a word
w ∈ Fn.

• Step 1. Use Algorithm 2.3 to find wlast, then create a singleton list
“MinEquivElts” containing wlast.

• Step 2. For each β ∈ 2Ωn, if β(wlast) = w, |w| = |wlast| and w is not
already in the list MinEquivElts, then append w to MinEquivElts. Repeat
the process for each α ∈ 1Ωn.

Algorithm 2.5. For determining whether two elements w,w∗ ∈ Fn are
equivalent.

• Step 1. Use Algorithm 2.3 to find wlast corresponding to w, and Algorithm
2.4 to find MinEquivElts for w∗.

• Step 2. Return true if wlast is contained in MinEquivElts, and false if
otherwise.

Algorithm 2.5 can be used to classify all minimal words of a certain length l
in Fn up to equivalence. We shall investigate this in the next section.

2.2 Equivalence Classes of Minimal Words of Lengths
2, 3, 4 and 5

Definition 2.6. • (T1) A cyclic structure of a reduced word w is a
cyclic representation of w.
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• (T2) Two non-identity elements of a free group are said to be in the same
cyclic structure (say (w)) if both words represent the same cyclic word.

• (T3) A reduced word is called exact if no other reduced word can be in its
cyclic structure. In other words, if it is the only reduced word obtainable
from its cyclic structure.

Proposition 2.7. Every exact word is minimal.

Remark 2.8. The converse of Proposition 2.7 is not necessarily true.

Question 2.9. Is the converse of Proposition 2.7 true for any word length?

We answer as follows:

Lemma 2.10. • (U1) Every minimal word of length 2 or 3 is exact.

• (U2) There is no full characterization for minimal words of length l ≥ 4
in Fn≥2.

Corollary 2.11. There is only one equivalence class of minimal words of
lengths 2 and 3 in Fn≥2. Furthermore, the number of elements in such equiv-
alence class is 2n.

Definition 2.12. Let Ln = {f1, f−1
1 , f2, f

−1
2 , · · · , fn, f−1

n }. Given a well-
ordering ≤ on Ln, we define a well-ordering on L∗

n as follows: if a =
a1a2 · · · al and b = b1b2 · · · bm, then a < b if and only if either l < m or l = m
and aj = bj for j ≤ i < l (with ai+1 < bi+1).

Take L2 = {f1, f−1
1 , f2, f

−1
2 } with the ordering f−1

1 < f−1
2 < f1 < f2. We view

the irreducible (minimal) words of length 2 in F2 as f−2
1 < f−2

2 < f 2
1 < f 2

2 . In
the sequel, we take the representative of a class of equivalent minimal words
to be the least element in that class with respect to the ordering defined in
Definition 2.12.

Notation 2.13. Let n denote the rank of a free group, l word length, M
the number of minimal words of length l in Fn, N is the number of (distinct)
equivalence classes of minimal words of length l in Fn, and Card the respective
cardinality of each equivalence class.

We give a summary of our results as follows:

n l M N Class representatives Card
2 2 4 1 f−2

1 4
2 3 4 1 f−3

1 4
2 4 44 3 f−4

1 , f−2
1 f−2

2 , f−1
1 f−1

2 f1f2 4, 32, 8
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2 5 164 4 f−5
1 , f−3

1 f−2
2 , f−2

1 f−1
2 f−1

1 f2, f
−2
1 f−1

2 f1f2 4, 80, 40, 40
2 6 436 10 f−6

1 , f−4
1 f−2

2 , f−3
1 f−1

2 f−1
1 f2, f

−3
1 f−1

2 f1f2,
f−3
1 f−3

2 , f−2
1 f−1

2 f−2
1 f2, f

−2
1 f−1

2 f−1
1 f 2

2 ,
f−2
1 f−1

2 f 2
1 f2, f

−2
1 f−2

2 f−1
1 f2, f

−2
1 f−2

2 f1f2

4, 120, 48, 48, 24, 24, 48,
48, 48, 24

3 2 6 1 f−2
1 6

3 3 6 1 f−3
1 6

3 4 126 3 f−4
1 , f−2

1 f−2
2 , f−1

1 f−1
2 f1f2 6, 96, 24

3 5 486 4 f−5
1 , f−3

1 f−2
2 , f−2

1 f−1
2 f−1

1 f2, f
−2
1 f−1

2 f1f2 6, 240, 120, 120
3 6 3270 11 f−6

1 , f−4
1 f−2

2 , f−3
1 f−1

2 f−1
1 f2, f

−3
1 f−1

2 f1f2,
f−3
1 f−3

2 , f−2
1 f−1

2 f−2
1 f2, f

−2
1 f−1

2 f−1
1 f 2

2 ,
f−2
1 f−2

2 f−1
1 f2, f

−2
1 f−2

2 f1f2, f
−2
1 f−2

2 f−2
3 ,

f−2
1 f−1

2 f 2
1 f2

6, 360, 144, 144, 72, 72,
144, 144, 144, 1968, 72

4 2 8 1 f−2
1 8

4 3 8 1 f−3
1 8

4 4 248 3 f−4
1 , f−2

1 f−2
2 , f−1

1 f−1
2 f1f2 8, 192, 48

4 5 968 4 f−5
1 , f−3

1 f−2
2 , f−2

1 f−1
2 f−1

1 f2, f
−2
1 f−1

2 f1f2 8, 480, 240, 240
5 2 10 1 f−2

1 10
5 3 10 1 f−3

1 10
5 4 410 3 f−4

1 , f−2
1 f−2

2 , f−1
1 f−1

2 f1f2 10, 320, 80
5 5 1610 4 f−5

1 , f−3
1 f−2

2 , f−2
1 f−1

2 f−1
1 f2, f

−2
1 f−1

2 f1f2 10, 800, 400, 400
6 2 12 1 f−2

1 12
6 3 12 1 f−3

1 12
6 4 612 3 f−4

1 , f−2
1 f−2

2 , f−1
1 f−1

2 f1f2 12, 480, 120
6 5 2412 4 f−5

1 , f−3
1 f−2

2 , f−2
1 f−1

2 f−1
1 f2, f

−2
1 f−1

2 f1f2 12, 1200, 600, 600

Let Mln denote the set of all minimal words of length l in Fn≥2. It is evident
that |M2n| = 2n = |M3n|. Moreover, there is only one equivalence class of
trivial minimal words. The representatives can be seen as f−2

1 and f−3
1 for

l = 2 and l = 3 respectively.

Question 2.14. • (V1) Is it possible to characterize all representatives
of equivalence classes of minimal words of lengths l ≥ 4 in Fn≥2?

• (V2) What can be said about |Mln| for l ≥ 4?

We answer (V1) and (V2) for l = 4 and l = 5 as follows:

Conjecture 2.15. • (W1) There are exactly three equivalence classes of
minimal words of length 4 in Fn≥2. Their representatives can be seen as
f−4
1 , f−1

1 f−1
2 f1f2 and f−2

1 f−2
2 with cardinalities 2n, 4n(n−1) and 16n(n−

1) respectively.

• (W2) |M4n| = 2n(10n− 9).
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Conjecture 2.16. • (X1) There are exactly four equivalence classes
of minimal words of length 5 in Fn≥2. Their representatives are f−5

1 ,
f−3
1 f−2

2 , f−2
1 f−1

2 f−1
1 f2 and f−2

1 f−1
2 f1f2 with cardinalities 2n, 40n(n− 1),

20n(n− 1) and 20n(n− 1) respectively.

• (X2) |M5n| = 2n(40n− 39).

2.3 Open Problems

One possible future work is to prove conjectures 2.15 and 2.16 as well as answer
(V1) and (V2) for l ≥ 6. Another important observation is that only f1 and f2
are enough to describe all the representatives of equivalent classes of minimal
words of lengths 2, 3, 4 and 5 in Fn≥2. On the other hand, the two letters
are not sufficient to describe all the representatives of equivalence classes of
minimal words of length 6. Hence, it is important to investigate the following:

Question 2.17. How many letters do we need to describe all the represen-
tatives of equivalence classes of minimal words of any given length?

In conclusion, the role Whitehead automorphisms play in Automorphism of
finitely generated free groups is comparable to the role prime numbers play in
Number theory, and elements play in Chemistry. The Whitehead algorithm
is a powerful tool for classifying all minimal words of any given length in a
finitely generated free group.
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