Gen. Math. Notes, Vol. 26, No. 2, February 2015, pp.1-10
ISSN 2219-7184; Copyright © ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

Inverse Theorems of Approximation Theory
 in $L^{2}\left(\mathbb{R}^{+}, J^{\alpha, \beta}(x) d x\right)$

R. Daher ${ }^{1}$ and S. El Ouadih ${ }^{2}$
${ }^{1,2}$ Departement of Mathematics, Faculty of Sciences
Aïn Chock, University, Hassan II, Casablanca, Marocco
${ }^{1}$ E-mail: rjdaher024@gmail.com
${ }^{2}$ E-mail: salahwadih@gmail.com

(Received: 2-7-14 / Accepted: 21-11-14)

Abstract

In this paper, we prove analogues of some inverse theorems of Stechkin, for the Jacobi harmonic analysis, using the function with bounded spectrum.

Keywords: Generalized continuity modulus, Function with bounded spectrum, Best approximation.

1 Introduction

Yet by the year 1912, S. Bernstein obtained the estimate inverse to Jakson's inequality in the space of continuous functions for some special cases [2], later S.B.Stechkin [4], M.Timan [7], etc, proved such inverse estimation, including the case of the space $L^{p}, 1<p<\infty$.
In this paper, we obtain the estimate inverse to Jakson's inequality in the space $L^{2}\left(\mathbb{R}^{+}, J^{\alpha, \beta}(x) d x\right)$ (see [1], theorem 4.2), where the modulus of smoothness is constructed on the basis of the Jacobi generalized translation.

2 The Jacobi Transform and its Basic Properties

Let $\alpha \geq \frac{-1}{2}, \alpha>\beta \geq \frac{-1}{2}, \rho=\alpha+\beta+1$ and let

$$
L:=\frac{d^{2}}{d x^{2}}+((2 \alpha+1) \operatorname{coth} x+(2 \beta+1) \tanh x) \frac{d}{d x} .
$$

be the Jacobi differential operator and denote by $\varphi_{\lambda}^{(\alpha, \beta)}(x)\left(\lambda, x \in \mathbb{R}^{+}\right)$the Jacobi function of order (α, β), the function $\varphi_{\lambda}^{(\alpha, \beta)}(x)$ satisfier the differential equation

$$
L \varphi+\left(\lambda^{2}+\rho^{2}\right) \varphi=0
$$

with the initial conditions $\varphi(0)=1$ and $\varphi^{\prime}(0)=0$
Lemma 2.1 The following inequalities are valid for Jacobi functions $\varphi_{\lambda}^{(\alpha, \beta)}(x)$ a) $\left|\varphi_{\lambda}^{(\alpha, \beta)}(x)\right| \leq 1$.
b) $1-\varphi_{\lambda}^{(\alpha, \beta)}(x) \leq x^{2}\left(\lambda^{2}+\rho^{2}\right)$.
c) There exists a positive constant c_{1} such that if $\lambda x>1$, then

$$
1-\varphi_{\lambda}^{(\alpha, \beta)}(x) \geq c_{1} .
$$

Proof: Analogue (see[1], lemmas 3.1-3.2-3.3)
Consider the Hilbert space $L_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)=L^{2}\left(\mathbb{R}^{+}, J^{\alpha, \beta}(x) d x\right)$ with the norm

$$
\|f\|_{2}=\left(\int_{0}^{+\infty}|f(x)|^{2} J^{\alpha, \beta}(x) d x\right)^{\frac{1}{2}}
$$

where

$$
J^{\alpha, \beta}(x)=(2 \sinh x)^{2 \alpha+1}(2 \cosh x)^{2 \beta+1} .
$$

The Jacobi transform of a function $f \in L_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)$is defined by

$$
\mathfrak{J}^{\alpha, \beta}(f)(\lambda)=\int_{0}^{+\infty} f(x) \varphi_{\lambda}^{(\alpha, \beta)}(x) J^{\alpha, \beta}(x) d x
$$

The inversion formula is

$$
f(x)=\int_{0}^{+\infty} \mathfrak{J}^{\alpha, \beta}(f)(\lambda) \varphi_{\lambda}^{(\alpha, \beta)}(x) d \mu(\lambda) .
$$

where $d \mu(\lambda):=\frac{1}{2 \pi}|C(\lambda)|^{-2} d \lambda$ and the C-function $C(\lambda)$ is defined by

$$
C(\lambda)=\frac{2^{\rho} \Gamma(i \lambda) \Gamma\left(\frac{1}{2}(1+i \lambda)\right)}{\Gamma\left(\frac{1}{2}(\rho+i \lambda)\right) \Gamma\left(\frac{1}{2}(\rho+i \lambda)-\beta\right)} .
$$

Inverse Theorems of Approximation Theory...

The Plancherel formula for Jacobi transform (see [8]) is written as

$$
\begin{equation*}
\|f\|_{L^{2}\left(\mathbb{R}^{+}, J^{\alpha, \beta}(x) d x\right)}=\left\|\mathfrak{J}^{\alpha, \beta}(f)\right\|_{L^{2}\left(\mathbb{R}^{+}, d \mu(\lambda)\right)} . \tag{1}
\end{equation*}
$$

We note the important property of the Bessel transform

$$
\begin{equation*}
\mathfrak{J}^{\alpha, \beta}(L f)(\lambda)=-\left(\lambda^{2}+\rho^{2}\right) \mathfrak{J}^{\alpha, \beta}(f)(\lambda) \tag{2}
\end{equation*}
$$

The generalized translation operator was defined by Flented-Jensen and Koornwinder [6] given by

$$
T^{h} f(x)=\int_{0}^{+\infty} f(z) K(x, h, z) J^{\alpha, \beta}(z) d z
$$

where the kernel K is explicitly known (see [8]).
In[3], we have

$$
\begin{equation*}
\mathfrak{J}^{\alpha, \beta}\left(T^{h} f\right)(\lambda)=\varphi_{\lambda}^{(\alpha, \beta)}(h) \mathfrak{J}^{\alpha, \beta}(f)(\lambda), h>0 \tag{3}
\end{equation*}
$$

In [6], we have

$$
\begin{equation*}
\left\|T^{h} f\right\|_{2} \leq\|f\|_{2} \tag{4}
\end{equation*}
$$

A function $f \in L_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)$is called a function with bounded spectrum of order $\nu>0$ if $\mathfrak{J}^{\alpha, \beta}(f)(\lambda)=0$ for $\lambda>\nu$. The set of all such functions is denoted by \mathcal{I}_{ν}.

Lemma 2.2 For every function $f \in \mathcal{I}_{\nu}, \nu \geq 1$ and any number $m \in \mathbb{N}$ we have

$$
\left\|L^{m} f\right\|_{2} \leq c_{2} \nu^{2 m}\|f\|_{2}
$$

where $c_{2}=\left(1+\rho^{2}\right)^{m}$ is a constant.
Proof: (see corollary 1.6 in [1])
The finite differences of the first and higher orders are defined as follows:

$$
\Delta_{h} f(x)=T^{h} f(x)-f(x)=\left(T^{h}-I\right) f(x) .
$$

where I is the identity operator in $L_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)$, and

$$
\Delta_{h}^{k} f(x)=\Delta_{h}\left(\Delta_{h}^{k-1} f(x)\right)=\left(T^{h}-I\right)^{k} f(x)
$$

The generalized continuity modulus of order k in $L_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)$is defined as follows

$$
\omega_{k}(f, \delta)_{2}:=\sup _{0<h \leq \delta}\left\|\Delta_{h}^{k} f\right\|_{2}, \delta>0, f \in L_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)
$$

The best approximation of a function $L_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)$by functions in \mathcal{I}_{ν} is the quantity

$$
E_{\nu}(f)_{2}:=\inf _{g \in \mathcal{I}_{\nu}}\|f-g\|_{2} .
$$

Let $W_{2,(\alpha, \beta)}^{m}$ be the Sobolev space of order $m \in \mathbb{N}^{*}$ constructed from the differential operator L, that is,

$$
W_{2,(\alpha, \beta)}^{m}=\left\{f \in L_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right): L^{j} f \in L_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right), j=1,2, \ldots, m\right\}
$$

where $L^{j} f=L\left(L^{j-1} f\right)$, and $L^{0} f=f$.

3 Main Results

In this section we give the main results of this paper
Lemma 3.1 The modulus of smoothness $\omega_{k}(f, t)_{2}$ has the following properties.
i) $\omega_{k}(f+g, t)_{2} \leq \omega_{k}(f, t)_{2}+\omega_{k}(g, t)_{2}$.
ii) $\omega_{k}(f, t)_{2} \leq 2^{k}\|f\|_{2}$.
iii) If $f \in W_{2,(\alpha, \beta)}^{k}$, then

$$
\omega_{k}(f, t)_{2} \leq t^{2 k}\left\|L^{k} f\right\|_{2}
$$

Proof:

Prperty 1 follow from the definition of $\omega_{k}(f, t)_{2}$.
Prperty 2 follow from the fact that $\left\|T^{h} f\right\|_{2} \leq\|f\|_{2}$.
Assume that $h \in(0, t]$. From formulas (1), (2) and (3), we have

$$
\begin{align*}
\left\|\Delta_{h}^{k} f\right\|_{L^{2}\left(\mathbb{R}^{+}, J^{\alpha, \beta}(x) d x\right)} & =\left\|\left(1-\varphi_{\lambda}^{\alpha, \beta}(h)\right)^{k} \mathfrak{J}^{\alpha, \beta}(f)(\lambda)\right\|_{L^{2}\left(\mathbb{R}^{+}, d \mu(\lambda)\right)} \tag{5}\\
\left\|L^{k} f\right\|_{L^{2}\left(\mathbb{R}^{+}, J^{\alpha, \beta}(x) d x\right)} & =\left\|\left(\lambda^{2}+\rho^{2}\right)^{k} \mathfrak{J}^{\alpha, \beta}(f)(\lambda)\right\|_{L^{2}\left(\mathbb{R}^{+}, d \mu(\lambda)\right)} . \tag{6}
\end{align*}
$$

Formula (5) implies the equality

$$
\left\|\Delta_{h}^{k} f\right\|_{L^{2}\left(\mathbb{R}^{+}, J^{\alpha, \beta}(x) d x\right)}=h^{2 k}\left\|\frac{\left(1-\varphi_{\lambda}^{\alpha, \beta}(h)\right)^{k}}{h^{2 k}\left(\lambda^{2}+\rho^{2}\right)^{k}}\left(\lambda^{2}+\rho^{2}\right)^{k} \mathfrak{J}^{\alpha, \beta}(f)\right\|_{L^{2}\left(\mathbb{R}^{+}, d \mu(\lambda)\right)} .
$$

From lemma (2.1), we obtain

$$
\begin{aligned}
\left\|\Delta_{h}^{k} f\right\|_{L^{2}\left(\mathbb{R}^{+}, J^{\alpha, \beta}(x) d x\right)} & \leq h^{2 k}\left\|\left(\lambda^{2}+\rho^{2}\right)^{k} \mathfrak{J}^{\alpha, \beta}(f)\right\|_{L^{2}\left(\mathbb{R}^{+}, d \mu(\lambda)\right)} \\
& =h^{2 k}\left\|L^{k} f\right\|_{L^{2}\left(\mathbb{R}^{+}, J^{\alpha, \beta}(x) d x\right)} .
\end{aligned}
$$

Calculating the supremum with respect to all $h \in(0, t]$, we obtain

$$
\omega_{k}(f, t)_{2} \leq t^{2 k}\left\|L^{k} f\right\|_{2}
$$

Lemma 3.2 For $j \geq 1$ we have

$$
2^{2 k(j-1)} E_{2^{j}}(f)_{2} \leq \sum_{l=2^{j-1}+1}^{2^{j}} l^{2 k-1} E_{l}(f)_{2} .
$$

Proof: Note that

$$
\sum_{l=2^{j-1}+1}^{2^{j}} l^{2 k-1} \geq\left(2^{j-1}\right)^{2 k-1} 2^{j-1}=2^{2 k(j-1)}
$$

Since $E_{l}(f)_{2}$ is monotonically decreasing, we conclude that

$$
2^{2 k(j-1)} E_{2^{j}}(f)_{2} \leq \sum_{l=2^{j-1}+1}^{2^{j}} l^{2 k-1} E_{l}(f)_{2}
$$

Lemma 3.3 For $n \in \mathbb{N}^{*}$ we have

$$
2^{k} E_{n}(f)_{2} \leq \frac{c_{3}}{n^{2 k}} \sum_{j=0}^{n}(j+1)^{2 k-1} E_{j}(f)_{2}
$$

Proof: Note that

$$
\sum_{j=0}^{n}(j+1)^{2 k-1} \geq \sum_{j \geq \frac{n}{2}-1}^{n}(j+1)^{2 k-1} \geq\left(\frac{n}{2}\right)^{2 k-1} \frac{n}{2}=2^{-2 k} n^{2 k}
$$

Since $E_{j}(f)_{2}$ is monotonically decreasing, we conclude that

$$
2^{k} E_{n}(f)_{2} \leq \frac{c_{3}}{n^{2 k}} \sum_{j=0}^{n}(j+1)^{2 k-1} E_{j}(f)_{2}
$$

Lemma 3.4 If $\Phi_{\nu} \in \mathcal{I}_{\nu}$ such that $\left\|f-\Phi_{\nu}\right\|_{2}=E_{\nu}(f)_{2}$ For every $\nu \in \mathbb{N}$, then

$$
\left\|L^{k} \Phi_{2^{j+1}}-L^{k} \Phi_{2^{j}}\right\|_{2} \leq c_{2} 2^{2 k(j+1)+1} E_{2^{j}}(f)_{2} .
$$

In particular

$$
\left\|L^{k} \Phi_{1}\right\|_{2}=\left\|L^{k} \Phi_{1}-L^{k} \Phi_{0}\right\|_{2} \leq c_{2} 2^{4 k+1} E_{0}(f)_{2}
$$

Proof: By lemma (2.2) and the fact that $E_{\nu}(f)_{2}$ is monotonically decreasing with respect to ν, we obtain

$$
\begin{aligned}
\left\|L^{k} \Phi_{2^{j+1}}-L^{k} \Phi_{2^{j}}\right\|_{2} & \leq c_{2} 2^{2 k(j+1)}\left\|\Phi_{2^{j+1}}-\Phi_{2^{j}}\right\|_{2} \\
& =c_{2} 2^{2 k(j+1)}\left\|\left(f-\Phi_{2^{j}}\right)-\left(f-\Phi_{2^{j+1}}\right)\right\|_{2} \\
& \leq c_{2} 2^{2 k(j+1)}\left(E_{2^{j}}(f)_{2}+E_{2^{j+1}}(f)_{2}\right) \\
& \leq c_{2} 2^{2 k(j+1)+1} E_{2^{j}}(f)_{2},
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|L^{k} \Phi_{1}-L^{k} \Phi_{0}\right\|_{2} & \leq c_{2}\left\|\Phi_{1}-\Phi_{0}\right\|_{2}=c_{2}\left\|\left(f-\Phi_{1}\right)-\left(f-\Phi_{0}\right)\right\|_{2} \\
& \leq c_{2}\left(E_{1}(f)_{2}+E_{0}(f)_{2}\right) \\
& \leq 2 c_{2} E_{0}(f)_{2} \leq c_{2} 2^{4 k+1} E_{0}(f)_{2}
\end{aligned}
$$

The following theorems are analogues of the classical inverse theorems of approximation theory due to Stechkin in the case $p=\infty$ and A.F.Timan in the case $1 \leq p<\infty$ (see [4] and [5]).

Theorem 3.5 For every function $f \in L_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)$and $n \in \mathbb{N}^{*}$ we have

$$
\omega_{k}\left(f, \frac{1}{n}\right)_{2} \leq \frac{c}{n^{2 k}} \sum_{j=0}^{n}(j+1)^{2 k-1} E_{j}(f)_{2}
$$

where $c=c(k, \alpha, \beta)$ is a positive constant.
Proof: Let $2^{m} \leq n \leq 2^{m+1}$ for any integer $m \geq 0$.
For every $\nu \in \mathbb{N}$, let $\Phi_{\nu} \in \mathcal{I}_{\nu}$ such that $\left\|f-\Phi_{\nu}\right\|_{2}=E_{\nu}(f)_{2}$. By formulas (i) and (ii) of lemma (3.1), we obtain
$\omega_{k}\left(f, \frac{1}{n}\right)_{2} \leq \omega_{k}\left(f-\Phi_{2^{m+1}}, \frac{1}{n}\right)_{2}+\omega_{k}\left(\Phi_{2^{m+1}}, \frac{1}{n}\right)_{2} \leq 2^{k}\left\|f-\Phi_{2^{m+1}}\right\|_{2}+\omega_{k}\left(\Phi_{2^{m+1}}, \frac{1}{n}\right)_{2}$.
Therefore

$$
\begin{equation*}
\omega_{k}\left(f, \frac{1}{n}\right)_{2} \leq 2^{k} E_{2^{m+1}}(f)_{2}+\omega_{k}\left(\Phi_{2^{m+1}}, \frac{1}{n}\right)_{2} \leq 2^{k} E_{n}(f)_{2}+\omega_{k}\left(\Phi_{2^{m+1}}, \frac{1}{n}\right)_{2} . \tag{7}
\end{equation*}
$$

Now with the aid of lemmas (3.2), (3.4) and formula (iii) of lemma (3.1), we conclude that

$$
\begin{aligned}
\omega_{k}\left(\Phi_{2^{m+1}}, \frac{1}{n}\right)_{2} & \leq \frac{1}{n^{2 k}}\left\|L^{k} \Phi_{2^{m+1}}\right\|_{2} \\
& \leq \frac{1}{n^{2 k}}\left(\left\|L^{k} \Phi_{1}-L^{k} \Phi_{0}\right\|_{2}+\sum_{j=0}^{m}\left\|L^{k} \Phi_{2^{j+1}}-L^{k} \Phi_{2^{j}}\right\|_{2}\right) \\
& \leq \frac{c_{2}}{n^{2 k}}\left(2^{4 k+1} E_{0}(f)_{2}+\sum_{j=0}^{m} 2^{2 k(j+1)+1} E_{2^{j}}(f)_{2}\right) \\
& \leq \frac{c_{2}}{n^{2 k}} 2^{4 k+1}\left(E_{0}(f)_{2}+\sum_{j=0}^{m} 2^{2 k(j-1)} E_{2^{j}}(f)_{2}\right) \\
& \leq \frac{c_{2}}{n^{2 k}} 2^{4 k+1}\left(E_{0}(f)_{2}+E_{1}(f)_{2}+\sum_{j=1}^{m} \sum_{l=2^{j-1}+1}^{2^{j}} l^{2 k-1} E_{l}(f)_{2}\right) \\
& \leq \frac{c_{2}}{n^{2 k}} 2^{4 k+1}\left(E_{0}(f)_{2}+E_{1}(f)_{2}+\sum_{j=2}^{2^{m}}(j+1)^{2 k-1} E_{j}(f)_{2}\right)
\end{aligned}
$$

Whence

$$
\begin{equation*}
\omega_{k}\left(\Phi_{2^{m+1}}, \frac{1}{n}\right)_{2} \leq \frac{c_{4}}{n^{2 k}} \sum_{j=0}^{2^{m}}(j+1)^{2 k-1} E_{j}(f)_{2} \tag{8}
\end{equation*}
$$

Thus from (7) and (8) we derive the estimate

$$
\begin{equation*}
\omega_{k}\left(f, \frac{1}{n}\right)_{2} \leq 2^{k} E_{n}(f)_{2}+\frac{c_{4}}{n^{2 k}} \sum_{j=0}^{n}(j+1)^{2 k-1} E_{j}(f)_{2} \tag{9}
\end{equation*}
$$

By lemma (3.3) and formula (9), we have

$$
\omega_{k}\left(f, \frac{1}{n}\right)_{2} \leq \frac{c}{n^{2 k}} \sum_{j=0}^{n}(j+1)^{2 k-1} E_{j}(f)_{2}
$$

Theorem 3.6 Suppose that $f \in L_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)$and

$$
\sum_{j=1}^{\infty} j^{2 m-1} E_{j}(f)_{2}<\infty
$$

Then $f \in W_{2,(\alpha, \beta)}^{m}$ and for $n \in \mathbb{N}^{*}$, we have

$$
\omega_{k}\left(L^{m} f, \frac{1}{n}\right)_{2} \leq C\left(\frac{1}{n^{2 k}} \sum_{j=0}^{n}(j+1)^{2(k+m)-1} E_{j}(f)_{2}+\sum_{j=n+1}^{\infty} j^{2 m-1} E_{j}(f)_{2}\right)
$$

where $C=c(k, m, \alpha, \beta)$ is a positive constant.
Proof: Let $2^{m} \leq n \leq 2^{m+1}$ for any integer $m \geq 0$.
By lemmas 3.4 and 3.2, we have for $r \leq m$

$$
\begin{aligned}
\sum_{j=0}^{\infty}\left\|L^{r} \Phi_{2^{j+1}}-L^{r} \Phi_{2^{j}}\right\|_{2} & \leq c_{2} \sum_{j=0}^{\infty} 2^{2 r(j+1)+1} E_{2^{j}}(f)_{2} \\
& =c_{2} 2^{2 r+1} E_{1}(f)_{2}+c_{2} 2^{4 r+1} \sum_{j=1}^{\infty} 2^{2 r(j-1)} E_{2^{j}}(f)_{2} \\
& \leq c_{2} 2^{4 r+1}\left(E_{1}(f)_{2}+\sum_{j=1}^{\infty} 2^{2 r(j-1)} E_{2^{j}}(f)_{2}\right) \\
& \leq c_{2} 2^{4 r+1}\left(E_{1}(f)_{2}+\sum_{j=1}^{\infty} \sum_{l=2^{j-1}+1}^{2^{j}} l^{2 r-1} E_{l}(f)_{2}\right) \\
& \leq c_{2} 2^{4 r+1} \sum_{j=1}^{\infty} j^{2 r-1} E_{j}(f)_{2}<\infty
\end{aligned}
$$

Note that

$$
f=\Phi_{1}+\sum_{j=0}^{\infty}\left(\Phi_{2^{j+1}}-\Phi_{2^{j}}\right)
$$

Since the series $\sum_{j=0}^{\infty} L^{r} \Phi_{2^{j+1}}-L^{r} \Phi_{2^{j}}$ converges in $L_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)$and L is a closed operator, we have

$$
L^{r} f=L^{r} \Phi_{1}+\sum_{j=0}^{\infty}\left(L^{r} \Phi_{2^{j+1}}-L^{r} \Phi_{2^{j}}\right)
$$

Whence $L^{r} f \in L_{(\alpha, \beta)}^{2}\left(\mathbb{R}^{+}\right)$for $r \leq m$ and $f \in W_{2,(\alpha, \beta)}^{m}$.
By formula (i) of lemma (3.1), we obtain

$$
\omega_{k}\left(L^{m} f, \frac{1}{n}\right)_{2} \leq \omega_{k}\left(L^{m} f-L^{m} \Phi_{2^{s+1}}, \frac{1}{n}\right)_{2}+\omega_{k}\left(L^{m} \Phi_{2^{s+1}}, \frac{1}{n}\right)_{2} .
$$

Using lemmas (3.1), (3.2) and (3.4), we get

$$
\begin{aligned}
\omega_{k}\left(L^{m} f-L^{m} \Phi_{2^{s+1}}, \frac{1}{n}\right)_{2} & \leq 2^{k}\left\|L^{m} f-L^{m} \Phi_{2^{s+1}}\right\|_{2} \\
& \leq 2^{k} \sum_{j=s+1}^{\infty}\left\|L^{m} \Phi_{2^{j+1}}-L^{m} \Phi_{2^{j}}\right\|_{2} \\
& \leq 2^{k} c_{2} \sum_{j=s+1}^{\infty} 2^{2 m(j+1)+1} E_{2^{j}}(f)_{2} \\
& \leq c_{2} 2^{k+4 m+1} \sum_{j=s+1}^{\infty} 2^{2 m(j-1)} E_{2^{j}}(f)_{2} \\
& \leq c_{2} 2^{k+4 m+1} \sum_{j=s+1}^{\infty} \sum_{l=2^{j-1}+1}^{2^{j}} l^{2 m-1} E_{l}(f)_{2} \\
\omega_{k}\left(L^{m} f-L^{m} \Phi_{2^{s+1}}, \frac{1}{n}\right)_{2} & \leq c_{2} 2^{k+4 m+1} \sum_{j=2^{s}+1}^{\infty} j^{2 m-1} E_{j}(f)_{2} .
\end{aligned}
$$

Whence

$$
\begin{equation*}
\omega_{k}\left(L^{m} f-L^{m} \Phi_{2^{s+1}}, \frac{1}{n}\right)_{2} \leq c_{5} \sum_{j=2^{s}+1}^{\infty} j^{2 m-1} E_{j}(f)_{2} . \tag{10}
\end{equation*}
$$

Now with the aid of lemmas (3.2), (3.4) and by formula (iii) of lemma (3.1), we conclude that

$$
\begin{aligned}
\omega_{k}\left(L^{m} \Phi_{2^{s+1}}, \frac{1}{n}\right)_{2} & \leq \frac{1}{n^{2 k}}\left\|L^{m+k} \Phi_{2^{s+1}}\right\|_{2} \\
& \leq \frac{1}{n^{2 k}}\left(\left\|L^{m+k} \Phi_{1}-L^{m+k} \Phi_{0}\right\|_{2}+\sum_{j=0}^{s}\left\|L^{m+k} \Phi_{2^{j+1}}-L^{m+k} \Phi_{2^{j}}\right\|_{2}\right) \\
& \leq \frac{c_{2}}{n^{2 k}}\left(2^{4(k+m)+1} E_{0}(f)_{2}+\sum_{j=0}^{s} 2^{2(k+m)(j+1)+1} E_{2^{j}}(f)_{2}\right) \\
& \leq \frac{c_{2}}{n^{2 k}} 2^{4(k+m)+1}\left(E_{0}(f)_{2}+\sum_{j=0}^{s} 2^{2(k+m)(j-1)} E_{2^{j}}(f)_{2}\right) \\
& \leq \frac{c_{2}}{n^{2 k}} 2^{4(k+m)+1}\left(E_{0}(f)_{2}+E_{1}(f)_{2}+\sum_{j=1}^{s} \sum_{l=2^{j-1}+1}^{2^{j}} l^{2(k+m)-1} E_{l}(f)_{2}\right) \\
& \leq \frac{c_{2}}{n^{2 k}} 2^{4(k+m)+1}\left(E_{0}(f)_{2}+E_{1}(f)_{2}+\sum_{j=2}^{2^{s}}(j+1)^{2(k+m)-1} E_{j}(f)_{2}\right)
\end{aligned}
$$

Whence

$$
\begin{equation*}
\omega_{k}\left(B^{m} \Phi_{2^{s+1}}, \frac{1}{n}\right)_{2} \leq \frac{c_{6}}{n^{2 k}} \sum_{j=0}^{2^{s}}(j+1)^{2(k+m)-1} E_{j}(f)_{2} \tag{11}
\end{equation*}
$$

Thus from (10) and (11) we derive the estimate

$$
\omega_{k}\left(B^{m} f, \frac{1}{n}\right)_{2} \leq C\left(\sum_{j=n+1}^{\infty} j^{2 m-1} E_{j}(f)_{2}+\frac{1}{n^{2 k}} \sum_{j=0}^{n}(j+1)^{2(k+m)-1} E_{j}(f)_{2}\right) .
$$

References

[1] S.S. Platonov, Approximation of function in L_{2}-metric on noncompact rank 1 symmetric spaces, Algebra in Analiz, 11(1) (1999), 244-270.
[2] S. Bernstein, Sur l'ordre de la meilleure approximation des fonctiones continues par des polynomes de degré donné, Mem. Acad. Roy. Belgigue, 2(4) (1912), 1-104.
[3] W.O. Bray and M.A. Pinsky, Grawth properties of Fourier transforms via moduli of continuity, Journal of Functional Analysis, 255(2008), 22652285.
[4] S.B. Stechkin, On the order of best approximation of continuous functions, (Russian), Izv. Akad. Nauk. SSR. Ser. Math., 15(1954), 219-242.
[5] A.F. Timan, Theory of Approximation of Functions of a Real Variable (English Transl), Dover Publications, Inc, New York, (1994).
[6] M. Flensted-Jensen and T. Koornwinder, The convolution structure for Jacobi function expansions, Ark. Mat., 11(1973), 245-262.
[7] M.F. Timan, Best approximation and modulus of smoothness of functions prescribed on the entier real axis (Russian), Izv. Vyssh. Uchebn. Zaved Matematika, 25(1961), 108-120.
[8] T.H. Koornwinder, Jacobi functions and analysis on noncompact semisimple lie groups, special functions, group theortical aspects and applications, Math. Appl, Dordrecht, (1984), 1-85.

