Gen. Math. Notes, Vol. 23, No. 2, August 2014, pp.1-10
ISSN 2219-7184; Copyright © ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

Generalized Jordan Triple Higher *-Derivations on Semiprime Rings ${ }^{1}$

O.H. Ezzat
Department of Mathematics, Faculty of Science
Al-Azhar University, Nasr City (11884), Cairo, Egypt
E-mail: ohezzat@yahoo.com

(Received: 29-3-14 / Accepted: 15-5-14)

Abstract

The concepts of generalized Jordan higher *-derivations and generalized Jordan triple higher $*$-derivations are introduced and it is shown that they coincide on 6 -torsion free semiprime $*-$ rings.

Keywords: Semiprime rings, derivations, higher derivations, generalized Jordan higher *-derivations.

1 Introduction

Let R be an associative ring not necessarily with identity element. For any $x, y \in R$. Recall that R is prime if $x R y=0$ implies $x=0$ or $y=0$, and is semiprime if $x R x=0$ implies $x=0$. Given an integer $n \geq 2, R$ is said to be n-torsion free if for $x \in R, n x=0$ implies $x=0$.An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+y d(x)$ holds for all $x, y \in R$, and it is called a Jordan derivation if $d\left(x^{2}\right)=d(x) x+x d(x)$ for all $x \in R$. Every derivation is obviously a Jordan derivation and the converse is in general not true [1, Example 3.2.1]. A classical Herstein theorem [12] shows that any Jordan derivation on a 2 -torsion free prime ring is a derivation. Later on Brešar [2] has extended Herstein's theorem to 2-torsion free semiprime ring. A Jordan triple derivation is an additive mapping $d: R \rightarrow R$ satisfying

[^0]$d(x y x)=d(x) y x+x d(y) x+x y d(x)$ for all $x, y \in R$. Any derivation is obviously a Jordan triple derivation. It is also easy to see that every Jordan derivation of a 2-torsion free ring is a Jordan triple derivation [13, Lemma 3.5]. Brešar [3] has proved that any Jordan derivation of a 2-torsion free prime ring is a derivation. Generalized derivations have been primarily defined by Brešar [5]. An additive mapping $f: R \rightarrow R$ is said to be a generalized derivation(resp. generalized Jordan derivation) if there exists a derivation (resp. Jordan derivation) d : $R \rightarrow R$ such that $f(x y)=f(x) y+y d(x)$ (resp. $\left.f\left(x^{2}\right)=f(x) x+x d(x)\right)$ holds for all $x, y \in R$. Hvala [15] has initiated the algebraic study of generalized derivations and extended some results concerning derivation to generalized derivation. Jing and Lu [16] have introduced the notion of generalized Jordan triple derivation as an additive mapping $f: R \rightarrow R$ with an associated Jordan triple derivation $d: R \rightarrow R$ such that $f(x y x)=f(x) y x+y d(x) x+x y d(x)$ holds for all $x, y \in R$. They have proved that every generalized Jordan triple derivaation on a 2 -torsion free prime ring is a generalized derivation.

An additive mapping $x \rightarrow x^{*}$ satisfying $(x y)^{*}=y^{*} x^{*}$ and $\left(x^{*}\right)^{*}=x$ for all $x, y \in R$ is called an involution and R is called a $*-$ ring. Let R be a $*-$ ring. An additive mapping $d: R \rightarrow R$ is called a $*$-derivation if $d(x y)=d(x) y^{*}+x d(y)$ holds for all $x, y \in R$; and it is called a Jordan $*-$ derivation if $d\left(x^{2}\right)=d(x) x^{*}+x d(x)$ holds for all $x \in R$. The reader might guess that any Jordan $*-$ derivation of a 2 -torsion free prime $*-$ ring is a $*$-derivation, but this is not the case. It was proved in [4] that a noncommutative prime $*-$ ring does not admit a non-trivial $*-$ derivation. A Jordan triple $*$-derivation is an additive mapping $d: R \rightarrow R$ with the property $d(x y x)=d(x) y^{*} x^{*}+x d(y) x^{*}+x y d(x)$ for all $x, y \in R$. It could easily be seen that any Jordan $*$-derivation on a 2 -torsion free $*-$ ring is a Jordan triple *-derivation [4, Lemma 2]. Vukman [19] has proved that any Jordan triple $*-$ derivation on a 6 -torsion free semiprime $*$-ring is a Jordan $*$-derivation. Following Daif and El-Sayiad [7], An additive mapping $F: R \rightarrow R$ is said to be a generalized $*-$ derivation (resp. generalized Jordan $*-$ derivation) if there exists a $*$-derivation (resp. Jordan $*-$ derivation) $d: R \rightarrow R$ such that $F(x y)=$ $F(x) y^{*}+x d(y)$ (resp. $\left.F\left(x^{2}\right)=d(x) x^{*}+x d(x)\right)$ holds for all $x, y \in R$. They also have introduced the notion of generalized Jordan triple $*-$ derivation as an additive mapping $F: R \rightarrow R$ associated with a Jordan triple $*-$ derivation $d: R \rightarrow R$ with the property $F(x y x)=F(x) y^{*} x^{*}+x d(y) x^{*}+x y d(x)$ for all $x, y \in R$. They have proved that every generalized Jordan triple $*-$ derivation on a 6 -torsion free semiprime ring is a generalized Jordan $*-$ derivation. This extended the above Vukman's main theorem [19].

Let \mathbb{N}_{0} be the set of all nonnegative integers and $D=\left\{d_{i}\right\}_{i \in \mathbb{N}_{0}}$ be a family of additive mappings of a ring R such that $d_{0}=i d_{R}$. Then D is said to be a higher derivation, (resp. a Jordan higher derivation) of R if for each $n \in \mathbb{N}_{0}, d_{n}(x y)=\sum_{i+j=n} d_{i}(x) d_{j}(y)\left(\right.$ resp. $\left.d_{n}\left(x^{2}\right)=\sum_{i+j=n} d_{i}(x) d_{j}(x)\right)$ holds
for all $x, y \in R$. The concept of higher derivations was introduced by Hasse and Schmidt [11]. This interesting notion of higher derivations has been studied in both commutative and noncommutative rings, see e,g., [18], [14], [20] and [9]. Clearly, every higher derivation is a Jordan higher derivation. Ferrero and Haetinger [9] extended Herstein's theorem [12] for higher derivations on 2-torsion free semiprime rings. For an account of higher derivations the reader is referred to [10]. A family $D=\left(d_{i}\right)_{i \in \mathbb{N}_{0}}$ of additive mappings of a ring R, where $d_{0}=i d_{R}$, is called a Jordan triple higher derivation if $d_{n}(x y x)=$ $\sum_{i+j+k=n} d_{i}(x) d_{j}\left(y^{i}\right) d_{k}\left(x^{i+j}\right)$ holds for all $x, y \in R$. Ferrero and Haetinger [9] have proved that every Jordan higher derivation of a 2-torsion free ring is a Jordan triple higher derivation. They also have proved that every Jordan triple higher derivation of a 2-torsion free semiprime ring is a higher derivation. Later on, Cortes and Haetinger [6] have defined the concept of generalized higher derivations. A family $F=\left\{f_{i}\right\}_{i \in \mathbb{N}_{0}}$ of additive mappings of a ring R such that $f_{0}=i d_{R}$ is said to be a generalized higher derivation, (resp. a generalized Jordan higher derivation) of R if there exists a higher derivation (resp. Jordan higher derivation) $D=\left(d_{i}\right)_{i \in \mathbb{N}_{0}}$ and for each $n \in \mathbb{N}_{0}, f_{n}(x y)=$ $\sum_{i+j=n} f_{i}(x) d_{j}(y)$ (resp. $\left.f_{n}\left(x^{2}\right)=\sum_{i+j=n} f_{i}(x) d_{j}(x)\right)$ holds for all $x, y \in R$. They have proved that if R is a 2 -torsion free ring which has a commutator right nonzero divisor and U is a square closed Lie ideal of R, then every generalized higher derivation of U into R is a generalized higher derivation of U into R. A family $F=\left(d_{i}\right)_{i \in \mathbb{N}_{0}}$ of additive mappings of a ring R, where $f_{0}=i d_{R}$, is called a generalized Jordan triple higher derivation if $f_{n}(x y x)=$ $\sum_{i+j+k=n} f_{i}(x) d_{j}\left(y^{i}\right) d_{k}\left(x^{i+j}\right)$ holds for all $x, y \in R$. Jung [17] has proved that every generalized Jordan triple higher derivation on a 2 -torsion free semiprime ring is a generalized Jordan higher derivation.

Motivated by the notions of generalized $*$-derivations and generalized higher derivations, we introduce the notions of generalized higher $*-$ derivations, generalized Jordan higher $*$-derivations and generalized Jordan triple higher $*$-derivations. Our main objective is to show that every generalized Jordan triple higher $*$-derivations of a 6 -torsion free semiprime $*-$ ring is a generalized Jordan higher $*$-derivations. This result extends the main results of [7] and [19]. It is also shown that every generalized Jordan higher *-derivations of a 2 -torsion free $*-$ ring is a generalized Jordan triple higher *-derivations. So we can conclude that the notions of generalized Jordan triple higher $*$-derivations and generalized Jordan higher $*-$ derivations are coincident on 6 -torsion free semiprime $*-$ rings.

2 Preliminaries and Main Results

We begin by the following definition

Definition 2.1. Let \mathbb{N}_{0} be the set of all nonnegative integers and let $F=$ $\left\{f_{i}\right\}_{i \in \mathbb{N}_{0}}$ be a family of additive mappings of $a *-$ ring R such that $f_{0}=i d_{R}$. F is called:
(a) a generalized higher $*$-derivation of R if for each $n \in \mathbb{N}_{0}$ there exists a higher $*$-derivation $D=\left\{d_{i}\right\}_{i \in \mathbb{N}_{0}}$ such that

$$
f_{n}(x y)=\sum_{i+j=n} f_{i}(x) d_{j}\left(y^{*^{i}}\right) \text { for all } x, y \in R ;
$$

(b) a generalized Jordan higher $*$-derivation of R if for each $n \in \mathbb{N}_{0}$ there exists a Jordan higher $*$-derivation $D=\left\{d_{i}\right\}_{i \in \mathbb{N}_{0}}$ such that

$$
f_{n}\left(x^{2}\right)=\sum_{i+j=n} f_{i}(x) d_{j}\left(x^{*^{*}}\right) \text { for all } x \in R ;
$$

(c) a generalized Jordan triple higher $*$-derivation of R if for each $n \in \mathbb{N}_{0}$ there exists a Jordan tipple higher $*-$ derivation $D=\left\{d_{i}\right\}_{i \in \mathbb{N}_{0}}$ such that

$$
f_{n}(x y x)=\sum_{i+j+k=n} f_{i}(x) d_{j}\left(y^{*^{i}}\right) d_{k}\left(x^{*^{i+j}}\right) \text { for all } x, y \in R .
$$

Throughout this section, we will use the following notation:
Notation. Let $F=\left\{f_{i}\right\}_{i \in \mathbb{N}_{0}}$ be a generalized Jordan triple higher $*$-derivation of a $*-$ ring R with an associated Jordan triple higher $*-$ derivation $D=$ $\left\{d_{i}\right\}_{i \in \mathbb{N}_{0}}$. For every fixed $n \in \mathbb{N}_{0}$ and each $x, y \in R$, we denote by $A_{n}(x)$ and $B_{n}(x, y)$ the elements of R defined by:

$$
\begin{aligned}
A_{n}(x) & =f_{n}\left(x^{2}\right)-\sum_{i+j=n} f_{i}(x) d_{j}\left(x^{*^{*}}\right), \\
B_{n}(x, y) & =f_{n}(x y+y x)-\sum_{i+j=n} f_{i}(x) d_{j}\left(y^{*^{i}}\right)-\sum_{i+j=n} f_{i}(y) d_{j}\left(x^{*^{i}}\right) .
\end{aligned}
$$

It can easily be seen that $A_{n}(-x)=A_{n}(x), B_{n}(-x, y)=-B_{n}(x, y)$ and $A_{n}(x+y)=A_{n}(x)+A_{n}(y)+B_{n}(x, y)$ for each pair $x, y \in R$. The following lemmas are crucial in developing the proof of the main results.

Linearizing the last definition the following lemma can be obtained directly.
Lemma 2.1. Let $F=\left\{f_{i}\right\}_{i \in \mathbb{N}_{0}}$ be a generalized Jordan triple higher $*-$ derivation with an associated Jordan triple higher $*-$ derivation $D=\left\{d_{i}\right\}_{i \in \mathbb{N}_{0}}$. Then we have for all $x, y, z \in R$ and each $n \in \mathbb{N}_{0}$,

$$
f_{n}(x y z+z y x)=\sum_{i+j+k=n} f_{i}(x) d_{j}\left(y^{*^{i}}\right) d_{k}\left(z^{*^{i+j}}\right)+f_{i}(z) d_{j}\left(y^{*^{i}}\right) d_{k}\left(x^{*^{i+j}}\right) .
$$

Lemma 2.2. Let $F=\left\{f_{i}\right\}_{i \in \mathbb{N}_{0}}$ be a generalized Jordan triple higher $*-$ derivation of a 6 -torsion free semiprime $*$-ring R with an associated Jordan triple higher $*-$ derivation $D=\left\{d_{i}\right\}_{i \in \mathbb{N}_{0}}$. If $A_{m}(x)=0$ for all $x \in R$ and for each $m<n$, then $A_{n}(x) y^{*^{n}} x^{*^{n}}=0$ for each $n \in \mathbb{N}_{0}$ and for every $x, y \in R$.

Proof. The substitution $(x y+y x)$ for y in the definition of generalized Jordan triple higher $*-$ derivation gives

$$
\begin{aligned}
f_{n}(x(x y+y x) x)= & \sum_{i+j+k=n} f_{i}(x) d_{j}\left((x y+y x)^{*^{i}}\right) d_{k}\left(x^{*^{++j}}\right) \\
= & \sum_{i+j+k=n} f_{i}(x)\left(\sum_{p+q=j} d_{p}\left(x^{*^{i}}\right) d_{q}\left(y^{*^{i+p}}\right)+d_{p}\left(y^{*^{i}}\right) d_{q}\left(x^{*^{i+p}}\right)\right) d_{k}\left(x^{*^{i+j}}\right) \\
= & \sum_{i+p+q+k=n} f_{i}(x) d_{p}\left(x^{*^{i}}\right) d_{q}\left(y^{*^{i+p}}\right) d_{k}\left(x^{*^{i+p+q}}\right) \\
& +\sum_{i+p+q+k=n} f_{i}(x) d_{p}\left(y^{*^{i}}\right) d_{q}\left(x^{*^{i+p}}\right) d_{k}\left(x^{*^{i+p+q}}\right) \\
= & \sum_{i+p=n} f_{i}(x) d_{p}\left(x^{*^{i}}\right) y^{*^{n}} x^{*^{n}} \\
& +\sum_{i+p+q+k=n} f_{i}(x) d_{p}\left(x^{*^{i}}\right) d_{q}\left(y^{*^{i+p}}\right) d_{k}\left(x^{*^{i+p+q}}\right) \\
& +\sum_{i+p+n}^{i+p+q+k=n} f_{i}(x) d_{p}\left(y^{*^{i}}\right) d_{q}\left(x^{*^{i+p}}\right) d_{k}\left(x^{*^{i+p+q}}\right)
\end{aligned}
$$

On the other hand the substitution x^{2} for x in Lemma 2.1 shows, using the assumption on $A_{m}(x), m<n$ and the fact that $D=\left\{d_{i}\right\}$ turns to be a Jordan higher $*$-derivation by [8, Theorem 2.1], that

$$
\left.\begin{array}{rl}
f_{n}\left(x y x^{2}+x^{2} y x\right)= & \sum_{i+j+k=n} f_{i}(x) d_{j}\left(y^{*^{i}}\right) d_{k}\left(x^{2^{*^{i+j}}}\right)+f_{i}\left(x^{2}\right) d_{j}\left(y^{*^{i}}\right) d_{k}\left(x^{*^{i+j}}\right) \\
= & \sum_{i+j+k=n} f_{i}(x) d_{j}\left(y^{*^{i}}\right)\left(\sum_{s+t=k} d_{s}(x) d_{t}\left(x^{*^{s}}\right)\right) \\
& +\sum_{\substack{i+j+k=n \\
i \neq n}}\left(\sum_{l+r=i} f_{l}(x) d_{r}\left(x^{*^{l}}\right)\right) d_{j}\left(y^{*^{i}}\right) d_{k}\left(x^{*^{i+j}}\right) \\
& +f_{n}\left(x^{2}\right) y^{*^{n}} x^{*^{n}} \\
= & \sum_{\substack{i+j+s+t=n}} f_{i}(x) d_{j}\left(y^{*^{i}}\right) d_{s}(x) d_{t}\left(x^{*^{s}}\right) \\
& +\sum_{l+r+j+k=n}^{l+r \neq n}
\end{array} f_{l}(x) d_{r}\left(x^{*^{l}}\right) d_{j}\left(y^{*^{l+r}}\right) d_{k}\left(x^{*^{l+r+j}}\right)\right)
$$

$$
+f_{n}\left(x^{2}\right) y^{*^{n}} x^{*^{n}}
$$

Now, subtracting the two relations so obtained we find that

$$
\left(f_{n}\left(x^{2}\right)-\sum_{i+p=n} f_{i}(x) d_{p}\left(x^{*^{*}}\right)\right) y^{*^{n}} x^{*^{n}}=0
$$

Using our notation, the last relation reduces to the required result
Now, we are ready to prove our main results.
Theorem 2.1. Let R be a 6 -torsion free semiprime $*-$ ring. Then every generalized Jordan triple higher $*-$ derivation $F=\left\{f_{i}\right\}_{i \in \mathbb{N}_{0}}$ of R is a generalized Jordan higher $*-$ derivation of R.

Proof. By [8, Theorem 2.1] we can conclude that the associated D of F turns to be a Jordan higher $*$-derivation. We intend to show that $A_{n}(x)=0$ for all $x \in R$. In case $n=0$, we get trivially $A_{0}(x)=0$ for all $x \in R$. If $n=1$, then it follows from [7, Theorem 2.1] that $A_{1}(x)=0$ for all $x \in R$. Thus we assume that $A_{m}(x)=0$ for all $x \in R$ and $m<n$. From Lemma 2.2, we see that

$$
\begin{equation*}
A_{n}(x) y^{*^{n}} x^{*^{n}}=0 \text { for all } x \in R . \tag{2.1}
\end{equation*}
$$

In case n is even (2.1) reduces to $A_{n}(x) y x=0$. Now, replacing y by $x y A_{n}(x)=$ 0 , we have $A_{n}(x) x y A_{n}(x) x=0$ for all $y \in R$. By the semiprimeness of R, we get

$$
\begin{equation*}
A_{n}(x) x=0 \quad \text { for all } x \in R \tag{2.2}
\end{equation*}
$$

On the other hand, multiplying $A_{n}(x) y x=0$ by $A(x)$ from right and by x from left we get $x A_{n}(x) y x A_{n}(x)=0$ for all $x, y \in R$. Again, by the semiprimeness of R we get

$$
\begin{equation*}
x A_{n}(x)=0 \quad \text { for all } x \in R . \tag{2.3}
\end{equation*}
$$

Linearizing (2.2) we get

$$
\begin{equation*}
A_{n}(x) y+B_{n}(x, y) x+A_{n}(y) x+B_{n}(x, y) y=0 \text { for all } x, y \in R . \tag{2.4}
\end{equation*}
$$

Putting $-x$ for x in (2.4) we get

$$
\begin{equation*}
A_{n}(x) y+B_{n}(x, y) x-A_{n}(y) x-B_{n}(x, y) y=0 \text { for all } x, y \in R . \tag{2.5}
\end{equation*}
$$

Adding (2.4) and (2.5) we get since R is 2 -torsion free

$$
\begin{equation*}
A_{n}(x) y+B_{n}(x, y) x=0 \text { for all } x, y \in R . \tag{2.6}
\end{equation*}
$$

Multiplying (2.6) by $A_{n}(x)$ from right and using (2.3) we get $A_{n}(x) y A_{n}(x)=0$ for all $x, y \in R$. By the semiprimeness of R, we get $A_{n}(x)=0$ for all $x \in R$.

In case n is odd (2.1) reduces to $A_{n}(x) y^{*} x^{*}=0$. By the surjectiveness of the involution we obtain $A_{n}(x) y x^{*}=0$. Now, replacing y by $x^{*} y A_{n}(x)=0$, we have $A_{n}(x) x^{*} y A_{n}(x) x^{*}=0$ for all $y \in R$, By the semiprimeness of R, we get

$$
\begin{equation*}
A_{n}(x) x^{*}=0 \quad \text { for all } x \in R . \tag{2.7}
\end{equation*}
$$

On the other hand multiplying $A_{n}(x) y x^{*}=0$ by $A(x)$ from right and by x^{*} from left we get $x^{*} A_{n}(x) y x^{*} A_{n}(x)=0$ for all $x, y \in R$. Again by the semiprimeness of R gives

$$
\begin{equation*}
x^{*} A_{n}(x)=0 \quad \text { for all } x \in R . \tag{2.8}
\end{equation*}
$$

Linearizing (2.7) we get

$$
\begin{equation*}
A_{n}(x) y^{*}+B_{n}(x, y) x^{*}+A_{n}(y) x^{*}+B_{n}(x, y) y^{*}=0 \text { for all } x, y \in R . \tag{2.9}
\end{equation*}
$$

Putting $-x$ for x in (2.9) we get

$$
\begin{equation*}
A_{n}(x) y^{*}+B_{n}(x, y) x^{*}-A_{n}(y) x^{*}-B_{n}(x, y) y^{*}=0 \text { for all } x, y \in R . \tag{2.10}
\end{equation*}
$$

Adding (2.9) and (2.10) we get since R is 2 -torsion free that

$$
\begin{equation*}
A_{n}(x) y^{*}+B_{n}(x, y) x^{*}=0 \text { for all } x, y \in R . \tag{2.11}
\end{equation*}
$$

Multiplying by $A_{n}(x)$ from right and using (2.8) we get $A_{n}(x) y^{*} A_{n}(x)=0$, by the surjectiveness of the involution we get $A_{n}(x) y A_{n}(x)=0$ for all $x, y \in R$. By the semiprimeness of R, we get $A_{n}(x)=0$ for all $x \in R$. So in either cases we reach to our intended result. This completes the proof of the theorem.

Corollary 2.1 ([8, Theorem 2.1]). Every Jordan triple higher *-derivation of a 6 -torsion free semiprime $*-$ ring is a Jordan higher $*$-derivation.

Corollary 2.2 ([7, Theorem 2.1]). Every generalized Jordan triple $*-$ derivation of a 6-torsion free semiprime *-ring is a generalized Jordan $*-$ derivation.

Theorem 2.2. Let R be a 6-torsion free semiprime $*-$ ring. Then every generalized Jordan higher $*$-derivation $F=\left\{f_{i}\right\}_{i \in \mathbb{N}_{0}}$ of R is a generalized Jordan triple higher $*-$ derivation of R.

Proof. In view of [8, Theorem 2.2], the associated derivation D of F turns to be a Jordan triple higher $*-$ derivation. By definition we have

$$
\begin{equation*}
f_{n}\left(x^{2}\right)=\sum_{i+j=n} f_{i}(x) d_{j}\left(x^{*^{i}}\right) . \tag{2.12}
\end{equation*}
$$

Putting $v=x+y$ and using (2.12) we obtain

$$
\begin{aligned}
f_{n}\left(v^{2}\right) & =\sum_{i+j=n} f_{i}(x+y) d_{j}\left((x+y)^{*^{i}}\right) \\
& =\sum_{i+j=n} f_{i}(x) d_{j}\left(x^{*^{i}}\right)+f_{i}(y) d_{j}\left(y^{*^{i}}\right)+f_{i}(x) d_{j}\left(y^{*^{i}}\right)+f_{i}(y) d_{j}\left(x^{*^{i}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
f_{n}\left(v^{2}\right) & =f_{n}\left(x^{2}+x y+y x+y^{2}\right) \\
& =f_{n}\left(x^{2}\right)+f_{n}\left(y^{2}\right)+f_{n}(x y+y x) \\
& =\sum_{l+m=n} f_{l}(x) d_{m}\left(x^{*^{l}}\right)+\sum_{r+s=n} f_{r}(y) d_{s}\left(y^{*^{r}}\right)+f_{n}(x y+y x) .
\end{aligned}
$$

Comparing the last two forms of $f_{n}\left(v^{2}\right)$ gives

$$
\begin{equation*}
f_{n}(x y+y x)=\sum_{i+j=n} f_{i}(x) d_{j}\left(y^{x^{i}}\right)+f_{i}(y) d_{j}\left(x^{x^{*}}\right) \tag{2.13}
\end{equation*}
$$

Now put $w=x(x y+y x)+(x y+y x) x$. Using (2.13) we get

$$
\begin{aligned}
f_{n}(w)= & \sum_{i+j=n} f_{i}(x) d_{j}\left((x y+y x)^{*^{i}}\right)+\sum_{i+j=n} f_{i}(x y+y x) d_{j}\left(x^{*^{*^{i}}}\right) \\
= & \sum_{i+j=n} \sum_{r+s=j} f_{i}(x) d_{r}\left(x^{*^{i}}\right) d_{s}\left(y^{*^{i+r}}\right)+\sum_{i+j=n} \sum_{r+s=j} f_{i}(x) d_{r}\left(y^{*^{i}}\right) d_{s}\left(x^{*^{i+r}}\right) \\
& +\sum_{i+j=n} \sum_{k+l=i} f_{k}(x) d_{l}\left(y^{*^{k}}\right) d_{j}\left(x^{x^{*+l}}\right)+\sum_{i+j=n} \sum_{k+l=i} f_{k}(y) d_{l}\left(x^{*^{k}}\right) d_{j}\left(x^{*^{k+l}}\right) \\
= & \sum_{i+r+s=n} f_{i}(x) d_{r}\left(x^{*^{i}}\right) d_{s}\left(y^{x^{*+r}}\right)+2 \sum_{i+j+k=n} f_{i}(x) d_{j}\left(y^{*^{i}}\right) d_{k}\left(x^{*^{i+j}}\right) \\
& +\sum_{k+l+j=n} f_{k}(y) d_{l}\left(x^{*^{k}}\right) d_{j}\left(x^{*^{k+l}}\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
f_{n}(w)= & f_{n}\left(\left(x^{2} y+y x^{2}\right)+2 x y x\right) \\
= & f_{n}\left(x^{2} y+y x^{2}\right)+2 f_{n}(x y x) \\
= & 2 f_{n}(x y x)+\sum_{r+s+j=n} f_{r}(x) d_{s}\left(x^{*^{r}}\right) d_{j}\left(y^{*^{r+s}}\right) \\
& +\sum_{i+k+l=n} f_{i}(y) d_{k}\left(x^{*^{i}}\right) d_{l}\left(x^{*^{i+k}}\right) .
\end{aligned}
$$

Comparing the last two forms of $f_{n}(w)$ and using the fact that R is 2-torsion free we obtain the required result

By Theorem 2.1 and Theorem 2.2, we can state the following.
Theorem 2.3. The notions of a generalized Jordan higher $*-$ derivation and a generalized Jordan triple higher $*-$ derivation on a 6 -torsion free semiprime *-ring are equivalent.

Corollary 2.3 ([8, Theorem 2.3]). The notions of a Jordan higher *-derivation and a Jordan triple higher $*-$ derivation on a 6 -torsion free semiprime *-ring are equivalent.

Acknowledgements: The author would like to express sincere gratitude to Prof. M.N. Daif for his constant encouragement and valuable discussions.

References

[1] M. Ashraf, S. Ali and C. Haetinger, On derivations in rings and their applications, Aligarh Bull. Math., 25(2) (2006), 79-107.
[2] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc., 104(4) (1988), 1003-1006.
[3] M. Brešar, Jordan mappings of semiprime rings, J. Algebra, 127(1) (1989), 218-228.
[4] M. Brešar and J. Vukman, On some additive mappings in rings with involution, Aequationes Math. J., 38(1989), 178-185.
[5] M. Brešar, On the distance of the composition of the two derivations to the generalized derivations, Glasgow Math. J., 33(1) (1991), 89-93.
[6] W. Cortes and C. Haetinger, On Jordan generalized higher derivations in rings, Turk. J. Math., 29(2005), 1-10.
[7] M.N. Daif and M.S. El-Sayiad, On Jordan and Jordan *-generalized derivations in semiprime rings with involution, Int. J. Contemp. Math. Sci., 2(2007), 1487-1492.
[8] O.H. Ezzat, A note on Jordan triple higher *-derivations in semiprime rings, ISRN Algebra, Article ID 365424(2014), 5 pages.
[9] M. Ferrero and C. Haetinger, Higher derivations and a theorem by Herstein, Quaest. Math., 25(2002), 249-257.
[10] C. Haetinger, M. Ashraf and S. Ali, On higher derivations: A survey, Int. J. Math., Game Theory and Algebra, 18(2011), 359-379.
[11] H. Hasse and F.K. Schmidt, Noch eine begrüdung der theorie der höheren differential quotienten in einem algebraaischen funktionenkörper einer unbestimmeten, J. Reine Angew. Math., 177(1937), 215-237.
[12] I.N. Herstein, Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8(1957), 1104-1110.
[13] I.N. Herstein, Topics in Ring Theory, University of Chicago Press, (1969).
[14] D. Hoffmann and P. Kowalski, Integrating Hasse-Schmidt derivations, J. Pure Appl. Algebra, (2014), (in Press).
[15] B. Hvala, Generalized derivations in rings, Comm. Algebra, 26(4) (1998), 1147-1166.
[16] W. Jing and S. Lu, Generalized Jordan derivations on prime rings and standard operator algebras, Taiwanese J. of Math., 7(4) (2003), 605-613.
[17] Y. Jung, Generalized Jordan triple higher derivations on prime rings, Ind. J. of Pure and Applied Math., 36(9) (2005), 513-524.
[18] L.N. Macarro, On the modules of m-integrable derivations in non-zero characteristic, Advances in Mathematics, 229(5) (2012), 2712-2740.
[19] J. Vukman, A note on Jordan *-derivations in semiprime rings with involution, Int. Math. Forum., 1(13) (2006), 617-622.
[20] Z. Xiao and F. Wei, Jordan higher derivations on triangular algebras, Linear Algebra and its Applications, 432(10) (2010), 2615-2622.

[^0]: ${ }^{1}$ This paper is a part of the author's Ph.D. dissertation under the supervision of Prof. M. N. Daif

