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Abstract
The purpose of this paper is to introduce representation of kinetic fields

in Schrödinger equations and to give the relation between potential terms and
metric matrices via general structure of spaces rather than Euclidean spaces.
We obtain two results from the point of view in Fourier analysis and pseudo-
differential operators. One is the derivation of the potential terms in Schrö-
dinger equations from the representation of kinetic fields by metric matrices in
Schrödinger type equation, the other is the derivation the metric matrices in
Schrödinger type equation from the potential terms in Schrödinger equation in
the one-dimensional Euclidean space.
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1 Introduction

Let us consider the Cauchy problem for Schrödinger equations

i~
∂

∂t
ψ(t, x) = Hψ(t, x) (1)

and

ψ(0, x) = ψ0(x), (2)



2 Yuya Dan

where ~ denotes the Plank constant, H the Hamilton operator (Hamiltonian)
and ψ0 the initial data. A wavefunction in the Hilbert spaces is a complex-
valued mapping

ψ : R× Rn → C (3)

satisfying the above Cauchy problem. When a quantum particle of mass m > 0
is in the potential V (t, x), we can write

H = − ~2

2m
∆ + V (t, x), (4)

where Laplace operator (Laplacian) 4 is defined by

4 =
n∑
j=1

∂2

∂x2j
. (5)

Our main results in this paper follow:

Theorem 1.1 The Schrödinger type equation

i
∂

∂t
ψ(t, x) = −1

2
∇A(t, x)∇Tψ(t, x) (6)

is equivalent to the Schrödinger equation with potential terms

i
∂

∂t
ψ(t, x) =

(
−1

2
∆ + V (t, x)

)
ψ(t, x), (7)

if

V (t, x) =
1

2
∇(E − A(t, x))∇T , (8)

where A(t, x) is a metric matrix or coefficients of the second order differential
operator.

Theorem 1.2 Let n = 1. The Schrödinger equation with potential terms

i
∂

∂t
ψ(t, x) =

(
−1

2

∂2

∂x2
+ V (t, x)

)
ψ(t, x) (9)

is equivalent to the Schrödinger type equation

i
∂

∂t
ψ(t, x) = −1

2

∂

∂x
a(t, x)

∂

∂x
ψ(t, x), (10)

if

a(t, x) = 1− 2

(
∂

∂x

)−1
V (t, x)

(
∂

∂x

)−1
. (11)

In should be remarked that we often use the natural unit system ~ = 1 for
simplicity.
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2 Preliminary

2.1 Fourier Transform

Definition 2.1 For an element ψ = ψ(x) in Hilbert space H, Fourier trans-
form ψ̂ = ψ̂(ξ) is defined by

ψ̂(ξ) = (2π)−
n
2

∫
Rn
e−ix·ξψ(x) dx, (12)

where ξ ∈ Rn. We also write Fψ for ψ̂.

Since x and ξ are canonically conjugate variables, ψ̂(ξ) is considered to be
a wavefunction of ξ instead of x.

We have Plancherel formula [8]

‖ψ‖ = ‖ψ̂‖ (13)

from the definition of Fourier transform.

Definition 2.2 For an element φ = φ(ξ) in the Hilbert space H, the inverse
Fourier transform φ̌ = φ̌(x) is defined by

φ̌(x) = (2π)−
n
2

∫
Rn
eix·ξφ(ξ) dξ. (14)

we also write F−1φ for ψ̌.

In our definition of the Fourier transform and the inverse Fourier transform,
coefficients (2π)−

n
2 are used for the simple expression

F−1Fψ = ψ, FF−1φ = φ (15)

for any ψ ∈ H and any φ ∈ H.

2.2 Schrödinger Equations

A wavefunction ψ satisfies Schrödinger equations

i
∂

∂t
ψ(t, x) = Hψ(t, x), (16)

where H denotes Hamiltonian. In quantum mechanics, we often use the form

H = −1

2
∆ + V (t, x), (17)
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where V (t, x) is the potential in the quantum system depends on time t and
space x, which represents interactions of electromagnetic forces for example.

Let us consider

i
∂

∂t
ψ(t, x) =

(
−1

2
∆ + V (t, x)

)
ψ(t, x) (18)

for simplicity.
Schrödinger equation (18) is a partial differential equation (PDE) of evolu-

tion along time t. Therefore if initial data of ψ(t, x) is given at t = 0, we can
obtain the behavior of the wavefunction ψ(t, x) for arbitrary time t ∈ R. In
fact, when V (t, x) is imposed on appropriate conditions, if we give ψ0 as initial
data from the Hilbert space H to the equation, such as

ψ(0, x) = ψ0(x), (19)

there exists a unique solution to Schrödinger equation (18). It should be
remarked that the estimate of energy

‖ψ(t, •)‖ ≤ C‖ψ0‖ (20)

holds with some C > 0 for any t ∈ R. Moreover, we can take C = 1 and
replace the inequality by the identity when V = 0.

Fourier transform plays an important role in solving Schrödinger equations.
For an element ψ in Hilbelt spaces, integral by part yields

F
[
∂

∂xj
ψ

]
(t, ξ) = (2π)−

n
2

∫
Rn
e−ix·ξ

∂

∂xj
ψ(x) dx

= −(2π)−
n
2

∫
Rn

∂

∂xj
(e−ix·ξ)ψ(x) dx

= iξj(2π)−
n
2

∫
Rn
e−ix·ξψ(x) dx

= iξjψ̂(ξ).

(21)

In other words, the differential operator with respect to x is replaced by the
multiplication of momentum. Moreover

−4eix·ξ = −
n∑
j=1

∂2

∂x2j
eix·ξ =

n∑
j=1

ξ2j e
ix·ξ = |ξ|2eix·ξ (22)

indicates that the function eix·ξ is the eigenfunction of the operator −4 cor-
responding to the eigenvalue of |ξ|2. Hence, the inverse formula of Fourier
transform

ψ(t, x) = (2π)−
n
2

∫
Rn
eix·ξψ̂(t, ξ) dξ (23)
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represents the expansion of the operator −4 via eigenfunction eix·ξ. If we take
the Fourier transform both of the sides in the free Schrödinger equation with
V = 0

i
∂

∂t
ψ(t, x) = −1

2
∆ψ(t, x) (24)

which describes the free field or the vacuum, then we obtain

i
∂

∂t
ψ̂(t, ξ) =

1

2
|ξ|2ψ̂(t, ξ). (25)

This equation is an ordinary differential equation with a variable t and a pa-
rameter ξ, so that we can solve

ψ̂(t, ξ) = e−i
|ξ|2
2
tψ̂0(ξ). (26)

Since ψ̂ is an expression of a wavefunction in momentum space Rn, the inverse
formula of Fourier transform implies the expression of the wavefunction in
ordinary coordinate space

ψ(t, x) = (2π)−
n
2

∫
Rn
eix·ξe−i

|ξ|2
2
tψ̂0(ξ) dξ. (27)

From the relation (26) and Plancherel formula, we also have the energy esti-
mate to the vacuum

‖ψ(t, •)‖ = ‖ψ̂(t, •)‖ = ‖ψ̂0‖ = ‖ψ0‖. (28)

For instance, when we take Gaussian distribution

ψ0(x) = e−
1
2
|x|2 (29)

as initial data in the vacuum, then we can calculate

ψ̂0(ξ) = e−
1
2
|ξ|2 (30)

by the definition of Fourier transform. Accordingly we have the wavefunction

ψ(t, x) = {2π(1 + it)}−
n
2 e−

|x|2
2(1+it) (31)

which satisfies the free Schrödinger equation (24). In this case, we have the
decay rate of the survival probability

ψ(t, x)ψ(t, x) =
{

4π2(1 + t2)
}−n

2 e
− |x|2

1+t2 ≤ (2π)−nt−n, (32)

so that we obtain
|ψ(t, x)| ≤ (2π)−n/2t−n/2 (33)
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for any t ∈ R and x ∈ Rn, as a pointwise estimate in the decay of the wave-
function.

This is a result of estimate for time decay in the free fields. We have already
obtained the results [9] [6] for time decay property of wavefunctions or survival
probabilities. Those results suggest that the decay rate is essentially based on
the momentum distribution around the origin. We also know the example [2]
for n = 1.

3 Representation of Kinetic Fields

The Schrödinger equation with potential terms

i
∂

∂t
ψ(t, x) = −1

2
4ψ(t, x) + V (t, x)ψ(t, x) (34)

describes state of quantum partiles exist in the potential V (t, x).
As generalization of Euclidean spaces Rn we introduce a metric gjk (j, k =

1, . . . , n) in order to define the coordinate system of a manifold. A metric gjk
may depend time and space variables gjk = gjk(t, x).

With a metric of fields, we can write the Schrödinger equation such as

i
∂

∂t
ψ(t, x) = −1

2

n∑
j=1

n∑
k=1

∂

∂xj

(
gjk(t, x)

∂

∂xk
ψ(t, x)

)
, (35)

which is also called the Schrödinger type equation.
Although metric gjk represents arbitrary structure of manifolds, we should

impose some restrictions in the Cauchy problem for Schrödinger type equa-
tions.

First, gjk is real, that is

gjk : (t, x) ∈ R× Rn → R. (36)

for any j and k possible. Second, gjk is symmetric, that is

gkj = gjk (37)

for any j and k possible.
Third, gjk is elliptic, that is there exists C > 0 such that

n∑
j=1

n∑
k=1

gjk(t, x)ξjξk ≥ C|ξ|2 (38)

holds for any ξ = (ξ1, . . . , ξn) ∈ Rn.
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3.1 Exsistence and Uniqueness of Wavefunctions

Let us consider the Schrödinger type equation

i
∂

∂t
ψ(t, x) = −1

2

n∑
j=1

n∑
k=1

∂

∂xj

(
gjk(t, x)

∂

∂xk
ψ(t, x)

)
(39)

with initial data ψ(0, x) = ψ0(x).
In the following discussion, <z and =z stand respectively for the real and

the imaginary part of a complex number z ∈ C. In order to estimate the
energy for a wavefunction ψ(t, x), we have

d

dt
‖ψ(t, •)‖2 =

d

dt
(ψ(t, •), ψ(t, •))

=

(
d

dt
ψ(t, •), ψ(t, •)

)
+

(
ψ(t, •), d

dt
ψ(t, •)

)
=

(
d

dt
ψ(t, •), ψ(t, •)

)
+

(
d

dt
ψ(t, •), ψ(t, •)

)
= 2<

(
d

dt
ψ(t, •), ψ(t, •)

)
= 2<

(
− 1

2i

n∑
j=1

n∑
k=1

∂

∂xj

(
gjk(t, x)

∂

∂xk
ψ(t, •)

)
, ψ(t, •)

)

= −=

(
n∑
j=1

n∑
k=1

∂

∂xj

(
gjk(t, x)

∂

∂xk
ψ(t, •)

)
, ψ(t, •)

)

= =
n∑
j=1

n∑
k=1

(
gjk(t, x)

∂

∂xk
ψ(t, •), ∂

∂xj
ψ(t, •)

)
(40)

and the property of gjk implies

n∑
j=1

n∑
k=1

(
gjk(t, x)

∂

∂xk
ψ(t, •), ∂

∂xj
ψ(t, •)

)
=

n∑
j=1

n∑
k=1

(
∂

∂xj
ψ(t, •), gjk(t, x)

∂

∂xk
ψ(t, •)

)
=

n∑
j=1

n∑
k=1

(
gjk(t, x)

∂

∂xj
ψ(t, •), ∂

∂xk
ψ(t, •)

)
=

n∑
k=1

n∑
j=1

(
gkj(t, x)

∂

∂xk
ψ(t, •), ∂

∂xj
ψ(t, •)

)
=

n∑
k=1

n∑
j=1

(
gjk(t, x)

∂

∂xk
ψ(t, •), ∂

∂xj
ψ(t, •)

)
.

(41)
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Remember the identity z − z̄ = 2=z, we conclude

d

dt
‖ψ(t, •)‖2 = 0 (42)

which is equivalent to
‖ψ(t, •)‖ = ‖ψ0‖. (43)

This energy estimate assures that there exists a unique wavefunction ψ in H
for any time if we take initial data ψ0 from Hilbert space H. After all, we have
the fact that the Cauchy problem for the above Schrödinger type equations is
wellposed.

3.2 Matrix Representation in Schrödinger Equations

Definition 3.1 We define the nabla operator

∇ =

(
∂

∂x1
,
∂

∂x2
, · · · , ∂

∂xn

)
(44)

as a vector expression of differential operators.

Laplacian is expressed by 4 = ∇ · ∇.
As matrix representation of the metric gjk, we use

A(t, x) =


g11(t, x) g12(t, x) · · · g1n(t, x)

g21(t, x)
. . .

...
...

. . .
...

gn1(t, x) . . . . . . gnn(t, x)

 . (45)

Then, we obtain the simple form

i
∂

∂t
ψ(t, x) = −1

2
∇A(t, x)∇Tψ(t, x) (46)

for Schrödinger type equations with matrix the A(t, x), where ∇T denotes the
transpose vector of ∇. When A(t, x) = E, the operator in the right-hand side
is equal to Laplacian 4, so that the identity matrix E in Rn×n represents the
structure of the free field without potential terms.

3.3 Potential Representation via Metric

It is neccesary that

−1

2
∇A(t, x)∇Tψ(t, x) = −1

2
4ψ(t, x) + V (t, x)ψ(t, x), (47)
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if Schrödinger type equations and Schrödinger equations with potential terms
are equivalent. Paying attention to 4 = ∇E∇T , we obtain

V (t, x) =
1

2
∇(E − A(t, x))∇T . (48)

The potential term V (t, x) in the left-hand side is represented by the operators
including metric. It is trivial that V (t, x) = 0 if A(t, x) = E.

3.4 Representation of Metric Matrices via Potential

Contrary to the previous section, we represent metric matrices via potential
terms. Because the number of the elements of a metric matrix A is n × n,
representation form of the metric matrix via potential terms is not unique.
Hence, we seek a natural form of the coefficients of the second differential
operators in Schrd̈inger type equations in n = 1.

The condition that Schrd̈inger type equations and Schrd̈inger equations
with potential terms are equivalent is

−1

2

∂

∂x

(
a(t, x)

∂

∂x
ψ(t, x)

)
= −1

2

∂2

∂x2
ψ(t, x) + V (t, x)ψ(t, x). (49)

For some point x0 ∈ R, integrating around x implies

a(t, x)
∂

∂x
ψ(t, x)− a(t, x0)

∂

∂x
ψ(t, x0)

=
∂

∂x
ψ(t, x)− ∂

∂x
ψ(t, x0)− 2

∫ x

x0

V (t, y)ψ(t, y) dy.
(50)

We know that u(t, x0)→ 0 when x0 →∞. Therefore,

a(t, x)
∂

∂x
ψ(t, x) =

∂

∂x
ψ(t, x)− 2

∫ x

∞
V (t, y)ψ(t, y) dy. (51)

Now, we put

Q(t, x) =
1

2
(E − A(t, x)) (52)

using the matrix Q(t, x) = [q(t, x)], the equation (49) becomes

∂

∂x
q(t, x)

∂

∂x
ψ(t, x) = V (t, x)ψ(t, x)

=
∂

∂x

(
∂

∂x

)−1
V (t, x)

(
∂

∂x

)−1
∂

∂x
ψ(t, x).

(53)

It is neccesary for the representation of metric matrices via potential terms
that the relation

q(t, x) =

(
∂

∂x

)−1
V (t, x)

(
∂

∂x

)−1
(54)
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holds, where we assume the integral constant q(t, x0) is 0 in the choce of x0.
Hence, we have

A(t, x) = E − 2Q(t, x) = 1− 2

(
∂

∂x

)−1
V (t, x)

(
∂

∂x

)−1
(55)

for n = 1.
In the above discussion, for f satisfies

ξ−1f̂(ξ) ∈ H, (56)

we used (
∂

∂x

)−1
f(x) = (2π)−

n
2

∫ ∞
−∞

eix·ξξ−1f̂(ξ) dξ. (57)

This defines the inverse of differential operators via Fourier transform.
In general, differential operators are expressed by

p(D)f(x) = (2π)−
n
2

∫
Rn
eix·ξp(ξ)f̂(ξ) dξ, n = 1 (58)

using a polynomial

p(ξ) =
N∑
j=0

cjξ
j = c0 + c1ξ + · · ·+ cNξ

N . (59)

Here f is N times differentiable and

D = −i ∂
∂x

(60)

is the corresponding differential operator. It should be remarked from the
expression via Fourier transform that f is N times differentiable if and only
if ξN f̂ belongs to H. It is also clear that p may not a polynomial, and that p
can be an arbitrary function for natural extension.

4 Concluding Remarks

We have proven the necessary and sufficient condition for the equivalence
between Schrödinger type equation and Schrödinger equation with potential
terms.

We can derive the potential terms in Schrödinger equation from the repre-
sentation of fields in Schrödinger type equation, while we can derive the metric
matrices in Schrödinger type equation from the potential terms in Schrödinger
equation only in n = 1. The latter claim in n ≥ 2 remains open.

It is possible to discuss the mathematical structure of wavefunctions in
Schrödinger equation via Riemannian manifolds instead of potential terms.
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