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Abstract

In this paper, some tensor commutation matrices are expressed in termes of
the generalized Pauli matrices by tensor products (of the Pauli matrices). This
expression and some other relations in terms of other generalizations of the
Pauli matrices make us to notice that there should be another generalization of
the Pauli matrices, which generalizes the generalization of the Pauli matrices
by tensor product.
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1 Introduction

The tensor product of matrices is not commutative in general. However, a
tensor commutation matrix (TCM) n ® p, Sy, commutes the tensor product
A® B for any A € C"" and B € CP*? as the following

Snep(A® B) = (B ® A)Sngy
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The tensor commutation matrices (TCMs) are useful in quantum theory and
for solving matrix equations. In quantum theory Ssso can be expressed in the
following way (Cf. for example[1, 9, 2])
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The Gell-Mann matrices are a generalization of the Pauli matrices. The TCM
n ® n can be expressed in terms of n x n Gell-Mann matrices, under the fol-
lowing expression [5]

n2—1
1
In®In+§ZAi®Ai (2)

=1

Spom =
n
This expression of Sy, suggests us the topic of generalizing the formula (1)
to an expression in terms of some generalized Pauli matrices.

For the calculus, we have used SCILAB, a mathematical software for numerical
analysis.

2 Some Generalizations of the Pauli Matrices

In this section we give some generalizations of the Pauli matrices other than
the Gell-Mann matrices.
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2.1 Kibler Matrices

Let j = exp(35*), the Kibler matrices are
1 00 010 0 01
ko=(0 1 0. ki=(0 0 1) kn=[1 0 0],
0 01 1 00 010
1 00 1 00 045 0
ks=10 5 0], ks=1[0 52 0|, ks=1{0 0 j5*],
00 52 0 0 j 10 0
00 j 00 42 0 42 0
k=11 0 0),ks=1[1 0 0] k=10 0 5], arethe 3 x 3 Kibler
0 0 04 0 1 00

2
matrices [4].
The Kibler matrices are traceless and
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with P = a permutation matrix.
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2.2 The Nonions

The nonions matrices are [10]

1 00 010 0 10
w= 01 0la=(001].e=(0 0

0 0 1 1 0 0 320 0

01 0 0 01 0 0 y
=100 7, a=|100,¢s=1[1 0 0],

i 00 01 0 0 2 0

00 j i 00 20 0
=10 0|, ¢z=(0 4% 0], gs=]0 5 0

0 57 0 0 0 1 0 01

The nonions are traceless and

8

1 1

-1 I — i = P 4
33® 3+3;Q®q (4)



4 Christian Rakotonirina et al.

2.3 Generalization by Tensor Products of Pauli Matri-
ces

There are also some generalization of the Pauli matrices constructed by tensor
products (of the Pauli matrices), namely (0; ® 0;)o<i j<3, (0: @ 0} ® 0k )o<i jk<3,
(01, ® 01, @ ... @ T4, )0<iy o.....in<3 (Cf. for example, [7, 8]). The elements of the
set (04, ® 04y @ ... @ 04, )0<in i,....in<3 satisfy the following properties (Cf. for
example, [7, 8])

¥ =X, (hermitian) (5)
2 = Iyn (Square root of unity) (6)
TrY} Yy, = 2" (Orthogonal) (7)

3 Expression of a Tensor Commutation Ma-
trix in Terms of the Generalized Pauli Ma-
trices by Tensor Products

Definition 3.1 For n € N*,n > 2, we call tensor commutation matrix
n @ n the permutation matrix S,e, such that

Sn®n<a®b) =b®a
for any a,b € C"**.

The relations (1), (2), (3) and (4) suggest us that there should be a general-
ization of the Pauli matrices (s;)p<i<n2—1 such that

n2-1

1
® +n25®s (8)

=1

1

Sn@n =
n

We would like to look for matrices (s;)o<i<s which satisfy the relation (8). The
TCMs Syg4, Sses can be expressed respectively in terms of the generalized
Pauli matrices <0i X O-j)OSi,jS& (Ui ® 0 X Uk)OSi,j,kS?) in the fOHOWiIlg way.

15
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where $1 =00Q01, So = 09gXR092, ..., S13 = 0'3®01, S14 = 03X 09, S15 = 03X 03.
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where S| = 0g®09®01,..., Sg3 = 03 ®0o3R 03 That is to say, this generalization
by the tensor products satisfy the relation (8). So we think that (8) should be
true for n = 2P, p € N, p > 2. For proving it, we give the following lemma
which is the generalization of a proposition in [6].

Lemma 3.2 If Y M;® N;=» A;® B then

j=1 i=1

ZM®K®N ZA@K@BZ

7j=1

Proof. Let K = (K}}) € C¥, M; = M}, € C™, A; = Af),
N; = N{t,, € C™" and B; = B/}, € C™*

()2 ()12
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are respectlvely the elements of the k1j1ly row and ksjsly colomn

theZM@K@N andZAZ@)K@B That is true for any k1, j1, l1, k2, Ja2, lo.

j=1 =1

HenceZM@K@N ZA@K@B n

7=1

Proposition 3.3 For anyn € N*,n > 2,

3
1
Spom =57 D (50,0 ©0,)® (0,80, 8 B a,)

11,82, =0

Proof. Let us prove it by reccurence. According to the relation (1), the
proposition is true for n = 1. Suppose that it is true for an € N*,n > 2. Let

us take e; = (é), €y = <(1)>, which form a basis of the C-vector space C***.
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It is sufficient to prove

3
1
on+1 Z (0j1 Q- Jjn+1) ® (Ujl Q- 0jn+1)(€a1 K- eOtn+1)

j17j27"~7jn+120

® (651 - ® €Bn+1) = (651 - ® 65n+1) ® (eal - ® ean+1)
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According to the lemma above
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jn+1:0
from the relation (1)
13

SQ@Q(an+1 ® BH—H) B 5 Z (an+1€an+1) ® (O-jn+166n+1) = €641 & Canpy

jn+1:0

According again to the lemma above

N[ —

3
D (es @ ®ep,) @ (04,1 €a0) ® (€0 @+ D €q,) ® (0),.,65,.,)
Jn4+1=0

= (6,81 ® e ® eﬁn ® eﬁn—‘—l) ® (eal ® e ® eOCn ® 6Oln-‘—l)
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Conclusion and Discussion

We have calculated the left hand side of the relations (3) and (4), respectively
for the 3 x 3 Pauli matrices of Kibler and the nonions in expecting to have
the formula (8), for n = 3. Instead of S3g3 we have the permutation matrix P
as result. However, that makes us to think that there should be other 3 x 3
Pauli matrices which would satisfy the relation (8). These 3 x 3 Pauli matrices
should not be the normalized Gell-Mann matrices in [3], because the 4 x 4
matrices which satisfy the relation (8) above are not the 4 x 4 normalized
Gell-Mann matrices in [3], even though these normalized Gell-Mann matrices
satisfy (8). The relation (8) is satisfied by the generalized Pauli matrices by
tensor products, but only for n = 2¥. However, there is no 3 x 3 matrix, formed
by zeros in the diagonal which satisfy both the relations (5) and (6). Thus,
the 3 x 3 Pauli matrices which should satisfy (8), if there exist, do not satisfy
both the relations (5),(6) and (7) like the generalized Pauli matrices by tensor
products.
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