Gen. Math. Notes, Vol. 23, No. 1, July 2014, pp.1-8
ISSN 2219-7184; Copyright © ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

Tensor Commutation Matrices and Some Generalizations of the Pauli Matrices

Christian Rakotonirina ${ }^{1}$ and Joseph Rakotondramavonirina ${ }^{2}$
${ }^{1}$ Institut Supérieur de Technologie d'Antananarivo IST-T, BP 8122, Madagascar, Département de Physique
Laboratoire de Rhéologie des Suspensions
LRS, Université d'Antananarivo, Madagascar
E-mail: rakotonirinachristianpierre@gmail.com
${ }^{2}$ Département de Mathématiques et Informatique
Université d'Antananarivo, Madagascar
E-mail: joseph.rakotondramavonirina@univ-antananarivo.mg

(Received: 5-3-14 / Accepted: 22-4-14)

Abstract

In this paper, some tensor commutation matrices are expressed in termes of the generalized Pauli matrices by tensor products (of the Pauli matrices). This expression and some other relations in terms of other generalizations of the Pauli matrices make us to notice that there should be another generalization of the Pauli matrices, which generalizes the generalization of the Pauli matrices by tensor product.

Keywords: Tensor product, Tensor commutation matrices, Pauli matrices, Generalized Pauli matrices, Kibler matrices, Nonions.

1 Introduction

The tensor product of matrices is not commutative in general. However, a tensor commutation matrix (TCM) $n \otimes p, S_{n \otimes p}$ commutes the tensor product $A \otimes B$ for any $A \in \mathbf{C}^{n \times n}$ and $B \in \mathbf{C}^{p \times p}$ as the following

$$
S_{n \otimes p}(A \otimes B)=(B \otimes A) S_{n \otimes p}
$$

The tensor commutation matrices (TCMs) are useful in quantum theory and for solving matrix equations. In quantum theory $S_{2 \otimes 2}$ can be expressed in the following way (Cf. for example[1, 9, 2])

$$
\begin{equation*}
S_{2 \otimes 2}=\frac{1}{2} I_{2} \otimes I_{2}+\frac{1}{2} \sum_{i=1}^{3} \sigma_{i} \otimes \sigma_{i} \tag{1}
\end{equation*}
$$

where $\sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$ and $\sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ are the Pauli matrices, I_{2} is the 2×2 unit-matrix.

$$
\begin{gathered}
S_{2 \otimes 2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
S_{3 \otimes 3}=\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

The Gell-Mann matrices are a generalization of the Pauli matrices. The TCM $n \otimes n$ can be expressed in terms of $n \times n$ Gell-Mann matrices, under the following expression [5]

$$
\begin{equation*}
S_{n \otimes n}=\frac{1}{n} I_{n} \otimes I_{n}+\frac{1}{2} \sum_{i=1}^{n^{2}-1} \Lambda_{i} \otimes \Lambda_{i} \tag{2}
\end{equation*}
$$

This expression of $S_{n \otimes n}$ suggests us the topic of generalizing the formula (1) to an expression in terms of some generalized Pauli matrices.
For the calculus, we have used SCILAB, a mathematical software for numerical analysis.

2 Some Generalizations of the Pauli Matrices

In this section we give some generalizations of the Pauli matrices other than the Gell-Mann matrices.

2.1 Kibler Matrices

Let $j=\exp \left(\frac{2 \pi i}{3}\right)$, the Kibler matrices are
$k_{0}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), k_{1}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right), k_{2}=\left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$,
$k_{3}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & j^{2}\end{array}\right), k_{4}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & j^{2} & 0 \\ 0 & 0 & j\end{array}\right), k_{5}=\left(\begin{array}{ccc}0 & j & 0 \\ 0 & 0 & j^{2} \\ 1 & 0 & 0\end{array}\right)$,
$k_{6}=\left(\begin{array}{ccc}0 & 0 & j \\ 1 & 0 & 0 \\ 0 & j^{2} & 0\end{array}\right), k_{7}=\left(\begin{array}{ccc}0 & 0 & j^{2} \\ 1 & 0 & 0 \\ 0 & j & 0\end{array}\right) k_{8}=\left(\begin{array}{ccc}0 & j^{2} & 0 \\ 0 & 0 & j \\ 1 & 0 & 0\end{array}\right)$, are the 3×3 Kibler matrices [4].
The Kibler matrices are traceless and

$$
\begin{equation*}
\frac{1}{3} I_{3} \otimes I_{3}+\frac{1}{3} \sum_{i=1}^{8} k_{i} \otimes k_{i}=P \tag{3}
\end{equation*}
$$

with $P=\left(\begin{array}{lllllllll}0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\end{array}\right)$ a permutation matrix.

2.2 The Nonions

The nonions matrices are [10]
$q_{0}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) q_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right), q_{2}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & j \\ j^{2} & 0 & 0\end{array}\right)$
$q_{3}=\left(\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & j^{2} \\ j & 0 & 0\end{array}\right), q_{4}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right), q_{5}=\left(\begin{array}{ccc}0 & 0 & j \\ 1 & 0 & 0 \\ 0 & j^{2} & 0\end{array}\right)$,
$q_{6}=\left(\begin{array}{ccc}0 & 0 & j^{2} \\ 1 & 0 & 0 \\ 0 & j & 0\end{array}\right), q_{7}=\left(\begin{array}{ccc}j & 0 & 0 \\ 0 & j^{2} & 0 \\ 0 & 0 & 1\end{array}\right), q_{8}=\left(\begin{array}{ccc}j^{2} & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & 1\end{array}\right)$
The nonions are traceless and

$$
\begin{equation*}
\frac{1}{3} I_{3} \otimes I_{3}+\frac{1}{3} \sum_{i=1}^{8} q_{i} \otimes q_{i}=P \tag{4}
\end{equation*}
$$

2.3 Generalization by Tensor Products of Pauli Matrices

There are also some generalization of the Pauli matrices constructed by tensor products (of the Pauli matrices), namely $\left(\sigma_{i} \otimes \sigma_{j}\right)_{0 \leq i, j \leq 3},\left(\sigma_{i} \otimes \sigma_{j} \otimes \sigma_{k}\right)_{0 \leq i, j, k \leq 3}$, $\left(\sigma_{i_{1}} \otimes \sigma_{i_{2}} \otimes \ldots \otimes \sigma_{i_{n}}\right)_{0 \leq i_{1}, i_{2}, \ldots, i_{n} \leq 3}$ (Cf. for example, $\left.[7,8]\right)$. The elements of the set $\left(\sigma_{i_{1}} \otimes \sigma_{i_{2}} \otimes \ldots \otimes \sigma_{i_{n}}\right)_{0 \leq i_{1}, i_{2}, \ldots, i_{n} \leq 3}$ satisfy the following properties (Cf. for example, $[7,8]$)

$$
\begin{gather*}
\Sigma_{j}^{+}=\Sigma_{j}(\text { hermitian }) \tag{5}\\
\Sigma_{j}^{2}=I_{2^{n}}(\text { Square root of unity }) \tag{6}\\
\operatorname{Tr} \Sigma_{j}^{+} \Sigma_{k}=2^{n} \delta_{j k}(\text { Orthogonal }) \tag{7}
\end{gather*}
$$

3 Expression of a Tensor Commutation Matrix in Terms of the Generalized Pauli Matrices by Tensor Products

Definition 3.1 For $n \in N^{*}, n \geq 2$, we call tensor commutation matrix $n \otimes n$ the permutation matrix $S_{n \otimes n}$ such that

$$
S_{n \otimes n}(a \otimes b)=b \otimes a
$$

for any $a, b \in C^{n \times 1}$.
The relations (1), (2), (3) and (4) suggest us that there should be a generalization of the Pauli matrices $\left(s_{i}\right)_{0 \leq i \leq n^{2}-1}$ such that

$$
\begin{equation*}
S_{n \otimes n}=\frac{1}{n} I_{n} \otimes I_{n}+\frac{1}{n} \sum_{i=1}^{n^{2}-1} s_{i} \otimes s_{i} \tag{8}
\end{equation*}
$$

We would like to look for matrices $\left(s_{i}\right)_{0 \leq i \leq 8}$ which satisfy the relation (8). The TCMs $S_{4 \otimes 4}, S_{8 \otimes 8}$ can be expressed respectively in terms of the generalized Pauli matrices $\left(\sigma_{i} \otimes \sigma_{j}\right)_{0 \leq i, j \leq 3},\left(\sigma_{i} \otimes \sigma_{j} \otimes \sigma_{k}\right)_{0 \leq i, j, k \leq 3}$ in the following way.

$$
S_{4 \otimes 4}=\frac{1}{4} I_{4} \otimes I_{4}+\frac{1}{4} \sum_{i=1}^{15} s_{i} \otimes s_{i}
$$

where $s_{1}=\sigma_{0} \otimes \sigma_{1}, s_{2}=\sigma_{0} \otimes \sigma_{2}, \ldots, s_{13}=\sigma_{3} \otimes \sigma_{1}, s_{14}=\sigma_{3} \otimes \sigma_{2}, s_{15}=\sigma_{3} \otimes \sigma_{3}$.

$$
S_{8 \otimes 8}=\frac{1}{8} I_{8} \otimes I_{8}+\frac{1}{8} \sum_{i=1}^{63} S_{i} \otimes S_{i}
$$

where $S_{1}=\sigma_{0} \otimes \sigma_{0} \otimes \sigma_{1}, \ldots, S_{63}=\sigma_{3} \otimes \sigma_{3} \otimes \sigma_{3}$ That is to say, this generalization by the tensor products satisfy the relation (8). So we think that (8) should be true for $n=2^{p}, p \in N, p \geq 2$. For proving it, we give the following lemma which is the generalization of a proposition in [6].

Lemma 3.2 If $\sum_{j=1}^{m} M_{j} \otimes N_{j}=\sum_{i=1}^{n} A_{i} \otimes B_{i}$ then $\sum_{j=1}^{m} M_{j} \otimes K \otimes N_{j}=\sum_{i=1}^{n} A_{i} \otimes K \otimes B_{i}$

Proof. Let $K=\left(K_{j_{2}}^{j_{1}}\right) \in \mathbf{C}^{q \times s}, M_{j}=M_{(j) k_{2}}^{k_{1}} \in \mathbf{C}^{p \times r}, A_{i}=A_{(i) k_{2}}^{k_{1}} \in \mathbf{C}^{p \times r}$, $N_{j}=N_{(j) l_{2}}^{l_{1}} \in \mathbf{C}^{t \times u}$ and $B_{i}=B_{(j) l_{2}}^{l_{1}} \in \mathbf{C}^{t \times u}$
$\sum_{j=1}^{m} M_{(j) k_{2}}^{k_{1}} N_{(j) l_{2}}^{l_{1}}=\sum_{i=1}^{n} A_{(i) k_{2}}^{k_{1}} B_{(j) l_{2}}^{l_{1}}$
$K_{j_{2}}^{j_{1}} \sum_{j=1}^{m} M_{(j) k_{2}}^{k_{1}} N_{(j) l_{2}}^{l_{1}}=K_{j_{2}}^{j_{1}} \sum_{i=1}^{n} A_{(i) k_{2}}^{k_{1}} B_{(j) l_{2}}^{l_{1}}$
$\sum_{j=1}^{m} M_{(j) k_{2}}^{k_{1}} K_{j_{2}}^{j_{1}} N_{(j) l_{2}}^{l_{1}}=\sum_{i=1}^{n} A_{(i) k_{2}}^{k_{1}} K_{j_{2}}^{j_{1}} B_{(j) l_{2}}^{l_{1}}$
$\sum_{j=1}^{m} M_{(j) k_{2}}^{k_{1}} K_{j_{2}}^{j_{1}} N_{(j) l_{2}}^{l_{1}}$ and $\sum_{i=1}^{n} A_{(i) k_{2}}^{k_{1}} K_{j_{2}}^{j_{1}} B_{(j) l_{2}}^{l_{1}}$
are respectively the elements of the $k_{1} j_{1} l_{1}$ row and $k_{2} j_{2} l_{2}$ colomn
the $\sum_{j=1}^{m} M_{j} \otimes K \otimes N_{j}$ and $\sum_{i=1}^{n} A_{i} \otimes K \otimes B_{i}$. That is true for any $k_{1}, j_{1}, l_{1}, k_{2}, j_{2}, l_{2}$.
Hence, $\sum_{j=1}^{m} M_{j} \otimes K \otimes N_{j}=\sum_{i=1}^{n} A_{i} \otimes K \otimes B_{i}$

Proposition 3.3 For any $n \in N^{*}, n \geq 2$,

$$
S_{2^{n} \otimes 2^{n}}=\frac{1}{2^{n}} \sum_{i_{1}, i_{2}, \ldots, i_{n}=0}^{3}\left(\sigma_{i_{1}} \otimes \sigma_{i_{2}} \otimes \cdots \otimes \sigma_{i_{n}}\right) \otimes\left(\sigma_{i_{1}} \otimes \sigma_{i_{2}} \otimes \cdots \otimes \sigma_{i_{n}}\right)
$$

Proof. Let us prove it by reccurence. According to the relation (1), the proposition is true for $n=1$. Suppose that it is true for a $n \in N^{*}, n \geqslant 2$. Let us take $e_{1}=\binom{1}{0}, e_{2}=\binom{0}{1}$, which form a basis of the \mathbf{C}-vector space $\mathbf{C}^{2 \times 1}$.

It is sufficient to prove

$$
\begin{array}{r}
\frac{1}{2^{n+1}} \sum_{j_{1}, j_{2}, \ldots, j_{n+1}=0}^{3}\left(\sigma_{j_{1}} \otimes \cdots \otimes \sigma_{j_{n+1}}\right) \otimes\left(\sigma_{j_{1}} \otimes \cdots \otimes \sigma_{j_{n+1}}\right)\left(e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{n+1}}\right) \\
\otimes\left(e_{\beta_{1}} \otimes \cdots \otimes e_{\beta_{n+1}}\right)=\left(e_{\beta_{1}} \otimes \cdots \otimes e_{\beta_{n+1}}\right) \otimes\left(e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{n+1}}\right) \\
\begin{array}{r}
\frac{1}{2^{n}} \sum_{j_{1}, j_{2}, \ldots, j_{n}=0}^{3}\left(\sigma_{j_{1}} \otimes \cdots \otimes \sigma_{j_{n}}\right) \otimes\left(\sigma_{j_{1}} \otimes \cdots \otimes \sigma_{j_{n}}\right)\left(e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{n}}\right) \otimes\left(e_{\beta_{1}} \otimes \cdots \otimes e_{\beta_{n}}\right) \\
\\
=\left(e_{\beta_{1}} \otimes \cdots \otimes e_{\beta_{n}}\right) \otimes\left(e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{n}}\right)
\end{array}
\end{array}
$$

that is

$$
\begin{aligned}
\frac{1}{2^{n}} \sum_{j_{1}, j_{2}, \ldots, j_{n}=0}^{3}\left(\left(\sigma_{j_{1}} e_{\alpha_{1}}\right) \otimes \cdots \otimes\left(\sigma_{j_{n}} e_{\alpha_{n}}\right)\right) \otimes\left(\left(\sigma_{j_{1}} e_{\beta_{1}}\right) \otimes \cdots \otimes\left(\sigma_{j_{n}} e_{\beta_{n}}\right)\right) \\
=\left(e_{\beta_{1}} \otimes \cdots \otimes e_{\beta_{n}}\right) \otimes\left(e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{n}}\right)
\end{aligned}
$$

According to the lemma above

$$
\begin{aligned}
& \frac{1}{2^{n}} \frac{1}{2} \sum_{j_{1}, j_{2}, \ldots, j_{n}, j_{n+1}=0}^{3}\left[\left(\sigma_{j_{1}} e_{\alpha_{1}}\right) \otimes \cdots \otimes\left(\sigma_{j_{n+1}} e_{\alpha_{n+1}}\right)\right] \otimes\left[\left(\sigma_{j_{1}} e_{\beta_{1}}\right) \otimes \cdots \otimes\left(\sigma_{j_{n+1}} e_{\beta_{n+1}}\right)\right] \\
& =\frac{1}{2} \sum_{j_{n+1}=0}^{3}\left(e_{\beta_{1}} \otimes \cdots \otimes e_{\beta_{n}}\right) \otimes\left(\sigma_{j_{n+1}} e_{\alpha_{n+1}}\right) \otimes\left(e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{n}}\right) \otimes\left(\sigma_{j_{n+1}} e_{\beta_{n+1}}\right)
\end{aligned}
$$

from the relation (1)

$$
S_{2 \otimes 2}\left(\alpha_{n+1} \otimes \beta_{n+1}\right)=\frac{1}{2} \sum_{j_{n+1}=0}^{3}\left(\sigma_{j_{n+1}} e_{\alpha_{n+1}}\right) \otimes\left(\sigma_{j_{n+1}} e_{\beta_{n+1}}\right)=e_{\beta_{n+1}} \otimes e_{\alpha_{n+1}}
$$

According again to the lemma above

$$
\begin{array}{r}
\frac{1}{2} \sum_{j_{n+1}=0}^{3}\left(e_{\beta_{1}} \otimes \cdots \otimes e_{\beta_{n}}\right) \otimes\left(\sigma_{j_{n+1}} e_{\alpha_{n+1}}\right) \otimes\left(e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{n}}\right) \otimes\left(\sigma_{j_{n+1}} e_{\beta_{n+1}}\right) \\
=\left(e_{\beta_{1}} \otimes \cdots \otimes e_{\beta_{n}} \otimes e_{\beta_{n+1}}\right) \otimes\left(e_{\alpha_{1}} \otimes \cdots \otimes e_{\alpha_{n}} \otimes e_{\alpha_{n+1}}\right)
\end{array}
$$

Conclusion and Discussion

We have calculated the left hand side of the relations (3) and (4), respectively for the 3×3 Pauli matrices of Kibler and the nonions in expecting to have the formula (8), for $n=3$. Instead of $S_{3 \otimes 3}$ we have the permutation matrix P as result. However, that makes us to think that there should be other 3×3 Pauli matrices which would satisfy the relation (8). These 3×3 Pauli matrices should not be the normalized Gell-Mann matrices in [3], because the 4×4 matrices which satisfy the relation (8) above are not the 4×4 normalized Gell-Mann matrices in [3], even though these normalized Gell-Mann matrices satisfy (8). The relation (8) is satisfied by the generalized Pauli matrices by tensor products, but only for $n=2^{k}$. However, there is no 3×3 matrix, formed by zeros in the diagonal which satisfy both the relations (5) and (6). Thus, the 3×3 Pauli matrices which should satisfy (8), if there exist, do not satisfy both the relations (5),(6) and (7) like the generalized Pauli matrices by tensor products.

References

[1] L.D. Faddev, Algebraic aspects of the Bethe Ansantz, Int. J. Mod. Phys. A, 10(13)(May) (1995), 1848.
[2] K. Fujii, Introduction to coherent states and quantum information theory, Prepared for 10th Numazu Meeting on Integral System, Noncommutative Geometry and Quantum theory, Numazu, Shizuoka, Japan, 7-9 Mai (2002).
[3] J.J. Gil and I.S. José, Invariant indices of polarimetric purity generalized indices of purity for $n \otimes n$ covariance matrices, Opt. Commun., 284(2011), 38.
[4] M.R. Kibler, An angular momentum approach to quadratic Fourier transform, Hadamard matrices, Gauss sums, mutually unbiased bases, the unitary group and the Pauli group, J. Phys. A: Math. Theor., 42(353001) (2009), 28.
[5] C. Rakotonirina, Expression of a tensor commutation matrix in terms of the generalized Gell-Mann matrices, International Journal of Mathematics and Mathematical Sciences, Article ID 20672 (2007).
[6] C. Rakotonirina and H. Rakotoson, Expressing a tensor permutation ma$\operatorname{trix} p^{\otimes n}$ in terms of the generalized Gell-Mann matrices, HEP-MAD-2007317, (2007), http://www.slac.stanford.edu/econf/C0709107/pdf/317.pdf.
[7] C. Rigetti, R. Mosseri and M. Devoret, Geometric approach to digital quantum information, Quantum Information Processing, 3(6)(December) (2004), 351-380.
[8] M. Saniga, M. Planat and P. Pracna, Projective ring line encompassing two-qubits, Hal-00111733, version 5-28 December (2006).
[9] F. Verstraete, A study of entanglement in quantum information theory, Thèse de Doctorat, Katholieke Universiteit Leuven, (2002), 90-93.
[10] G. Volkov, Ternary quaternions and ternary $T U(3)$ algebra, arXiv: 1006.5627 (2010).

