

Gen. Math. Notes, Vol. 22, No. 1, May 2014, pp. 1-10 ISSN 2219-7184; Copyright © ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

# On Some Properties of Anti-Q-Fuzzy Normal Subgroups

P.M. Sithar Selvam<sup>1</sup>, T. Priya<sup>2</sup>, K.T. Nagalakshmi<sup>3</sup> and T. Ramachandran<sup>4</sup>

<sup>1</sup>Department of Mathematics RVS School of Engineering and Technology E-mail: sitharselvam@gmail.com <sup>2</sup>Department of Mathematics PSNA College of Engineering and Technology Dindigul-624 005, Tamilnadu, India E-mail: tpriyasuriya@gmail.com <sup>3</sup>Department of Mathematics KLN College of Information and Technology Pottapalayam- 630611, Sivagangai District, Tamilnadu, India E-mail: gloryratna@yahoo.co.in <sup>4</sup>Department of Mathematics M.V. Muthiah Government Arts College for Women Dindigul- 624001, Tamilnadu, India E-mail: yasrams@gmail.com

(Received: 25-1-14 / Accepted: 12-3-14)

#### Abstract

In this paper, we introduce the concept of Anti-Q-fuzzy normal subgroup and Anti-Q-fuzzy left (right) cosets of a group and discussed some of its properties.

**Keywords:** Anti- fuzzy subgroup, anti- Q-fuzzy subgroup, anti- Q-fuzzy normal subgroup, anti Q-fuzzy normaliser, Anti-Q-fuzzy left (right) cosets, anti-Q-homomorphism.

## **1** Introduction

The concept of fuzzy sets was initiated by Zadeh in 1965 [19]. Since then it has become a vigorous area of research in engineering, medical science, social science, graph theory etc. Rosenfeld [13] gave the idea of fuzzy subgroups in 1971. A. Solairaju and R. Nagarajan [16] introduced a new algebraic structure Q-fuzzy group in 2008. T. Priya, T. Ramachandran and K.T. Nagalakshmi [12] introduced the concept of Q-fuzzy normal subgroups. R. Biswas [1] introduced the concept of anti fuzzy subgroups of a group in 1990. Modifying his idea, we introduced a new algebraic structure anti-Q-fuzzy normal subgroups anti- Q-fuzzy left (right) cosets, Cartesian products have been discussed and some of its important properties were obtained.

# 2 Preliminaries

In this section we site the fundamental definitions that will be used in the sequel.

**Definition 2.1[19]:** Let X be any non empty set. A fuzzy subset  $\mu$  of X is a function  $\mu: X \rightarrow [0, 1]$ .

**Definition 2.2[10]:** Let  $\mu$  be an anti fuzzy subgroup of a group G. For any  $t \in [0,1]$ , we define the level subset of  $\mu$  is the set,  $\mu_t = \{x \in G / \mu(x) \le t\}$ .

**Definition 2.3[1]:** A fuzzy set  $\mu$  of a group G is called an anti fuzzy subgroup of G, if for all  $x, y \in G$ 

(i)  $\mu(xy) \le \max \{ \mu(x), \mu(y) \}$ (ii)  $\mu(x^{-1}) = \mu(x)$ 

**Definition 2.4[14]:** An anti fuzzy subgroup  $\mu$  of a group G is called an anti fuzzy normal subgroup of G if for all  $x, y \in G$ ,  $\mu(xyx^{-1}) = \mu(y)$  or  $\mu(xy) = \mu(yx)$ .

**Definition 2.5[16]:** Let Q and G be any two sets. A mapping  $\mu$ : G x Q  $\rightarrow$  [0, 1] is called a Q-fuzzy set in G.

# 3 Anti-Q-Fuzzy Normal Subgroups

**Definition 3.1:** A *Q*-fuzzy set  $\mu$  of a group *G* is called an Anti- *Q*-fuzzy subgroup of *G*, if for all  $x, y \in G, q \in Q$ ,

(i)  $\mu$  (xy, q)  $\leq$  max {  $\mu$  (x,q),  $\mu$ (y,q)} (ii)  $\mu$  (x<sup>-1</sup>, q) =  $\mu$  (x, q) **Definition 3.2:** An anti- Q-fuzzy subgroup  $\mu$  of a group G is called an anti-Q-fuzzy normal subgroup of G if for all  $x, y \in G$  and  $q \in Q, \mu(xyx^{-1}, q) = \mu(y, q)$  or  $\mu(xy, q) = \mu(yx, q)$ .

**Definition 3.3:** Let  $\mu$  be an anti-Q-fuzzy subgroup of a group G. For any  $t \in [0, 1]$ , we define the level subset of  $\mu$  as,  $\mu_t = \{x \in G, q \in Q \mid \mu(x,q) \le t\}$ .

**Theorem 3.1:** Let  $\mu$  be a Q-fuzzy subset of a group G. Then  $\mu$  is an anti-Q-fuzzy subgroup of G iff the level subsets  $\mu_t$ ,  $t \in [0, 1]$  are subgroups of G.

**Proof:** Let  $\mu$  be an anti-Q-fuzzy subgroup of G and the level subset

 $\mu_t = \{ x \in G / \mu (x, q) \le t, t \in [0, 1] \}$ 

Let x,  $y \in \mu_t$ . Then  $\mu(x, q) \le t \& \mu(y, q) \le t$ 

Now  $\mu(xy^{-1}, q) \le \max \{\mu(x, q), \mu(y^{-1}, q)\}\$ = max  $\{\mu(x, q), \mu(y, q)\}\$  $\le \max \{t, t\}$ 

Therefore,  $\mu(xy^{-1}, q) \leq t$ , hence  $xy^{-1} \in \mu_t$ . Thus  $\mu_t$  is a subgroup of G.

Conversely, let us assume that  $\mu_t$  be a subgroup of G.

Let  $x, y \in \mu_t$ . Then  $\mu(x, q) \le t$  and  $\mu(y, q) \le t$ 

Also,  $\mu(xy^{-1}, q) \leq t$ , since  $xy^{-1} \in \mu_t$ 

= max {t, t} = max {  $\mu(x, q), \mu(y, q)$  }

That is,  $\mu(xy^{-1}, q) \leq \max{\{\mu(x, q), \mu(y, q)\}}.$ 

Hence  $\mu$  is an anti-Q-fuzzy subgroup of G.

**Definition 3.4:** Let  $\mu$  be an anti- Q-fuzzy subgroup of a group G. Then  $N(\mu) = \{a \in G \mid \mu (axa^{-1},q) = \mu (x,q), \text{ for all } x \in G, q \in Q \}$ , is called an anti-Q-fuzzy Normaliser of  $\mu$ .

**Theorem 3.2:** Let  $\mu$  be a Q-fuzzy subset of G. Then  $\mu$  is an anti- Q-fuzzy normal subgroup of G iff the level subsets  $\mu_t$ ,  $t \in [0,1]$  are normal subgroups of G.

**Proof:** Let  $\mu$  be an anti-Q- fuzzy normal subgroup of G and the level subsets  $\mu_t$ ,  $t \in [0,1]$ , is a subgroup of G. Let  $x \in G$  and  $a \in \mu_t$ , then  $\mu(a, q) \le t$ .

Now,  $\mu(xax^{-1},q) = \mu(a,q) \le t$ ,

Since  $\mu$  is an anti-Q-fuzzy normal subgroup of G,  $\mu$  (xax<sup>-1</sup>, q)  $\leq$  t.

Therefore,  $xax^{-1} \in \mu_t$ . Hence  $\mu_t$  is a normal subgroup of G.

**Theorem 3.3:** Let  $\mu$  be an anti- *Q*-fuzzy subgroup of a group *G*. Then

- i.  $N(\mu)$  is a subgroup of G.
- ii.  $\mu$  is an anti- Q-fuzzy normal  $\Leftrightarrow N(\mu) = G$ .
- iii.  $\mu$  is an anti Q-fuzzy normal subgroup of the group  $N(\mu)$ .

#### **Proof:**

(i) Let  $a, b \in N(\mu)$  then  $\mu$  (axa<sup>-1</sup>, q) =  $\mu$  (x, q), for all  $x \in G$ .

$$\mu$$
 (bxb<sup>-1</sup>, q) =  $\mu$  (x, q), for all x  $\in$  G.

Now  $\mu (abx(ab)^{-1}, q) = \mu (abxb^{-1}a^{-1}, q)$ =  $\mu (bxb^{-1}, q)$ =  $\mu (x, q)$ 

Thus we get,  $\mu (abx(ab)^{-1}, q) = \mu (x, q) \implies ab \in N(\mu)$ 

Therefore,  $N(\mu)$  is a subgroup of G.

(ii) Clearly  $N(\mu) \subseteq G$ ,  $\mu$  is an anti-Q-fuzzy normal subgroup of G.

Let  $a \in G$ , then  $\mu$  (axa<sup>-1</sup>, q) =  $\mu$  (x, q).

Then  $a \in N(\mu) \Rightarrow G \subseteq N(\mu)$ .

Hence  $N(\mu) = G$ .

Conversely, let  $N(\mu) = G$ .

Clearly  $\mu$  (axa<sup>-1</sup>, q) =  $\mu$  (x, q), for all x  $\in$  G and a  $\in$  G.

Hence  $\mu$  is an anti- Q – fuzzy normal subgroup of G.

(iii) From (2),  $\mu$  is an anti- Q-fuzzy normal subgroup of a group N( $\mu$ ).

**Definition 3.5:** Let  $\mu$  be a *Q*-fuzzy subset of *G* and let  $_xf : G \times Q \to G \times Q$  [  $f_x : G \times Q \to G \times Q$  ] be a function defined by  $_xf(a, q) = (xa, q)$  [ $f_x(a, q) = (ax, q)$  ]. A *Q*-fuzzy left (right) coset

 $_{x}\mu(\mu_{x})$  is defined to be  $_{x}f(\mu)(f_{x}(\mu))$ .

It is easily seen that  $(_x\mu)(y, q) = \mu(x^{-1}y, q)$  and  $(\mu_x)(y, q) = \mu(yx^{-1}, q)$ , for every (y, q) in  $G \times Q$ .

**Theorem 3.4 [6]:** Let  $\mu$  be a Q-fuzzy subset of G. Then the following conditions are equivalent for each x, y in G.

(i)  $\mu(xyx^{-1}, q) \ge \mu(y, q)$ (ii)  $\mu(xyx^{-1}, q) = \mu(y, q)$ (iii)  $\mu(xy, q) = \mu(yx, q)$ (iv)  $_{x}\mu = \mu_{x}$ (v)  $_{x}\mu_{x}^{-1} = \mu$ 

**Proof:** Straight forward.

**Theorem 3.5:** If  $\mu$  is an anti- *Q*-fuzzy subgroup of *G*, then  $g\mu g^{-1}$  is also an anti-*Q*-fuzzy subgroup of *G*, for all  $g \in G$  and  $q \in Q$ .

**Proof:** Let  $\mu$  be an anti- Q-fuzzy subgroup of G.

Then (i)  $(g\mu g^{-1}) (xy, q) = \mu (g^{-1}(xy)g, q)$   $= \mu (g^{-1}(xgg^{-1}y)g, q)$   $= \mu ((g^{-1}xg)(g^{-1}yg), q)$   $\leq \max \{ \mu (g^{-1}xg, q), \mu (g^{-1}yg, q) \}$   $\leq \max \{ g\mu g^{-1}(x, q), g\mu g^{-1}(y, q) \},$ for all x, y in G and  $q \in Q$ .

(ii)  $g\mu g^{-1}(x, q) = \mu(g^{-1}xg, q)$ =  $\mu((g^{-1}xg)^{-1}, q)$ =  $\mu(g^{-1}x^{-1}g, q)$ =  $g\mu g^{-1}(x^{-1}, q)$ , for all x, y in G and  $q \in Q$ .

Hence  $g\mu g^{-1}$  is an anti- Q-fuzzy subgroup of G.

**Theorem 3.6:** If  $\mu$  is an anti- *Q*-fuzzy normal subgroup of *G*, then  $g\mu g^{-1}$  is also an anti- *Q*-fuzzy normal subgroup of *G*, for all  $g \in G$  and  $q \in Q$ .

**Proof:** Let  $\mu$  be an anti- Q-fuzzy normal subgroup of G. then  $g\mu g^{-1}$  is a subgroup of G.

Now  $g\mu g^{-1}(xyx^{-1},q) = \mu(g^{-1}(xyx^{-1})g,q)$ =  $\mu(xyx^{-1},q)$ =  $\mu(y,q)$ =  $\mu(gyg^{-1},q)$ =  $g\mu g^{-1}(y,q)$ .

Thus gµg<sup>-1</sup> is also an anti- Q-fuzzy normal subgroup of G

**Theorem 3.7:** The intersection of any two anti -Q-fuzzy subgroups of G is also an anti -Q-fuzzy subgroup of G.

**Proof:** Let  $\lambda$  and  $\mu$  be two anti-Q-fuzzy subgroups of G.

Then  $(\lambda \cap \mu) (xy^{-1}, q) = \min (\lambda (xy^{-1}, q), \mu (xy^{-1}, q))$   $\leq \min\{\max\{\lambda(x, q), \lambda (y, q)\}, \max\{\mu(x, q), \mu (y, q)\}\}$   $\leq \max\{\min\{\lambda(x, q), \mu(x, q)\}, \min\{\lambda(y, q), \mu(y, q)\}\}$  $= \max\{(\lambda \cap \mu) (x, q), (\lambda \cap \mu) (y, q)\}$ 

Thus  $(\lambda \cap \mu)(xy^{-1}, q) \le \max\{(\lambda \cap \mu)(x, q), (\lambda \cap \mu)(y, q)\}$ 

Therefore  $\lambda \cap \mu$  is an anti Q-fuzzy subgroup of G.

**Remark:** If  $\mu_i$ ,  $i \in \Delta$  is an anti- Q-fuzzy subgroup of G, then  $\cap \mu_i$  is an anti- Q $i \in \Delta$  fuzzy subgroup of G.

**Theorem 3.8:** The intersection of any two anti-Q-fuzzy normal subgroups of G is also an anti-Q-fuzzy normal subgroup of G.

**Proof:** Let  $\lambda$  and  $\mu$  be two anti- Q-fuzzy normal subgroups of G. According to theorem 3.7,  $\lambda \cap \mu$  is an anti-Q-fuzzy subgroup of G.

Now for all x, y in G, we have

 $(\lambda \cap \mu) (xyx^{-1}, q) = \max (\lambda(xyx^{-1}, q), \mu(xyx^{-1}, q))$ = max (  $\lambda (y, q), \mu(y, q)$ ) =( $\lambda \cap \mu$ ) ( y, q)

Hence  $\lambda \cap \mu$  is an anti- Q-fuzzy normal subgroup of G.

**Remark:** If  $\mu_i$ ,  $i \in \Delta$  are anti-Q-fuzzy normal subgroup of G, then  $\cap \mu_i$  is an anti Q-fuzzy normal subgroup of G.  $i \in \Delta$ 

**Definition 3.6:** The mapping  $f: G \times Q \to H \times Q$  is said to be a group *Q*-homomorphism if

(i)  $f: G \to H$  is a group homomorphism (ii) f(xy, q) = (f(x)f(y), q), for all  $x, y \in G$  and  $q \in Q$ .

**Definition 3.7:** The mapping  $f: G \times Q \to H \times Q$  is said to be a group anti-*Q*-homomorphism if

(i)  $f: G \to H$  is a group homomorphism (ii) f(xy, q) = (f(y)f(x), q), for all  $x, y \in G$  and  $q \in Q$ .

**Theorem 3.9:** Let  $f: G \times Q \to H \times Q$  be a group anti-Q-homomorphism.

- (i) If  $\mu$  is an anti- Q-fuzzy normal subgroup of H, Then  $f^{1}(\mu)$  is an anti- Q-fuzzy normal Subgroup of G.
- (ii) If f is an epimorphism and  $\mu$  is an anti- Q-fuzzy normal subgroup of G, then  $f(\mu)$  is an anti-Q-fuzzy normal subgroup of H.

#### **Proof:**

(i) Let f: G x Q  $\rightarrow$  H x Q be a group anti- Q- homomorphism and let  $\mu$  be an anti- Q-fuzzy normal subgroup of H. Now for all x, y  $\in$  G, we have

$$f^{-1}(\mu)(xyx^{-1}, q) = \mu (f(xyx^{-1}, q))$$
  
=  $\mu (f(x)^{-1}f(y) f(x), q)$   
=  $\mu (f(y), q)$   
=  $f^{-1}(\mu)(y, q)$   
Hence  $f^{-1}(\mu)$  is an anti-Q-fuzzy normal subgroup of G.

(ii) Let  $\mu$  be an anti-Q-fuzzy normal subgroup of G. Then  $f(\mu)$  is an anti Q fuzzy subgroup of H.

Now, for all u, v in H, we have

$$f(\mu)(uvu^{-1}, q) = \inf \mu (y, q) = \inf \mu (xyx^{-1}, q)$$
  

$$f(y)=uvu^{-1}$$
  

$$f(x)=u; f(y) = v$$
  

$$= \inf \mu (y, q) = f(\mu)(v, q), \text{ (since f is an epimorphism)}$$
  

$$f(y) = v$$

Hence  $f(\mu)$  is an anti-Q-fuzzy normal subgroup of H.

**Definition 3.8:** Let  $\lambda$  and  $\mu$  be two *Q*-fuzzy subsets of *G*. The product of  $\lambda$  and  $\mu$  is defined to be the *Q*-fuzzy subset  $\lambda \mu$  of *G* is given by  $\lambda \mu(x, q) = \inf \max(\lambda(y, q), yz = x, \mu(z, q)), x \in G$ .

**Theorem 3.10:** If  $\lambda \& \mu$  are anti-Q-fuzzy normal subgroups of G, then  $\lambda \mu$  is an anti-Q-fuzzy normal subgroup of G.

**Proof:** Let  $\lambda \& \mu$  be two anti-Q-fuzzy normal subgroups of G.

(i)  $\lambda \mu (xy, q) = \inf \max \{ \lambda(x_1y_1, q), \mu(x_2y_2, q) \}$   $x_1y_1 = x, x_2y_2 = y$   $\leq \inf \max \{ \max\{\lambda(x_1,q),\lambda(y_1,q)\}, \max\{\mu(x_2,q),\mu(y_2,q)\} \}$   $x_1y_1 = x, x_2y_2 = y$   $\lambda \mu (xy, q) \leq \max\{ \inf \max\{\lambda(x,q),\lambda(y_1,q)\}, \inf \max\{\mu(x_2,q), \mu(y_2,q)\} \}$   $\lambda \mu (xy,q) \leq \max\{ \lambda \mu (x,q), \lambda \mu (y,q) \}$ (ii)  $\lambda \mu (x^{-1}, q) = \inf \max\{ \mu(z^{-1}, q), \lambda(y^{-1}, q) \}$   $(yz)^{-1} = x^{-1}$   $= \inf \max\{ \mu(z,q), \lambda(y,q) \}$  x = yz  $= \inf \max\{ \lambda(y,q), \mu(z,q) \}$  x = yz $= \lambda \mu (x,q).$ 

Hence  $\lambda\mu$  is an anti-Q-fuzzy normal subgroup of G.

# 4 Cartesian Product of Anti Q-Fuzzy Normal Subgroups

**Theorem 4.1:** If  $\mu \& \delta$  are two anti-Q-fuzzy subgroups of a group G, then  $\mu x \delta$  is also an anti-Q-fuzzy subgroup of the group G x G.

1 1

**Proof:** Let  $\mu \& \delta$  be two anti-Q-fuzzy subgroups of a group G.

Let  $(x_1, y_{1)}, (x_2, y_2) \in G \times G \& q \in Q$ 

Then 
$$(\mu \ x \ \delta) \{ ((x_1, y_1)(x_2, y_2)^{-1}, q) \} = (\mu \ x \ \delta) \{ ((x_1, y_1)(x_2^{-1}, y_2^{-1}), q) \}$$
  

$$= (\mu \ x \ \delta) \{ ((x_1 x_2^{-1}, y_1 \ y_2^{-1}), q) \}$$

$$= \max \{ \mu (x_1 x_2^{-1}, q), \delta (y_1 \ y_2^{-1}, q) \}$$

$$= \max \{ \mu (x_1, q), \mu (x_2^{-1}, q), \delta (y_1, q), \delta (y_2^{-1}, q) \}$$

$$= \max \{ \mu (x_1, q), \mu (x_2, q), \delta (y_1, q), \delta (y_2, q) \}$$

$$= \max \{ (\mu \ x \ \delta) ((x_1, y_1), q), (\mu \ x \ \delta) ((x_2, y_2), q) \}$$

 $\therefore$  ( $\mu \ge \delta$ ) is an anti-Q-fuzzy subgroup of G  $\ge$  G.

**Theorem 4.2:** If  $\mu \& \delta$  are two anti-Q-fuzzy normal subgroups of a group G, then  $\mu x \delta$  is also an anti-Q-fuzzy normal subgroup of the group G x G.

**Proof:** Straight forward.

### 5 Conclusion

In this article we have discussed anti-Q-fuzzy normal subgroups, anti-Q-fuzzy normaliser and anti-Q-fuzzy normal subgroups under anti Q- homomorphism. Interestingly, it has been observed that anti-Q-fuzzy concept adds another dimension to the defined anti-fuzzy normal subgroups. This concept can further be extended for new results.

### References

- [1] R. Biswas, Fuzzy subgroups and anti-fuzzy subgroups, *Fuzzy Sets and Systems*, 35(1990), 121-124.
- [2] F.P. Choudhury, A.B. Chakraborty and S.S. Khare, A note on fuzzy subgroups and fuzzy homomorphism, *Journal of Mathematical Analysis and Applications*, 131(1988), 537-553.
- [3] P.S. Das, Fuzzy groups and level subgroups, J. Math. Anal. Appl, 84(1981), 264-269.
- [4] V.N. Dixit, R. Kumar and N. Ajmal, Level subgroups and union of fuzzy subgroups, *Fuzzy Sets and Systems*, 37(1990), 359-371.
- [5] D.S. Malik and J.N. Mordeson, Fuzzy subgroups of abelian groups, *Chinese Journal of Math.*, 19(2) (1991), 21-28.
- [6] A.S. Mashour, M.H. Ghanim and F.I. Sidky, Normal fuzzy subgroups, Univ. Novom Sadu Zb. Rad. Prirod., *Mat. Fak. Ser. Mat.*, 20(2) (1990), 53-59.
- [7] M.S. Eroglu, The homomorphic image of a fuzzy subgroup is always a fuzzy subgroup, *Fuzzy Sets and Systems*, 33(1989), 255-256.
- [8] M. Asaad, Groups and fuzzy subgroups, *Fuzzy Sets and Systems*, 39(1991), 323-328.
- [9] M. Akgul, Some properties of fuzzy groups, *Journal of Mathematical Analysis and Applications*, 133(1988), 93-100.
- [10] P.M. Sitharselvam, T. Priya and T. Ramachandran, Anti Q-fuzzy KUideals in KU-algebras and its lower level cuts, *International Journal of Engineering Research & Applications*, 2(4) (July) (2012), 1286-1289.
- [11] P. Bhattacharya, Fuzzy subgroups: Some characterizations, *J. Math. Anal. Appl.*, 128(1987), 241-252.
- [12] T. Priya, T. Ramachandran and K.T. Nagalakshmi, On Q-fuzzy normal subgroups, *International Journal of Computer and Organization Trends*, 3(11) (2013), 574-578.
- [13] A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35(1971), 512-517.

- [14] S.K. Majumder and S.K. Sardar, On some properties of anti fuzzy subgroups, J. Mech. Cont. and Math. Sci., 3(2) (2008), 337-343.
- [15] H. Sherwood, Product of fuzzy subgroups, *Fuzzy Sets and Systems*, 11(1983), 79-89.
- [16] A. Solairaju and R. Nagarajan, Q-fuzzy left R-subgroups of near rings w.r.t T-norms, *Antarctica Journal of Mathematics*, 5(2008), 21-28.
- [17] A. Solairaju and R. Nagarajan, A new structure and construction of Q-fuzzy groups, *Advances in Fuzzy Mathematics*, 4(1) (2009), 23-29.
- [18] W.B.V. Kandasamy, *Smarandache Fuzzy Algebra*, American Research Press, (2003).
- [19] L.A. Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.