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Abstract 

     The purpose of this work is to extend and generalize some fixed point theorems 
for Expansive type mappings in complete cone metric spaces. Our theorems 
improve and generalize of the results [1] and [3].  
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1 Introduction 
 
Very recently, Huang and Zhang [1] introduce the concept of cone metric spaces. 
They have proved some fixed point Theorems for contractive mappings using 
normality of the cone. The results in [1] were generalized by Sh. Rezapour and 
Hamlbarani [2] omitted the assumption of normality on the cone, which is a 
milestone in cone metric space. Many authors have studied fixed point theorem in 
such spaces, see for instance [4]. [5], [8]. [11] and [13]. In sequel, the authors [7], 
[8] and [12] introduced a new class of multifunction and obtained a unique fixed 
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point. These results are also generalized by [15] with normal constant K = 1.Also 
we have observed the recent work of fixed point s for non-explosive map in cone 
metric spaces see ([6], [10]). Recently, Azam introduced cone rectangular metric 
spaces in [14]. 
 
The purpose of this paper is to analyse the existence and uniqueness of fixed 
points for pair of expansive mappings defined on a complete metric space. we 
generalize the results of [3]. 
 

2 Preliminary Notes  
 
First we recall the definition of cone metric spaces and some properties of theirs 
[1]. 
 
Definition: 2.1 [1]: Let E be a real Banach space and P a subset of E. Then P is 
called a cone if and only if: 
 
(i)    P is closed, non-empty and P ≠ {0};    
(ii)   �, � ϵ �, �, �≥ 0 �, � ϵ 	 ⇒ ��+�� ϵ 	; 
(iii)     � ϵ P and – � ϵ P => � = 0. 
  
For given a cone � ⊂ E , we define a Partial ordering ≤ on E with respect to P by 
� ≤  � if and only if � - � ϵ 	. We shall write x ≪ y to denote � ≤  �  but � ≠
� to denote � - � ϵ p0, where �� stands for the   interior of P.  
 
The cone P is called normal if there is a number � > 0 such that for all �, � ∈
�, 0 ≤ � ≤ �  implies ‖�‖  ≤ �‖�‖ .The least positive number � satisfying the 
above is called the normal constant of P. The least positive number satisfying the 
above is called the normal constant P. The cone P is called regular if every 
increasing sequence which is bounded from above is convergent .that is , if 
�� !" ≥ 1  $%  �  sequence such that x1 ≤  �2 ≤  ….. �n ≤   …..≤ � for some � ∈ �, 
then there is � ∈ � such that ‖� &'‖  ⟶0 (" ⟶∞). Equivalently the cone p is 
regular if and only if every decreasing sequence which is bounded from below is 
convergent.  
 
Lemma 2.2[2]: 
  

(i)  Every regular cone is normal 

(ii)  For each k > 1, there is a normal cone with normal constant K > k.                                                     
 
In following we always suppose E is a Banach space. P is a cone in E with 
$")� ≠ *and ≤ is partial ordering with respect to P. 
 
Definition 2.3[1]: Let X be a non – empty set. Suppose the mapping +: - ⨉  - →
 � satisfies the following condition: 
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(i)   0 < d (�, �) for all �, � ∊ X and + (�, �) = 0 if and only if   x   = �; 
(ii)  d (�, �) = d (�, �) for all �, � ∊ X;    
(iii)  d (�, �) ≤  d (�, z) + d (z, �) for �11 �, � , 2 ∊  -. 
 
Then d is called a cone metric on X, and (X, d) is called a cone metric space. It is 
obvious that cone metric spaces generalize metric space. 
 
Example 2.3 [1]: Let � =  �2, � = {(�, �)  ∈  �: �, � ≥  0}, - = � and +: - ×
 - →  �, 
 
On defined by +(�, �) = (| � − � |,∝ |� − �|) where ∝ ≥ 0 is a constant. Then 
(-, +) is a cone metric space. 
 
Example: 2.4: Let E= 11, P = 9�� !" ≥ 1 ∈ �: � ≥ 0, :;< �11 "=  (-, +) a 

metric space and   +: - ×  - →  �, defined by +(�, �) = >?(',@)
AB C  " ≥ 1.Then 

(-, +) is a cone metric space. 
 
Definition 2.5 [1]: Let (X, d) be a cone metric space, � ∊ X and {�n}n ≥ 1 a 
sequence in X. Then, 
 
(i) {�n} n ≥ 1 converges to x whenever for every D ∊  � with0 ≪ D, there is a 

natural number N. such that d (�n, �) ≪c for all n ≥ N. We denote this by 
lim n→∞ �n = � or �n → �, ( n → ∞). 

(ii)  {�n}n ≥ 1 is said to be a Cauchy sequence if for every  c ∊ E with o ≪ c, 
there is a natural number N such that d (�n, �m) ≪ c for all n, m ≥ N.  

(iii)   (X, d) is called a complete cone metric space if every Cauchy sequence in 
X is convergent. 

 
Definition 2.6[1]: Let (-, +) be a cone metric space, P be a cone in real Banach 
space, if  
(i)  � ∈ � and � ≪ D for some E ∈ F0, 1G, then  � = 0. 
(ii)  H ≤ I, I ≪ J , then H ≪ J. 
 

3 Main Results 
 
In this section we shall prove some fixed point theorems for pair of expansive 
type contractive mappings by using omitting the assumption of normality of the 
theorems 2.1, 2.3, 2.5, 2.6 of [3]. 
 
Theorem 3.1: Let (-, +) be a cone metric space and suppose :K, :A : - → - be 
any two onto mapping satisfies the contractive condition 
 
   +(:K�, :A�) ≥ �+(�, �)                                                    (1)  
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for all �, � ∈ -,where � > 1 is a constant. Then :K and :A have a unique 
common fixed point in X. 
 
Proof: If :K� =  :A� then 
 
                                   0 ≥ �+(�, �) ⇒ 0 = + (�, �)  ⇒ � = �. 
 
Thus, :K is one to one. Define VK W :K

&K    
 
        +(�, �) ≥ � +X :K

&K�,  :K
&K� Y  

 
                                                    = +(VK�, VK� ). 
 

So, +(VK�, VK� ) ≤ ℎ+(�, �) where ℎ =  K
[  < 1. By theorem 2.3 in [2].  VK Has a 

unique fixed point �∗ in X.$. ^. VK�∗ = �∗ ⇒  :K
&K�∗ = �∗ ⇒   �∗   = :K �. 

 
Therefore,  �∗ is a fixed point of :K . Similarly it can be established that �∗  
= :A �.  
 
Hence �∗=:K � =:A �. Thus �∗  is the common fixed point of pair maps   
:K and:A . 
 
Corollary 3.2: Let (-, +) be a cone metric space and suppose :K, :A : - → - be 
any two onto mapping satisfying the condition 
 
                        +X:K

A kK�, :A
A kA�Y ≥ �+(�, �)                                           (2) 

    
 
for all �, � ∈ -,where � > 1 is a constant. Then :K and :A have a common fixed 
point in X. 
 
Theorem 3.1: Let (-, +) be a cone metric space and suppose :K, :A : - → - be 
any two continuous and onto mapping satisfying the condition 
 
                +(:K�, :A�) ≥ �F+(:K�, �) + +(:A�, � )G                                            (3) 
 

for all �, � ∈ -,where  KA < � ≤ 1 is a constant. Then :K and :A have a unique 

common fixed point in X. 
 
Proof: Let �� be an arbitrary point in-. Since :K and :A be onto (surjective), there 
exist �� ∈ - and �K ∈ - such that 
  
                                        :K(�K) =  ��  and   :A (�A) =  �K. 
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In this way, we define the sequence% ��A ! and ��A kK! by 
  �A  = :K�A kK for n = 0, 1, 2, 3……… and 
                   �A kK  = :A�A kA for n =o, 1, 2, 3…………… 
 
Note that, if �A  = �A kK, for some " ≥ 1, then �A  is fixed point of :K and :A.  
 
Now putting � =  �A kK and  � =  �A kA, we have 
 
  +X�A , �A kKY = +(:K�A kK, :A�A kA) 
 
                      
                        +X�A , �A kKY ≥�F+(:K�A kK, �A kK)++(:A�A kA, �A kA)G 
 
                                                = �F+(�A , �A kK) ++(�A kK, �A kA)G 
 
            (1 − �)+X�A , �A kKY ≥ K +(�A kK, �A kA) 
 

                      +X�A , �A kKY   ≥ K
K&[ +(�A kK, �A kA)  

 
                 ⇒+X�A kK, �A kAY ≤ ℎ+(�A , �A kK) .                                             (4) 
    

Where ℎ = K&[
[  , 0 ≤ ℎ ≤ 1.  

 
In general 
                        +X�A , �A kKY ≤ ℎ +(�A &K, �A ) ≤ ……… ≤ ℎA +X��, �KY. 
 
So for " < l, we have 
                              +X�A , �AmY ≤  +X�A , �A kKY + ……….+ +X�Am&K, �AmY 
 
                                                ≤(ℎA +  ℎA kK +  … … … + ℎAm&K) +(��, �K) 
 

                                                ≤  opB

K&o +(��, �K)                                                (5) 

 

Let 0 ≤ D be given, choose a natural number qK such that  
opB

K&o +(��, �K) ≤ D, for 

all " ≥ qK.  Thus +X�A , �AmY ≤ D, for " < l. Therefore��A !  is a Cauchy 
sequence in(-, +).  since(-, +) is a complete cone metric space, there exist �∗ ∈ - 
such that �A  → �∗ �% " → ∞. If :K is a continuous, then 
 
   +(:K�∗, �∗) ≤ +X:K�A kK,   :K�∗Y + +X:K�A kK, �∗Y  → 0 �% " → ∞.   
 
Since   �A  → �∗  and   :K�A kK, →  :K�∗ �% " → ∞. Therefore  +(:K�∗, �∗) = 0.  
 
This implies that :K�∗ = �∗. hence �∗ is a fixed point of:K. 
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Similarly, it can be established that :A�∗ = �∗, Therefore :K�∗ = �∗ =  :A�∗.  
 
Thus �∗ is the common fixed point of pair of maps :K and  :A.This completes the 
proof. 
 
Theorem 3.2: Let (-, +) be a cone metric space and suppose :K, :A : - → - be 
any two continuous and onto mapping satisfying the condition 
 
                            +(:K�, :A�) ≥ �+(�, �) + s+(:A�, �)               (6) 
 
for all �, � ∈ -, where  s ≥ 0, � > 1 is a constant. Then :K and :A have a 
common fixed point in X. 
 
Proof: Let �� be an arbitrary point in-. Since :K and :A be onto (surjective), there 
exist �� ∈ - and �K ∈ - such that  
 
                                   :K(�K) =  ��  and   :A (�A) =  �K. 
 
In this way, we define the sequence% ��A ! and ��A kK! by 
 
                                         �A  = :K�A kK for n = 0, 1, 2, 3……… and 
 
                                    �A kK  = :A�A kA for n =o, 1, 2, 3…………… 
 
Note that, if �A  = �A kK, for some " ≥ 1, then �A  is fixed point of :K and :A.  
 
Now putting � =  �A kK  and � =  �A kA, we have 
 
                        +X�A , �A kKY = +(:K�A kK, :A�A kA) 
 
                                                ≥ �+(�A kK, �A kA) + s+(:A�A kA, �A kK) 
 
        = �+(�A kK, �A kA) + s+(�A kK, �A kK) 
 
        ≥ �+(�A kK, �A kA)  
 

                ⇒ +(�A kK, �A kA) ≤  K
 [ +X�A , �A kKY,                                                      (7) 

 
where ℎ = K

[ , 0 ≤ ℎ ≤ 1                                                                                                                             

 
So for " < l, we have 
 
               
                         +X�A , �AmY ≤ +X�A , �A kKY + …….................+ +X�Am&K, �AmY 
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                                             ≤ (ℎA +  ℎA kK +  … … … … … + ℎAm&K) +(��, �K) 
 

                                             ≤  opB

K&o +(��, �K)                                                     (8) 

                              
 

Let 0 ≤ D be given, choose a natural number qK such that  
opB

K&o +(��, �K) ≤ D, for 

all " ≥ qK.  Thus +X�A , �AmY ≤ D, for " < l. Therefore��A !  is a Cauchy 
sequence in(-, +).  since(-, +) is a complete cone metric space, there exist �∗ ∈ - 
such that �A  → �∗ �% " → ∞. If :K is a continuous, then 
 
                          +(:K�∗, �∗) ≤ ++X:K�A kK,   :K�∗Y + +X:K�A kK, �∗Y  → 0 �% " → ∞.   
 
Since �A  → �∗  and   :K�A kK, →  :K�∗ �% " → ∞. Therefore  +(:K�∗, �∗) = 0.  
 
This implies that :K�∗ = �∗. hence �∗ is a fixed point of :K.  
 
Similarly, it can be established that :A�∗ = �∗.Therefore:K�∗ = �∗ =  :A�∗.  
 
Thus �∗ is the common fixed point of pair of maps :K and  :A.This completes the 
proof. 
 
Theorem 3.3: Let (-, +) be a cone metric space and suppose :K, :A : - → - be 
any two continuous and onto mapping satisfying the condition 
 
                           +(:K�, :A�) ≥ �+(�, �) + s+(�, :K� ) +M +(�, :A� )            (9) 
 
for all �, � ∈ -,where � ≥ −1, s ≥ 1 �"+  M < �<^ constant, with � + s +
u > 1. Then :K and :A have a common fixed point in X. 
 
Proof: Let �� be an arbitrary point in-. Since :K and :A be onto (surjective), there 
exist �� ∈ - and �K ∈ - such that 
  
                                    :K(�K) =  ��  and   :A (�A) =  �K. 
 
In this way, we define the sequence% ��A ! and ��A kK! by 
    
                                               �A  = :K�A kK for n = 0, 1, 2, 3……… and 
                                     �A kK  = :A�A kA for n =o, 1, 2, 3………… 
Note that, if �A  = �A kK, for some " ≥ 1, then �A  is fixed point of :K and :A.  
 
Now putting � =  �A kK and  � =  �A kA, we have 
 
                        +X�A , �A kKY = +(:K�A kK, :A�A kA) 
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                        +X�A , �A kKY ≥ �+(�A kK, �A kA) + s+(�A kK, :K�A kK)  
                                                + u+(�A kA, :A�A kA) 
 
                                                ≥ �+(�A kK, �A kA) + s+(�A kK, �A )  
                                                + u+(�A kA, �A kK) 
 
                                                = s+(�A , �A kK) + (�+ u)+(�A kK, �A kA) 
 
            (1 − s)+X�A , �A kKY ≥ (K+ u) +(�A kK, �A kA) 
 

                         +X�A , �A kKY  ≥ [kv
K&w  +(�A kK, �A kA)   

 

                ⇒ +X�A kK, �A kAY ≤   K&w
[kv  +X�A , �A kKY     

 
                ⇒ +X�A kK, �A kAY ≤ ℎ +(�A , �A kK) .  
 

Where ℎ = K&w
[kv , 0 ≤ ℎ ≤ 1.   

 
In general 
 
                        +X�A , �A kKY ≤ ℎ +(�A &K, �A ) ≤ ……… ≤ ℎA +X��, �KY. 
 
So for " < l, we have 
                             +X�A , �AmY ≤ +X�A , �A kKY + ……….+ +X�Am&K, �AmY 
 
                                                ≤(ℎA +  ℎA kK +  … … … … + ℎAm&K) +(��, �K) 
 

                                                ≤  opB

K&o +(��, �K)                                                (10) 

 

Let 0 ≤ D be given, choose a natural number qK such that  
opB

K&o +(��, �K) ≤ D, for 

all " ≥ qK.  Thus +X�A , �AmY ≤ D, for " < l. Therefore��A !  is a Cauchy 
sequence in(-, +).  since(-, +) is a complete cone metric space, there exist �∗ ∈ - 
such that �A  → �∗ �% " → ∞. If :K is a continuous, then 
 
                          +(:K�∗, �∗) ≤ +X:K�A kK,   :K�∗Y + +X:K�A kK, �∗Y  → 0 �% " → ∞.  
Since �A  → �∗ and  :K�A kK, →  :K�∗ �% " → ∞. Therefore  +(:K�∗, �∗) = 0.  
 
This implies that  :K�∗ = �∗.,  Hence �∗ is a fixed point of:K. 
 
Similarly, it can be established that :A�∗ = �∗. Therefore :K�∗ = �∗ =  :A�∗. 
Thus �∗ is the common fixed point of pair of maps :K and  :A. This completes the 
proof. 
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