Gen. Math. Notes, Vol. 24, No. 2, October 2014, pp.1-9
ISSN 2219-7184; Copyright © ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

Certain Characterizations for a Class of P-Valent Functions Defined by Salagean Differential Operator

Oyekan, Ezekiel Abiodun ${ }^{1}$ and Ajai, Philip Terwase ${ }^{2}$
${ }^{1}$ Department of Mathematical Sciences
Ondo State University of Science and Technology (OSUSTECH),
P.M.B. 353 Okitipupa, Ondo State, Nigeria
E-mail: shalomfa@yahoo.com, ea.oyekan@osustech.edu.ng
${ }^{2}$ Department of Mathematics
Plateau State University, Bokkos, Nigeria
E-mail: philipajai2k2@yahoo.com

(Received: 29-4-14 / Accepted: 14-7-14)

Abstract

The aim of this paper is to give further properties of the class $S_{p}(A, B, b, \lambda)$ which was studied by Ajab et. al.[2]. In particular, we prove the extreme points, modified Hadamard products and inclusion properties for the class $S_{p}(A, B, b, \lambda)$.

Keywords: P-valent function, Subordination, Salagean operator, extreme point, Hadamard product.

1 Introduction

Salagean[4] defined the operator $D^{\lambda} f(z)=z+\sum_{k=2}^{\infty} k^{\lambda} a_{k} z^{k}$ where $\lambda \in N_{0}=$ $N \cup 0$.
Let S_{p} be the class of p-valent function which are analytic in the unit disk $U=$ $\{z \in C:|z|<1\}$ and can be written in the form $f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k}, p \in$ N.
In 2011, Ajal et. al.[2] defined the class $S_{p}(A, B, b, \lambda)$ as class of functions $f(z)$
satisfying the condition

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z\left(D^{\lambda+p} f(z)^{\prime}\right)}{D^{\lambda+p} f(z)}-p\right) \prec \frac{1+A z}{1+B z} \tag{1}
\end{equation*}
$$

where \prec denote subordination, b is a non-zero complex number, A and B are thearbitrary constants with $-1 \leq B<A \leq 1$. $D^{\lambda+p}$ is an extended Salagean operator defined by Eker and Seker [5] as

$$
\begin{equation*}
D^{\lambda+p} f(z)=D\left(D^{\lambda+p-1} f(z)\right)=z^{p}+\sum_{k=1}^{\infty}\left(\frac{p+k}{p}\right)^{\lambda} a_{p+k} z^{p+k} \tag{2}
\end{equation*}
$$

where $\lambda \in N_{0} \cup 0$.

2 Preliminaries and Definitions

Let S be the class of analytic univalent functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{3}
\end{equation*}
$$

that are defined in the open unit disk $U=\{z:|z|<1\}$.
Also let S_{p} denote the class of functions defined by

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k}, p \in N \tag{4}
\end{equation*}
$$

which are analytic and p-valent in the unit disk $U=\{z:|z|<1\}$.
For $f(z) \in S$, Salagean in [4] introduced the operator:

$$
\begin{gathered}
D^{0} f(z)=f(z) \\
D^{1} f(z)=D f(z)=z f^{\prime}(z) \\
D^{\lambda} f(z)=D\left(D^{\lambda-1} f(z)\right),(\lambda \in N=\{1,2,3 \ldots\}) .
\end{gathered}
$$

We note that

$$
D^{\lambda} f(z)=z+\sum_{k=2}^{\infty} k^{\lambda} a_{k} z^{k},\left(\lambda \in N_{0} \cup 0\right)
$$

Following Eker and Seker in [5], Ajab et. al.[2] gave the following inequalities for the functions $f(z) \in S_{p}$:

$$
D^{0} f(z)=f(z)
$$

$$
\begin{gathered}
D^{1} f(z)=D f(z)=\frac{z}{p} f^{\prime}(z)=z^{p}+\sum_{k=1}^{\infty}\left(\frac{p+k}{p}\right) a_{p+k} z^{p+k} \\
D^{\lambda+p} f(z)=D\left(D^{\lambda+p-1} f(z)\right)=z^{p}+\sum_{k=1}^{\infty}\left(\frac{p+k}{p}\right)^{\lambda} a_{p+k} z^{p+k}, \lambda \in N_{0} \cup 0 .
\end{gathered}
$$

Definition 2.1. [2] Let $S_{p}(A, B, b, \lambda)$ denote the subclass of S_{p} that consist of functions $f(z)$ which satisfy the condition

$$
1+\frac{1}{b}\left(\frac{z\left(D^{\lambda+p} f(z)^{\prime}\right)}{D^{\lambda+p} f(z)}-p\right) \prec \frac{1+A z}{1+B z}
$$

where \prec denote subordination, b is a non-zero complex number, A and B are thearbitrary constants with $-1 \leq B<A \leq 1$. and $z \in U$.

This class is due to the class $M_{p}(A, B, b, n)$ defined by Ajab and Maslina[1] using Ruscheweyh derivatives.
By specializing the parameters for A, B, b, n and λ, the following subclasses studied by earlier authors are obtained
(i) $S_{1}(1,-1, b, 0)=C(b, 1)$ which was studied by Wiatrowski[3]
(ii) $S_{1}(A, B, b, 0)=C(A, B, b)$ which was studied by Ravichandran et.al.[6], (see [2])
Before we state and prove our main results we need the following definitions and theorem :

Theorem 2.2. [4]

$$
\begin{equation*}
\sum_{k=1}^{\infty}[k+|b(A-B)-B k|]\left(\frac{p+k}{p}\right)^{\lambda}\left|a_{p+k}\right| \leq|b|(A-B) \tag{5}
\end{equation*}
$$

where $-1 \leq B<A \leq 1, \lambda \in N_{0} \cup 0$ and $p \in N$.
Definition 2.3. If $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ and $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$ are analytic in U, then their Hadamard product (or convolution), $f * g$ is the function defined by the power series

$$
\begin{equation*}
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) \tag{6}
\end{equation*}
$$

The function $f * g$ is also analytic in U.
Definition 2.4. Let $\tau(p)$ denote the subclass of S_{p} consistsing of functions of the form

$$
\begin{equation*}
f(z)=z^{p}-\sum_{k=1}^{\infty} a_{p+k} z^{p+k}, a_{p+k} \geq 0, p \in N \tag{7}
\end{equation*}
$$

We denote $S_{p}^{*}(A, B, b, \lambda)$ the class obtained by taking the intersection of the class $S_{p}(A, B, b, \lambda)$ with the class $\tau(p)$. Thus we have

$$
\begin{equation*}
S_{p}^{*}(A, B, b, \lambda)=S_{p}(A, B, b, \lambda) \cap \tau(p) \tag{8}
\end{equation*}
$$

3 Main Results

We begin by proving the following results.

3.1 Extreme Points

Theorem 3.1. Let

$$
\begin{equation*}
f_{p}(z)=z^{p}, p \in N \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{p+k}(z)=z^{p}-\frac{|b|(A-B)}{[k+|b(A-B)-B k|]\left(\frac{p+k}{p}\right)^{\lambda}} z^{p+k}, p, k \in N \tag{10}
\end{equation*}
$$

Then $f(z) \in S_{p}(A, B, b, \lambda)$ iff it can be expressed in the form:

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} \delta_{p+k} f_{p+k}(z) \tag{11}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{p+k} \geq 0, \sum_{k=0}^{\infty} \delta_{p+k}=1 \tag{12}
\end{equation*}
$$

Proof. Let

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} \delta_{p+k} f_{p+k}(z)=z^{p}-\sum_{k=1}^{\infty} \frac{\delta_{p+k}|b|(A-B)}{[k+|b(A-B)-B k|]\left(\frac{p+k}{p}\right)^{\lambda}} z^{p+k} \tag{13}
\end{equation*}
$$

then, in view of (12), it follows that

$$
\begin{align*}
& \sum_{k=1}^{\infty} \frac{[k+|b(A-B)-B k|]}{|b|(A-B)}\left(\frac{p+k}{p}\right)^{\lambda}\left\{\frac{|b|(A-B)}{[k+|b(A-B)-B k|]\left(\frac{p+k}{p}\right)^{\lambda}} \delta_{p+k}\right\} \\
& =\sum_{k=1}^{\infty} \delta_{p+k}=1-\delta_{k} \leq 1 \tag{14}
\end{align*}
$$

So by theorem 2.1, the function $f(z)$ belongs to the class $S_{p}(A, B, b, \lambda)$. Conversely, let the function $f(z)$ defined by (7) belongs to the class $S_{p}(A, B, b, \lambda)$. Then

$$
\begin{equation*}
a_{p+k} \leq \frac{|b|(A-B)}{[k+|b(A-B)-B k|]\left(\frac{p+k}{p}\right)^{\lambda}}, p, k \in N \tag{15}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\delta_{p+k}=\frac{[k+|b(A-B)-B k|]\left(\frac{p+k}{p}\right)}{|b|(A-B)} a_{p+k}, p, k \in N \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{p}=1-\sum_{k=1}^{\infty} \delta_{p+k} . \tag{17}
\end{equation*}
$$

We see that $f(z)$ can be expressed in the form (11). This completes the proof of the Theorem 3.1.

Corollary 3.2. The extreme points of the class $S_{p}(A, B, b, \lambda)$ are the functions $f_{p}(z)$ and $f_{p+k}(z)$ given by (9) and (10), respectively.

3.2 Modified Hadamard Products

Let the functions $f_{i}(z) \quad(i=1,2)$ be defined by

$$
\begin{equation*}
f_{i}(z)=z^{p}-\sum_{k=1}^{\infty} a_{p+k, i}, z^{p+k}, p \in N \tag{18}
\end{equation*}
$$

The modified Hadamard product of $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z^{p}-\sum_{k=1}^{\infty} a_{p+k, 1} a_{p+k, 2} z^{p+k} \tag{19}
\end{equation*}
$$

Theorem 3.3. Let $f_{i}(z)(i=1,2)$ defined by (18) be in the class $S_{p}(A, B, b, \lambda)$. Then $\left(f_{1} * f_{2}\right) \in S_{p}(A, B, \alpha, \lambda)$, where

$$
\begin{equation*}
\alpha=p-\frac{(A-B)^{2} p^{2 \lambda}|b(1+b)|}{[1+|b(A-B)-B|]^{2}(p+1)^{\lambda}-(A-B)^{2} p^{2 \lambda}\left|b^{2}\right|} . \tag{20}
\end{equation*}
$$

The result is sharp.
Proof. To prove the theorem, we need to find the largest α such that

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{[k+|b(A-\alpha)-\alpha k|](p+k)^{\alpha}\left|a_{p+k, 1} a_{p+k, 2}\right|}{|b|(A-B) p^{\lambda}} \leq 1 \tag{21}
\end{equation*}
$$

Simce

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{k+|b(A-B)-B k|(p+k)^{\lambda}}{|b|(A-B) p^{\lambda}} a_{p+k, 1} \leq 1 \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{k+|b(A-B)-B k|(p+k)^{\lambda}}{|b|(A-B) p^{\lambda}} a_{p+k, 2} \leq 1 \tag{23}
\end{equation*}
$$

By Cauchy-Schwarz inequality, we have

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{[k+|b(A-B)-B k|](p+k)^{\lambda} \sqrt{\left|a_{p+k, 1} a_{p+k, 2}\right|}}{|b|(A-B) p^{\lambda}} \leq 1 \tag{24}
\end{equation*}
$$

Thus, it is sufficient to show that

$$
\begin{align*}
& \frac{[k+|b(A-\alpha)-\alpha k|](p+k)^{\lambda}}{(A-\alpha)}\left|a_{p+k, 1} a_{p+k, 2}\right| \\
& \leq \frac{[k+|b(A-B)-B k|](p+k)^{\lambda}}{(A-B)} \sqrt{\left|a_{p+k, 1} a_{p+k, 2}\right|} \tag{25}
\end{align*}
$$

i.e. that

$$
\begin{equation*}
\sqrt{\left|a_{p+k, 1} a_{p+k, 2}\right|} \leq \frac{[k+|b(A-B)-B k|](A-\alpha)}{[k+|b(A-\alpha)-\alpha k|](A-B)} \tag{26}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\sqrt{\left|a_{p+k, 1} a_{p+k, 2}\right|} \leq \frac{|b|(A-B) p^{\lambda}}{[k+|b(A-B)-B k|](p+k)^{\lambda}}, k \in N \tag{27}
\end{equation*}
$$

Consequently, we need only to prove that

$$
\begin{equation*}
\frac{|b|(A-B) p^{\lambda}}{[k+|b(A-B)-B k|](p+k)^{\lambda}} \leq \frac{[k+|b(A-B)-B k|](A-\alpha)}{[k+|b(A-\alpha)-\alpha k|](A-B)} \tag{28}
\end{equation*}
$$

or equivalently that

$$
\begin{equation*}
\alpha \leq p-\frac{|b(1+b)| k(A-B)^{2} p^{2 \lambda}}{[k+|b(A-B)-B k|]^{2}(p+k)^{2 \lambda}-|b|(A-B)^{2} p^{2 \lambda}} \tag{29}
\end{equation*}
$$

Since

$$
\begin{equation*}
A(k)=p-\frac{|b(1+b)| k(A-B)^{2} p^{2 \lambda}}{[k+|b(A-B)-B k|]^{2}(p+k)^{2 \lambda}-|b|(A-B)^{2} p^{2 \lambda}} \tag{30}
\end{equation*}
$$

is an increasing function of $k(k \geq 1)$ for $\lambda \in N_{0},-1 \leq B<A \leq 1, p \in N$ and b is a non-zero complex number.
Letting $k=1$ in (30), we obtain

$$
\begin{equation*}
\alpha \leq p-\frac{|b(1+b)|(A-B)^{2} p^{2 \lambda}}{[1+|b(A-B)-B|]^{2}(p+1)^{2 \lambda}-|b|(A-B)^{2} p^{2 \lambda}} \tag{31}
\end{equation*}
$$

which completes the proof of the Theorem 3.3.
Finally, by taking the functions

$$
\begin{equation*}
f_{i}(z)=z^{p}-\frac{|b|(A-\alpha) p^{\lambda}}{[1+|b(A-\alpha)-\alpha|](p+1)^{\lambda}}, i=1,2, \ldots ; p \in N . \tag{32}
\end{equation*}
$$

we can see that the result is sharp.
Corollary 3.4. For $f_{i}(z)(i=1,2)$ as in Theorem 3.3 , we have

$$
\begin{equation*}
h(z)=z^{p}-\sum_{k=1}^{\infty} \sqrt{\left|a_{p+k, 1} a_{p+k, 2}\right|} z^{p+k} \tag{33}
\end{equation*}
$$

belongs to the class $S_{p}(A, B, b, \lambda)$. The is sharp with the function given by (32).
Proof. The result follows from the inequality (24).

3.3 Inclusion Properties

Theorem 3.5. Let the functions $f_{i}(z)(i=1,2)$ defined by (18) be in the class $S_{p}(A, B, b, \lambda)$. Then the function

$$
\begin{equation*}
q(z)=z^{p}-\sum_{k=1}^{\infty}\left(\left|a_{p+k, 1} a_{p+k, 2}\right|\right) z^{p+k} \tag{34}
\end{equation*}
$$

belongs to the class $S_{p}(A, B, \alpha, \lambda)$, where

$$
\begin{equation*}
\alpha=p-\frac{2|b(1+b)|(A-B)^{2} p^{2 \lambda}}{[1+|b(A-B)-B|](p+1)^{2 \lambda}-2\left|b^{2}\right|(A-B)^{2} p^{2 \lambda}} \tag{35}
\end{equation*}
$$

The result is sharp for the functions $f_{i}(z)(i=1,2)$ defined by (32)
Proof. By the virtue of Theorem 2.2, we obtain

$$
\begin{align*}
& \sum_{k=1}^{\infty}\left\{\frac{[k+|b(A-B)-B k|](p+k)^{\lambda}}{|b|(A-B) p^{\lambda}}\right\}^{2}\left|a_{p+k, 1}^{2}\right| \\
& \leq\left\{\sum_{k=1}^{\infty} \frac{[k+|b(A-B)-B k|](p+k)^{\lambda}}{|b|(A-B) p^{\lambda}}\left|a_{p+k, 1}\right|\right\}^{2} \leq 1 \tag{36}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{k=1}^{\infty}\left\{\frac{[k+|b(A-B)-B k|](p+k)^{\lambda}}{|b|(A-B) p^{\lambda}}\right\}^{2}\left|a_{p+k, 2}^{2}\right| \tag{37}\\
& \leq\left\{\sum_{k=1}^{\infty} \frac{[k+|b(A-B)-B k|](p+k)^{\lambda}}{|b|(A-B) p^{\lambda}}\left|a_{p+k, 2}\right|\right\}^{2} \leq 1
\end{align*}
$$

Therefore, we need to find the largest α such that

$$
\begin{equation*}
\frac{[k+|b(A-\alpha)-\alpha k|](p+k)^{\lambda}}{|b|(A-\alpha) p^{\lambda}} \leq \frac{1}{2}\left\{\frac{[k+|b(A-B)-B k|](p+k)^{\lambda}}{|b|(A-B) p^{\lambda}}\right\}^{2}, k \geq 1 \tag{38}
\end{equation*}
$$

i.e. that

$$
\begin{equation*}
\alpha \leq p-\frac{2|b(1+b)| k(A-B)^{2}}{[k+|b(A-B)-B k|](p+k)^{2 \lambda}-2\left|b^{2}\right|(A-B)^{2}}, k \geq 1 \tag{39}
\end{equation*}
$$

Since

$$
\begin{gather*}
B(k)=p-\frac{2|b(1+b)| k(A-B)^{2}}{[k+|b(A-B)-B k|](p+k)^{2 \lambda}-2\left|b^{2}\right|(A-B)^{2}} \tag{40}\\
(-1 \leq B<A \leq 1, p \in N)
\end{gather*}
$$

and b is a non-zero complex number, is an increasing function of $k(k \geq 1)$ for $p, \lambda \in N$.
Letting $k=1$ in (40) we have

$$
\begin{equation*}
\alpha=p-\frac{2|b(1+b)|(A-B)^{2}}{[1+|b(A-B)-B|](p+1)^{2 \lambda}-2\left|b^{2}\right|(A-B)^{2}} \tag{41}
\end{equation*}
$$

which completes the proof of the Theorem 3.5.
Theorem 3.6. Let the functions $f_{i}(z)(i=1,2)$ defined by (18) be in the class $S_{p}(A, B, b, \lambda)$. Then the function

$$
\begin{equation*}
\Phi(z)=z^{p}-\frac{1}{m} \sum_{k=1}^{\infty} \sum_{i=1}^{m}\left|a_{p+k, i}\right| z^{p+k} \tag{42}
\end{equation*}
$$

belongs to the class $S_{p}(A, B, \alpha, \lambda)$.
Proof. Since $f_{i}(z) \in S_{p}(A, B, b, \lambda)$, by Lemma 2.1 we have

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{[k+|b(A-B)-B k|]\left(\frac{p+k}{p}\right)^{\lambda}}{|b|(A-B)}\left|a_{p+k, i}\right| \leq 1, i=1,2, \ldots, m \tag{43}
\end{equation*}
$$

So that

$$
\begin{align*}
& \sum_{k=1}^{\infty} \frac{[k+|b(A-B)-B k|](p+k)^{\lambda}}{|b|(A-B) p^{\lambda}}\left(\frac{1}{m} \sum_{k=1}^{\infty}\left|a_{p+k, i}\right|\right) \tag{44}\\
& \leq \frac{1}{m} \sum_{k=1}^{m}\left\{\frac{[k+|b(A-B)-B k|](p+k)^{\lambda}}{|b|(A-B) p^{\lambda}}\right\} a_{p+k, i} \leq 1
\end{align*}
$$

which shows that $f(z) \in S_{p}(A, B, \alpha, \lambda)$.

References

[1] A. Akbarally and M. Darus, Certain subclasses of p-valent analytic functions with negative coefficients of complex order, Acta Mathematica Vietnamica, 30(2005), 59-68.
[2] A. Akbarally, S.C. Soh and M. Ismail, On the properties of class of pvalent functions defined by Salagean differential operator, Int. Journal of Math. Analysis, 5(21) (2011), 1035-1045.
[3] P. Wiatrowski, The coefficient of a certain family of holomorphic functions, Zest Nauk. Math. Przyord. Ser II. Zeszyt, 39(1971), 57-85.
[4] G.S. Salagean, Subclasses of univalent functions in complex analysis, Fifth Romanian-Finnish Seminar (Part 1), Lecture Notes on Mathematics, Springer, Berlin, Germany, 1013(1983), 362-372.
[5] S.S. Seker and B. Eker, On a class of multivalent functions defined by Salagean operator, General Mathematics, 15(2007), 154-163.
[6] V. Ravichandran, Y. Polatoglu, M. Bolcal and A. Sen, Certain subclasses of starlike and convex functions of complex order, Hacettepe Journal of Mathematics and Statistics, 34(2005), 9-15.

