Gen. Math. Notes, Vol. 15, No. 2, April, 2013, pp.1-13
ISSN 2219-7184; Copyright © ICSRS Publication, 2013
www.i-csrs.org
Available free online at http://www.geman.in

Stability of Quadratic Functional Equations in 2-Banach Space

B.M. Patel ${ }^{1}$ and A.B. Patel ${ }^{2}$
1,2 Department of Mathematics, Sardar Patel University
Vallabh Vidyanagar-388120
Gujarat, India
${ }^{1}$ E-mail: bhavinramani@yahoo.com
${ }^{2}$ E-mail: abp1908@gmail.com

(Received: 17-1-13 / Accepted: 23-2-13)

Abstract

In this paper, we investigate the Hyers-Ulam stability of the functional equation $f(2 x+y)-f(x+2 y)=3 f(x)-3 f(y)$ in 2-Banach space.

Keywords: Hyers-Ulam stability, 2-Banach space, Quadratic functional equation.

1 Introduction

Stability of for a function from a normed space to a Banach space has been studied by Hyers [4]. Skof [12] has proved Hyers-Ulam stability of the functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1}
\end{equation*}
$$

He has proved that for a function $f: X \longrightarrow Y$, a function between normed space X to Banach space Y satisfying

$$
\|f(x+y)+f(x-y)=2 f(x)+2 f(y)\| \leq \delta
$$

for each $x, y \in X$ and $\delta>0$, there exists a unique quadratic function $Q: X \longrightarrow Y$ such that

$$
\|f(x)-Q(x)\|<\frac{\delta}{2}
$$

The quadratic function $f(x)=c x^{2}$ satisfies the functional equation (1) and therefore Equation (1) is called the quadratic functional equation. Every solution of Equation (1) is said to be a quadratic mapping.

In fact several authors have studied the stability of different types of functional equations for functions from normed space to Banach space. (see [1, 2, $5,6,7,8,9,10])$.

Our aim is to study the Hyers-Ulam stability of the functional equation

$$
\begin{equation*}
f(2 x+y)-f(x+2 y)=3 f(x)-3 f(y) \tag{2}
\end{equation*}
$$

introduced by [15], for a function from 2-normed space (normed space) to 2-Banach space.

Theorem 1.1 [15] Let X and Y be real vector spaces, and let $f: X \longrightarrow Y$ be a function satisfies (2) if and only if $f(x)=B(x, x)+C$, for some symmetric bi-additive function $B: X \times X \longrightarrow Y$, for some C in Y. Therefore every solution f of functional equation (2) with $f(0)=0$ is also a quadratic function.

In the 1960s, S. Gähler [3] introduced the concept of 2-normed spaces. We first introduce 2-normed space and topology on it.

Definition 1.2 Let X be a linear space over \mathbb{R} with $\operatorname{dim} X>1$ and let $\|\cdot, \cdot\|: X \times X \longrightarrow \mathbb{R}$ be a function satisfying the following properties:

1. $\|x, y\|=0$ if and only if x and y are linearly dependent,
2. $\|x, y\|=\|y, x\|$,
3. $\|a x, y\|=|a|\|x, y\|$,
4. $\|x, y+z\| \leq\|x, y\|+\|x, z\|$
for each $x, y, z \in X$ and $a \in \mathbb{R}$. Then the function $\|\cdot, \cdot\|$ is called $a 2$-norm on X and $(X,\|\cdot, \cdot\|)$ is called a 2-normed space.

We introduce a basic property of 2-normed spaces as follows. Let $(X,\|\cdot, \cdot\|)$ be a linear 2-normed space, $x \in X$ and $\|x, y\|=0$ for each $y \in X$. Suppose $x \neq 0$, since $\operatorname{dim} X>1$, choose $y \in X$ such that $\{x, y\}$ is linearly independent so we have $\|x, y\| \neq 0$, which is a contradiction. Therefore, we have the following lemma.

Lemma 1.3 Let $(X,\|\cdot, \cdot\|)$ be a 2 -normed space. If $x \in X$ and $\|x, y\|=0$, for each $y \in X$, then $x=0$.

Let $(X,\|\cdot, \cdot\|)$ be a 2 -normed space. For $x, z \in X$, let $p_{z}(x)=\|x, z\|$, $x \in X$. Then for each $z \in X, p_{z}$ is a real-valued function on X such that $p_{z}(x)=\|x, z\| \geq 0, p_{z}(\alpha x)=|\alpha|\|x, z\|=|\alpha| p_{z}(x)$ and
$p_{z}(x+y)=\|x+y, z\|=\|z, x+y\| \leq\|z, x\|+\|z, y\|=\|x, z\|+\|y, z\|=$ $p_{z}(x)+p_{z}(y)$, for each $\alpha \in \mathbb{R}$ and all $x, y \in X$. Thus p_{z} is a a semi-norm for each $z \in X$.

For $x \in X$, let $\|x, z\|=0$, for each $z \in X$. By Lemma 1.3, $x=0$. Thus for $0 \neq x \in X$, there is $z \in X$ such that $p_{z}(x)=\|x, z\| \neq 0$. Hence the family $\left\{p_{z}(x): z \in X\right\}$ is a separating family of semi-norms.

Let $x_{0} \in X$, for $\varepsilon>0, z \in X$, let
$U_{z, \varepsilon}\left(x_{0}\right):=\left\{x \in X: p_{z}\left(x-x_{0}\right)<\varepsilon\right\}=\left\{x \in X:\left\|x-x_{0}, z\right\|<\varepsilon\right\}$. Let $S\left(x_{0}\right):=$ $\left\{U_{z, \varepsilon}\left(x_{0}\right): \varepsilon>0, z \in X\right\}$ and $\beta\left(x_{0}\right):=\left\{\cap \mathcal{F}: \mathcal{F}\right.$ is a finite subcollection of $\left.S\left(x_{0}\right)\right\}$. Define a topology τ on X by saying that a set U is open if for every $x \in U$, there is some $N \in \beta(x)$ such that $N \subset U$. That is, τ is the topology on X that has subbase $\left\{U_{z, \varepsilon}\left(x_{0}\right): \varepsilon>0, x_{0} \in X, z \in X\right\}$. The topology τ on X makes X a topological vector space. Since for $x \in X$ collection $\beta(x)$ is a local base whose members are convex, X is locally convex.

In the $1960 s$, S. Gähler and A. White [14] introduced the concept of 2-Banach spaces.

Definition 1.4 A sequence $\left\{x_{n}\right\}$ in a 2-normed space X is called a 2-Cauchy sequence if

$$
\lim _{m, n \rightarrow \infty}\left\|x_{n}-x_{m}, x\right\|=0
$$

for each $x \in X$.
Definition 1.5 A sequence $\left\{x_{n}\right\}$ in a 2 -normed space X is called a 2-convergent sequence if there is an $x \in X$ such that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x, y\right\|=0
$$

for each $y \in X$. If $\left\{x_{n}\right\}$ converges to x, we write $\lim _{n \rightarrow \infty} x_{n}=x$.
Definition 1.6 We say that a 2-normed space $(X,\|\cdot, \cdot\|)$ is a 2 -Banach space if every 2-Cauchy sequence in X is 2-convergent in X.

By using (2) and (4) of Definition 1.2 one can see that $\|\cdot, \cdot\|$ is continuous in each component. More precisely for a convergent sequence $\left\{x_{n}\right\}$ in a 2-normed space X,

$$
\lim _{n \rightarrow \infty}\left\|x_{n}, y\right\|=\left\|\lim _{n \rightarrow \infty} x_{n}, y\right\|
$$

for each $y \in X$.

2 Stability of a Functional Equation for Functions $f:(X,\|\cdot\|) \longrightarrow(X,\|\cdot, \cdot\|)$

Throughout this section, consider X a real normed linear space. We also consider that there is a 2-norm on X which makes $(X,\|\cdot, \cdot\|)$ a 2-Banach space. For a function $f:(X,\|\cdot\|) \longrightarrow(X,\|\cdot, \cdot\|)$, define $D_{f}: X \times X \longrightarrow X$ by

$$
D_{f}(x, y)=f(2 x+y)-f(x+2 y)-3 f(x)+3 f(y)
$$

for each $x, y, \in X$.

Theorem 2.1 Let $\varepsilon \geq 0,0<p, q<2, r>0$. If $f: X \longrightarrow X$ is a function such that

$$
\begin{equation*}
\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{q}\right)\|z\|^{r} \tag{3}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique quadratic function $Q: X \longrightarrow$ X satisfying (2) and

$$
\begin{equation*}
\|f(x)-Q(x)-f(0), z\| \leq \frac{\varepsilon\|x\|^{p}\|z\|^{r}}{4-2^{p}} \tag{4}
\end{equation*}
$$

for each $x, z \in X$.

Proof 2.1 Let $g: X \longrightarrow X$ be a function defined by $g(x)=f(x)-f(0)$, for each $x \in X$. Then $g(0)=0$. Also

$$
\begin{align*}
\left\|D_{g}(x, y), z\right\| & =\|g(2 x+y)-g(x+2 y)-3 g(x)+3 g(y), z\| \\
& \leq \varepsilon\left(\|x\|^{p}+\|y\|^{q}\right)\|z\|^{r} \tag{5}
\end{align*}
$$

for each $x, z \in X$. Putting $y=0$ in (5), we get

$$
\begin{equation*}
\|g(2 x)-4 g(x), z\| \leq \varepsilon\|x\|^{p}\|z\|^{r} \tag{6}
\end{equation*}
$$

for each $x, z \in X$. Therefore

$$
\begin{equation*}
\left\|g(x)-\frac{1}{4} g(2 x), z\right\| \leq \frac{\varepsilon}{4}\|x\|^{p}\|z\|^{r} \tag{7}
\end{equation*}
$$

for each $x, z \in X$. Replacing x by $2 x$ in (7), we get

$$
\begin{equation*}
\left\|g(2 x)-\frac{1}{4} g(4 x), z\right\| \leq \frac{\varepsilon 2^{p}}{4}\|x\|^{p}\|z\|^{r} \tag{8}
\end{equation*}
$$

for each $x, z \in X . B y$ (7) and (8), we get

$$
\begin{aligned}
\left\|g(x)-\frac{1}{16} g(4 x), z\right\| & \leq\left\|g(x)-\frac{1}{4} g(2 x), z\right\|+\left\|\frac{1}{4} g(2 x)-\frac{1}{16} g(4 x), z\right\| \\
& \leq \frac{\varepsilon}{4}\|x\|^{p}\|z\|^{r}+\frac{\varepsilon}{4} \frac{2^{p}}{4}\|x\|^{p}\|z\|^{r} \\
& =\frac{\varepsilon\|x\|^{p}\|z\|^{r}}{4}\left[1+\frac{2^{p}}{4}\right]
\end{aligned}
$$

for each $x, z \in X$. By using induction on n, we get

$$
\begin{align*}
\left\|g(x)-\frac{1}{4^{n}} g\left(2^{n} x\right), z\right\| & \leq \frac{\varepsilon\|x\|^{p}\|z\|^{r}}{4} \sum_{j=0}^{n-1} \frac{2^{p j}}{4^{j}} \\
& =\frac{\varepsilon\|x\|^{p}\|z\|^{r}}{4}\left[\frac{1-2^{(p-2) n}}{1-2^{p-2}}\right] \tag{9}
\end{align*}
$$

for each $x, z \in X$. For $m, n \in \mathbb{N}$, for $x \in X$

$$
\begin{aligned}
\left\|\frac{1}{4^{m}} g\left(2^{m} x\right)-\frac{1}{4^{n}} g\left(2^{n} x\right), z\right\| & =\left\|\frac{1}{4^{m+n-n}} g\left(2^{m+n-n} x\right)-\frac{1}{4^{n}} g\left(2^{n} x\right), z\right\| \\
& =\frac{1}{4^{n}}\left\|\frac{1}{4^{m-n}} g\left(2^{m-n} \cdot 2^{n} x\right)-g\left(2^{n} x\right), z\right\| \\
& \leq \frac{\varepsilon\left\|2^{n} x\right\|^{p}\|z\|^{r}}{4 \cdot 4^{n}} \sum_{j=0}^{m-n-1} 2^{(p-2) j} \\
& =\frac{\varepsilon\|x\|^{p}\|z\|^{r}}{4} \sum_{j=0}^{m-n-1} 2^{(p-2)(n+j)} \\
& =\frac{\varepsilon\|x\|^{p}\|z\|^{r}}{4} \frac{2^{(p-2) n}\left(1-2^{(p-2)(m-n)}\right)}{1-2^{p-2}} \\
& \longrightarrow 0 \text { as } m, n \rightarrow \infty
\end{aligned}
$$

for each $z \in X$. Therefore, $\left\{\frac{1}{4^{n}} g\left(2^{n} x\right)\right\}$ is a 2 -Cauchy sequence in X, for each $x \in X$. Since X is a 2-Banach space, $\left\{\frac{1}{4^{n}} g\left(2^{n} x\right)\right\} 2$-converges, for each $x \in X$. Define the function $Q: X \longrightarrow X$ as

$$
Q(x)=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} g\left(2^{n} x\right)
$$

for each $x \in X$. Now, from (9)

$$
\lim _{n \rightarrow \infty}\left\|g(x)-\frac{1}{4^{n}} g\left(2^{n} x\right), z\right\| \leq \frac{\varepsilon\|x\|^{p}\|z\|^{r}}{4} \frac{1}{1-2^{p-2}}
$$

for each $x, z \in X$. Therefore

$$
\|f(x)-Q(x)-f(0), z\| \leq \frac{\varepsilon\|x\|^{p}\|z\|^{r}}{4-2^{p}}
$$

for each $x, z \in X$. Next we show that Q satisfies (2). For $x \in X$

$$
\begin{aligned}
\left\|D_{Q}(x, y), z\right\| & =\lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left\|D_{g}\left(2^{n} x, 2^{n} y\right), z\right\| \\
& =\lim _{n \rightarrow \infty} \frac{\varepsilon}{4^{n}}\left(\left\|2^{n} x\right\|^{p}+\left\|2^{n} y\right\|^{q}\right)\|z\|^{r} \\
& =\lim _{n \rightarrow \infty} \varepsilon\left[2^{(p-2) n}\|x\|^{p}+2^{(q-2) n}\|y\|^{q}\right]\|z\|^{r} \\
& =0
\end{aligned}
$$

for each $z \in X$. Therefore $\left\|D_{Q}(x, y), z\right\|=0$, for each $z \in X$. So we get $D_{Q}(x, y)=0$. Next we prove the uniqueness of Q. Let Q^{\prime} be another quadratic function satisfying (2) and (4). Since Q and Q^{\prime} are quadratic, $Q\left(2^{n} x\right)=$ $4^{n} Q(x), Q^{\prime}\left(2^{n} x\right)=4^{n} Q^{\prime}(x)$, for each $x \in X$. Now for $x \in X$

$$
\begin{aligned}
\left\|Q(x)-Q^{\prime}(x), z\right\| & =\frac{1}{4^{n}}\left\|Q\left(2^{n} x\right)-Q^{\prime}\left(2^{n} x\right), z\right\| \\
& \leq \frac{1}{4^{n}}\left[\left\|Q\left(2^{n} x\right)-g\left(2^{n} x\right), z\right\|+\left\|g\left(2^{n} x\right)-Q^{\prime}\left(2^{n} x\right), z\right\|\right] \\
& \leq \frac{1}{4^{n}} \frac{2 \varepsilon\left\|2^{n} x\right\|^{p}\|z\|^{r}}{4-2^{p}} \\
& =2^{(p-2) n} \frac{2 \varepsilon}{4-2^{p}}\|x\|^{p}\|z\|^{r} \\
& \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for each $z \in X$. Therefore $\left\|Q(x)-Q^{\prime}(x), z\right\|=0$, for each $z \in X$. Therefore $Q(x)=Q^{\prime}(x)$, for each $x \in X$.

Theorem 2.2 Let $\varepsilon \geq 0, p, q>2, r>0$. If $f: X \longrightarrow X$ is a function such that

$$
\begin{equation*}
\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{q}\right)\|z\|^{r} \tag{10}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique quadratic function $Q: X \longrightarrow$ X satisfying (2) and

$$
\begin{equation*}
\|f(x)-Q(x)-f(0), z\| \leq \frac{\varepsilon\|x\|^{p}\|z\|^{r}}{2^{p}-4} \tag{11}
\end{equation*}
$$

for each $x, z \in X$.

Stability of Quadratic Functional...

Proof 2.2 By (6) of Theorem 2.1, we have

$$
\begin{equation*}
\|g(2 x)-4 g(x), z\| \leq \varepsilon\|x\|^{p}\|z\|^{r} \tag{12}
\end{equation*}
$$

for each $x, z \in X$. Replacing x by $\frac{x}{2}$ in (12), we get

$$
\begin{equation*}
\left\|g(x)-4 g\left(\frac{x}{2}\right), z\right\| \leq \varepsilon 2^{-p}\|x\|^{p}\|z\|^{r} \tag{13}
\end{equation*}
$$

for each $x, z \in X$. Replacing x by $\frac{x}{2}$ in (13), we get

$$
\begin{equation*}
\left\|g\left(\frac{x}{2}\right)-4 g\left(\frac{x}{4}\right), z\right\| \leq \varepsilon 2^{-2 p}\|x\|^{p}\|z\|^{r} \tag{14}
\end{equation*}
$$

for each $x, z \in X$. Combining (13) and (14), we get

$$
\begin{aligned}
\left\|g(x)-16 g\left(\frac{x}{4}\right), z\right\| & \leq\left\|g(x)-4 g\left(\frac{x}{2}\right), z\right\|+\left\|4 g\left(\frac{x}{2}\right)-16 g\left(\frac{x}{4}\right), z\right\| \\
& \leq \varepsilon 2^{-p}\|x\|^{p}\|z\|^{r}+4 \varepsilon 2^{-2 p}\|x\|^{p}\|z\|^{r} \\
& =\varepsilon\|x\|^{p}\|z\|^{r}\left[2^{-p}+2^{-p} \cdot 4\right]
\end{aligned}
$$

for each $x, z \in X$. By using induction on n, we have

$$
\begin{align*}
\left\|g(x)-4^{n} g\left(\frac{x}{2^{n}}\right), z\right\| & \leq \varepsilon\|x\|^{p}\|z\|^{r} \sum_{j=0}^{n-1} 4^{j} 2^{p(-j-1)} \\
& =\varepsilon\|x\|^{p}\|z\|^{r} \sum_{j=0}^{n-1} 2^{(-p+2) j-p} \\
& =\varepsilon\|x\|^{p}\|z\|^{r}\left(\frac{2^{-p}\left(1-2^{(2-p) n}\right)}{1-2^{2-p}}\right) \tag{15}
\end{align*}
$$

for each $x, z \in X$. For $m, n \in \mathbb{N}$ and for $x \in X$

$$
\begin{aligned}
\left\|4^{m} g\left(\frac{x}{2^{m}}\right)-4^{n} g\left(\frac{x}{2^{n}}\right), z\right\| & =\left\|4^{m+n-n} g\left(\frac{x}{2^{m+n-n}}\right)-4^{n} g\left(\frac{x}{2^{n}}\right), z\right\| \\
& =4^{n}\left\|4^{m-n} g\left(\frac{x}{2^{m-n} \cdot 2^{n}}\right)-g\left(\frac{x}{2^{n}}\right), z\right\| \\
& \leq 4^{n} \cdot \varepsilon\left\|\frac{x}{2^{n}}\right\|^{p}\|z\|^{r} \sum_{j=0}^{m-n-1} 2^{(-p+2) j-p} \\
& =\varepsilon\|x\|^{p}\|z\|^{r} \sum_{j=0}^{m-n-1} 2^{(2-p)(n+j)-p} \\
& =\varepsilon\|x\|^{p}\|z\|^{r}\left[\frac{2^{(-p+2) n-p}\left(1-2^{(-p+2) n}\right)}{1-2^{-p+2}}\right] \\
& \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for each $z \in X$. Therefore $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a 2 -Cauchy sequence in X, for each $x \in X$. Since X is a 2-Banach space, the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\} 2$-converges, for each $x \in X$. Define $Q: X \longrightarrow X$ as

$$
Q(x):=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right)
$$

for each $x \in X$. Now from (15),

$$
\lim _{n \rightarrow \infty}\left\|g(x)-4^{n} g\left(\frac{x}{2^{n}}\right), z\right\| \leq \varepsilon\|x\|^{p}\|z\|^{r} \frac{2^{-p}}{1-2^{2-p}}
$$

for each $x, z \in X$. Therefore

$$
\|f(x)-Q(x)-f(0), z\| \leq \frac{\varepsilon\|x\|^{p}\|z\|^{r}}{2^{p}-4}
$$

for each $x, z \in X$. The further part of the proof is similar to that of the proof of Theorem 2.1.

3 Stability of a Functional Equation for Function $f:(X,\|\cdot, \cdot\|) \longrightarrow(X,\|\cdot, \cdot\|)$

In this section we study similar problems which we have studied in section 2 for functions $f: X \longrightarrow X$, where $(X,\|\cdot, \cdot\|)$ is a 2 -Banach space.

Theorem 3.1 Let $\varepsilon \geq 0,0<p, q<2$. If $f: X \longrightarrow X$ is a function such that

$$
\begin{equation*}
\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x, z\|^{p}+\|y, z\|^{q}\right) \tag{16}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique quadratic function $Q: X \longrightarrow$ X satisfying (2) and

$$
\begin{equation*}
\|f(x)-Q(x)-f(0), z\| \leq \frac{\varepsilon\|x, z\|^{p}}{4-2^{p}} \tag{17}
\end{equation*}
$$

for each $x, z \in X$.
Proof 3.1 Let $g: X \longrightarrow X$ be a function defined by $g(x)=f(x)-f(0)$, for each $x \in X$. Then $g(0)=0$. Also

$$
\begin{align*}
\left\|D_{g}(x, y), z\right\| & =\|g(2 x+y)-g(x+2 y)-3 g(x)+3 g(y), z\| \\
& \leq \varepsilon\left(\|x, z\|^{p}+\|y, z\|^{q}\right) \tag{18}
\end{align*}
$$

for each $x, z \in X$. Putting $y=0$ in (18), we get

$$
\begin{equation*}
\|g(2 x)-4 g(x), z\| \leq \varepsilon\|x, z\|^{p} \tag{19}
\end{equation*}
$$

Stability of Quadratic Functional...
for each $x, z \in X$. Therefore

$$
\begin{equation*}
\left\|g(x)-\frac{1}{4} g(2 x), z\right\| \leq \frac{\varepsilon}{4}\|x, z\|^{p} \tag{20}
\end{equation*}
$$

for each $x, z \in X$. Replacing x by $2 x$ in (20), we get

$$
\begin{equation*}
\left\|g(2 x)-\frac{1}{4} g(4 x), z\right\| \leq \frac{\varepsilon 2^{p}}{4}\|x, z\|^{p} \tag{21}
\end{equation*}
$$

for each $x, z \in X . B y$ (20) and (21), we get

$$
\begin{aligned}
\left\|g(x)-\frac{1}{16} g(4 x), z\right\| & \leq\left\|g(x)-\frac{1}{4} g(2 x), z\right\|+\left\|\frac{1}{4} g(2 x)-\frac{1}{16} g(4 x), z\right\| \\
& \leq \frac{\varepsilon}{4}\|x\|^{p}\|z\|^{r}+\frac{\varepsilon}{4} \frac{2^{p}}{4}\|x, z\|^{p} \\
& =\frac{\varepsilon\|x, z\|^{p}}{4}\left[1+\frac{2^{p}}{4}\right]
\end{aligned}
$$

for each $x, z \in X$. By using induction on n, we get

$$
\begin{align*}
\left\|g(x)-\frac{1}{4^{n}} g\left(2^{n} x\right), z\right\| & \leq \frac{\varepsilon\|x, z\|^{p}}{4} \sum_{j=0}^{n-1} \frac{2^{p j}}{4^{j}} \\
& =\frac{\varepsilon\|x, z\|^{p}}{4} \sum_{j=0}^{n-1} 2^{(p-2) j} \\
& =\frac{\varepsilon\|x, z\|^{p}}{4}\left[\frac{1-2^{(p-2) n}}{1-2^{p-2}}\right] \tag{22}
\end{align*}
$$

for each $x, z \in X$. For $m, n \in \mathbb{N}$ for $x \in X$

$$
\begin{aligned}
\left\|\frac{1}{4^{m}} g\left(2^{m} x\right)-\frac{1}{4^{n}} g\left(2^{n} x\right), z\right\| & =\left\|\frac{1}{4^{m+n-n}} g\left(2^{m+n-n} x\right)-\frac{1}{4^{n}} g\left(2^{n} x\right), z\right\| \\
& =\frac{1}{4^{n}}\left\|\frac{1}{4^{m-n}} g\left(2^{m-n} \cdot 2^{n} x\right)-g\left(2^{n} x\right), z\right\| \\
& \leq \frac{\varepsilon\left\|2^{n} x, z\right\|^{p}}{4 \cdot 4^{n}} \sum_{j=0}^{m-n-1} 2^{(p-2) j} \\
& =\frac{\varepsilon\|x, z\|^{p}}{4} \sum_{j=0}^{m-n-1} 2^{(p-2)(n+j)} \\
& =\frac{\varepsilon\|x, z\|^{p}}{4} \frac{2^{(p-2) n}\left(1-2^{(p-2)(m-n)}\right)}{1-2^{p-2}} \\
& \longrightarrow 0 \text { as } m, n \rightarrow \infty
\end{aligned}
$$

for each $z \in X$. Therefore, $\left\{\frac{1}{4^{n}} g\left(2^{n} x\right)\right\}$ is a 2 -Cauchy sequence in X, for each $x \in X$. Since X is a 2 -Banach space, $\left\{\frac{1}{4^{n}} g\left(2^{n} x\right)\right\} 2$-converges, for each $x \in X$. Define the function $Q: X \longrightarrow X$ as

$$
Q(x):=\lim _{n \rightarrow \infty} \frac{1}{4^{n}} g\left(2^{n} x\right)
$$

for each $x \in X$. Now, by (22)

$$
\lim _{n \rightarrow \infty}\left\|g(x)-\frac{1}{4^{n}} g\left(2^{n} x\right), z\right\| \leq \frac{\varepsilon\|x, z\|^{p}}{4} \frac{1}{1-2^{p-2}}
$$

for each $x, z \in X$. Therefore

$$
\|f(x)-Q(x)-f(0), z\| \leq \frac{\varepsilon\|x, z\|^{p}}{4-2^{p}}
$$

for each $x, z \in X$. Next we show that Q satisfies (2). For $x \in X$

$$
\begin{aligned}
\left\|D_{Q}(x, y), z\right\| & =\lim _{n \rightarrow \infty} \frac{1}{4^{n}}\left\|D_{g}\left(2^{n} x, 2^{n} y\right), z\right\| \\
& =\lim _{n \rightarrow \infty} \frac{\varepsilon}{4^{n}}\left(\left\|2^{n} x, z\right\|^{p}+\left\|2^{n} y, z\right\|^{q}\right) \\
& =\lim _{n \rightarrow \infty} \varepsilon\left[2^{(p-2) n}\|x, z\|^{p}+2^{(q-2) n}\|y, z\|^{q}\right] \\
& =0
\end{aligned}
$$

for each $z \in X$. Therefore $\left\|D_{Q}(x, y), z\right\|=0$, for each $z \in X$. So we get $D_{Q}(x, y)=0$. Next we prove the uniqueness of Q. Let Q^{\prime} be another quadratic function satisfying (2) and (17). Since Q and Q^{\prime} are quadratic, $Q\left(2^{n} x\right)=4^{n} Q(x), Q^{\prime}\left(2^{n} x\right)=4^{n} Q^{\prime}(x)$, for each $x \in X$. Now for $x \in X$

$$
\begin{aligned}
\left\|Q(x)-Q^{\prime}(x), z\right\| & =\frac{1}{4^{n}}\left\|Q\left(2^{n} x\right)-Q^{\prime}\left(2^{n} x\right), z\right\| \\
& \leq \frac{1}{4^{n}}\left[\left\|Q\left(2^{n} x\right)-g\left(2^{n} x\right), z\right\|+\left\|g\left(2^{n} x\right)-Q^{\prime}\left(2^{n} x\right), z\right\|\right] \\
& \leq \frac{1}{4^{n}} \frac{2 \varepsilon\left\|2^{n} x, z\right\|^{p}}{4-2^{p}} \\
& =2^{(p-2) n} \frac{2 \varepsilon\|x, z\|^{p}}{4-2^{p}} \\
& \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for each $z \in X$. Therefore $\left\|Q(x)-Q^{\prime}(x), z\right\|=0$, for each $z \in X$. Therefore $Q(x)=Q^{\prime}(x)$, for each $x \in X$.

Theorem 3.2 Let $\varepsilon \geq 0, p, q>2, r>0$. If $f: X \longrightarrow X$ is a function such that

$$
\begin{equation*}
\left\|D_{f}(x, y), z\right\| \leq \varepsilon\left(\|x, z\|^{p}+\|y, z\|^{q}\right) \tag{23}
\end{equation*}
$$

for each $x, y, z \in X$. Then there exists a unique quadratic function $Q: X \longrightarrow$ X satisfying (2) and

$$
\begin{equation*}
\|f(x)-Q(x)-f(0), z\| \leq \frac{\varepsilon\|x, z\|^{p}}{2^{p}-4} \tag{24}
\end{equation*}
$$

for each $x, z \in X$.

Proof 3.2 By (19) of Theorem 3.1, we have

$$
\begin{equation*}
\|g(2 x)-4 g(x), z\| \leq \varepsilon\|x, z\|^{p} \tag{25}
\end{equation*}
$$

for each $x, z \in X$. Replacing x by $\frac{x}{2}$ in (25), we get

$$
\begin{equation*}
\left\|g(x)-4 g\left(\frac{x}{2}\right), z\right\| \leq \varepsilon 2^{-p}\|x, z\|^{p} \tag{26}
\end{equation*}
$$

for each $x, z \in X$. Replacing x by $\frac{x}{2}$ in (26), we get

$$
\begin{equation*}
\left\|g\left(\frac{x}{2}\right)-4 g\left(\frac{x}{4}\right), z\right\| \leq \varepsilon 2^{-2 p}\|x, z\|^{p} \tag{27}
\end{equation*}
$$

for each $x, z \in X$. Combining (26) and (27), we get

$$
\begin{aligned}
\left\|g(x)-16 g\left(\frac{x}{4}\right), z\right\| & \leq\left\|g(x)-4 g\left(\frac{x}{2}\right), z\right\|+\left\|4 g\left(\frac{x}{2}\right)-16 g\left(\frac{x}{4}\right), z\right\| \\
& \leq \varepsilon 2^{-p}\|x, z\|^{p}+4 \varepsilon 2^{-2 p}\|x, z\|^{p} \\
& =\varepsilon\|x, z\|^{p}\left[2^{-p}+2^{-p} \cdot 4\right]
\end{aligned}
$$

for each $x, z \in X$. By using induction on n, we have

$$
\begin{align*}
\left\|g(x)-4^{n} g\left(\frac{x}{2^{n}}\right), z\right\| & \leq \varepsilon\|x, z\|^{p} \sum_{j=0}^{n-1} 4^{j} 2^{p(-j-1)} \\
& =\varepsilon\|x, z\|^{p} \sum_{j=0}^{n-1} 2^{(-p+2) j-p} \\
& =\varepsilon\|x, z\|^{p}\left(\frac{2^{-p}\left(1-2^{(2-p) n}\right)}{1-2^{2-p}}\right) \tag{28}
\end{align*}
$$

for each $x, z \in X$. For $m, n \in \mathbb{N}$, For $x \in X$

$$
\begin{aligned}
\left\|4^{m} g\left(\frac{x}{2^{m}}\right)-4^{n} g\left(\frac{x}{2^{n}}\right), z\right\| & =\left\|4^{m+n-n} g\left(\frac{x}{2^{m+n-n}}\right)-4^{n} g\left(\frac{x}{2^{n}}\right), z\right\| \\
& =4^{n}\left\|4^{m-n} g\left(\frac{x}{2^{m-n} \cdot 2^{n}}\right)-g\left(\frac{x}{2^{n}}\right), z\right\| \\
& \leq 4^{n} \cdot \varepsilon\left\|\frac{x}{2^{n}}\right\|^{p}\|z\|^{r} \sum_{j=0}^{m-n-1} 2^{(-p+2) j-p} \\
& =\varepsilon\|x, z\|^{p} \sum_{j=0}^{m-n-1} 2^{(2-p)(n+j)-p} \\
& =\varepsilon\|x, z\|^{p}\left[\frac{2^{(-p+2) n-p}\left(1-2^{(-p+2) n}\right)}{1-2^{-p+2}}\right] \\
& \longrightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

for each $z \in X$. Therefore $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a 2-Cauchy sequence in X, for each $x \in X$. Since X is a 2-Banach space, the sequence $\left\{4^{n} f\left(\frac{x}{2^{n}}\right)\right\} 2$-converges, for each $x \in X$. Define $Q: X \longrightarrow X$ as

$$
Q(x):=\lim _{n \rightarrow \infty} 4^{n} f\left(\frac{x}{2^{n}}\right)
$$

for each $x \in X$. Now, by (28)

$$
\lim _{n \rightarrow \infty}\left\|g(x)-4^{n} g\left(\frac{x}{2^{n}}\right), z\right\| \leq \varepsilon\|x, z\|^{p} \frac{2^{-p}}{1-2^{2-p}}
$$

for each $x, z \in X$. Therefore

$$
\|f(x)-Q(x)-f(0), z\| \leq \frac{\varepsilon\|x, z\|^{p}}{2^{p}-4}
$$

for each $x, z \in X$. The further part of the proof is similar to that of the proof of Theorem 3.1.

References

[1] J. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc., 80(1980), 411-416.
[2] J.H. Bae and K.W. Jun, On the generalized Hyers-Ulam-Rassias stability of an n-dimensional quadratic functional equation, J. Math. Anal. Appl., 258(2001), 183-193.
[3] S. Gähler, Lineare 2-normierte Räume, Math. Nachr., 26(1963), 115-148.
[4] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27(1941), 222-224.
[5] D.H. Hyers, G. Isac and Th.M. Rassias, Stability of Functional Equations in Several Variables, Birkhäuser, Basel, (1998).
[6] D.H. Hyers, G. Isac and Th.M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc., 126(1998), 425-430.
[7] D.H. Hyers and Th.M. Rassias, Approximate homomorphism, Aequationes Math., 44(1992), 125-153.
[8] K.W. Jun and H.M. Kim, Remarks on the stability of additive functional equation, Bull. Korean Math. soc., 38(2001), 679-687.
[9] K.W. Jun and Y.H. Lee, On the Hyers-Ulam-Rassias stability of a generalized quadratic equation, Bull. Korean Math. Soc., 38(2001), 261-272.
[10] J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math., 108(1984), 445-446.
[11] F.W. Raymond and C.Y. Je, Geometry of Linear 2-Normed Spaces, Nova Science Publishers, New York, (2001).
[12] F. Skof, Propriet à locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, 53(1983), 113-129.
[13] S.M. Ulam, Problem in Modern Mathematics (Science Editions), John Wiley and Sons, Inc., New York, (1964).
[14] A. White, 2-Banach spaces, Math. Nachr., 42(1969), 43-60.
[15] K.W. Jun, H.M. Kim and D.O. Lee, On stability of quadratic functional equation, J. of the Chungcheong Mathematical Society, 15(2) (2002), 7384.

