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Abstract 

     In this paper a new family of methods free from second derivative is presented. This new 
family of methods is constructed such that convergence is of order three and requires two 
require two evaluations of the function and first derivative per iteration. To illustrate the 
efficiency and performance of the new family of methods, several numerical examples are 
presented. Further numerical comparisons are made with several other existing third-order 
methods to show the abilities of the presented family of methods. 
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1      Introduction 
 
In this paper, we consider iterative methods to find a simple root α , i.e., ( ) 0f α =  and 

( ) 0f α′ ≠ , of a nonlinear equation( ) 0f x = .The design of iterative formulae for solving these 
equations are very important and interesting tasks in applied mathematics and other 
disciplines .In recent years, several variants of the methods with free second-derivative have 
been proposed and analyzed (see [1-8] and the reference therein). These new methods can be 
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considered as alternatives for Newton’s method which is a well-known iterative method for 
finding α  by using 
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That converges quadratic ally in some neighborhood ofα .  
 

2      Derivation of Method and Convergence Analysis 
 
To develop this new family, let us begin with the following multipoint iteration scheme in the 
form 
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Where , , ,A B C D and E  are the parameters to be determined such that iterative method 
defined by (2) and (3) to be of order convergence three. In the following, the sufficient 
conditions for these proposed, are presented: 
 
Theorem 2.1. Let Iα ∈ be a simple zero of a sufficiently differentiable function :f I → ℜ  for 
an open interval, which contains0x as, initial approximation ofα . If , , ,A B C D andE , 
satisfy the conditions:  
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And 2 2 2 0C D E+ + ≠ , 
Then, the family of methods defined by (2) and (3) is of third-order. 
 
Proof. If α is the root and ne  be the error at thn iteration, thann ne x α= − , using Taylor’s 
expansion, we have 
  2 3 4

2 3( ) ( )[ ( )],n n n n nf x f e c e c e O eα′= + + +                                (4) 

 2 4 4
2 3 4( ) ( )[1 2 3 4 ( )],n n n n nf x f c e c e c e O eα′ ′= + + + +                              (5) 

where  
( ) ( ) / ! ( ), 2,3,k

kc f k f kα α′= = … ,  and n ne x α= − . 
Using (4), (5) and (2), we have 

2 2 3 4
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Now again by Taylor’s series, we have 
( )2 2 2 2 2 3 4

2 2 3( ) ( )[(1 ) ( 1) ( 2 ) ( 3 3 1) ] ( )n n n n nf y f m e m m c e m c m m m c e O eα′= − + − + + − − − + + +                           (7) 

Finally, using (4)-(7) and (3), we get 
2 3
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An easy manipulation shows that 1 1K = −  when ( 1)A m B= − . Then by inserting it in 2K , we 

have: 
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It can be verified that 2 0K = , when 
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This implies that: 
 3

1 ( ),n ne O e+ =  
which completes the proof. 
 
By introducing /D Cα = , /E Cβ = , and some manipulations in (8),for those parameters that 
satisfy conditions of theorem, following three parameters family of fourth order  methods is 
obtained: 
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1,m α≠ andβ ∈ℜ . 

Formula (9) includes, as particular cases, the following ones: 
For 2/3, 1/ 2 and 0m α β= − = − = , we obtain a new fourth-order method: 
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For 1/ 2, 1 and 0m α β= = − = , we obtain another new fourth-order method  
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Per iteration of these methods require two evaluations of the function and one of its 
derivative.. If we consider the definition of efficiency index in [9] as 1/mp , where p  is the 
order of the method and m is the number of functional evaluations, the iteration formula 
defined by (9) has the efficiency index equal to3 3 1.4422≈ , which is better than that of 
Newton’s method 2 1.4142≈ . 
 

3      Numerical Examples 
 
In this section, we present some examples to illustrate the efficiency of one member of the 
iterative family which has been introduced in the present paper. We present some numerical 
test results for various cubically convergent iterative schemes in Table 1. A Comparison has 
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been made between the Newton method (NM), the method of Weerakoon and Fernando [9] 
(WF) defined by 
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And the method derived from midpoint rule [10] (MP) defined by 
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And the method of Homeier [11] (HM) defined by 
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And the methods of Chun (CM1) Introduced in [12], 
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And the new methods (10) (BGM1) and (11) (BGM2) introduced in this contribution. 
In the present contribution, we used the following test functions as in [12] 
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All computations were done using MAPLE 10 using 64 digit floating point arithmetic 
(Digits: = 64). In Table 1 results were obtained by using the following stopping criteria: 
(i) 15

1 10 ,n nx x −
+ − <       (ii) 

15( ) 10nf x −< .  

Therefore, as soon as the stopping criteria are satisfied, 1n ITx x+ =  is taken as the 
approximation of solution of ( ) 0f x = . In table 1:  
(IT) stands for the number of iterations, (NFE) stands for the number of evaluations of the 
function and derivative, (δ ) stands for distance of two consecutive approximations for 
finding zero. 
 

4 Conclusion 
 
In this work, we have constructed a new iterative family of methods of order three, for 
solving nonlinear equations. It has been shown that, the proposed iterative family of order 
three and can be effectively used for solving nonlinear equations. It can be shown that the 
proposed methods of this family, has less (IT ) in comparison with other methods and also 
need less computations per iteration, which are valuable advantages of this presented family. 
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Table 1 
Comparison of various third-order convergent iterative methods 

 IT  NFE  
ITx  ( )ITf x  δ  

1 0, 1.27f x =  

NM  5 10 1.365230013414096 2.70-41 1.8e-21 

WF  4 12 1.365230013414096 0.0e-1.0 3.0e-35 

MP  4 12 1.365230013414096 4.5e-48 2.0e-16 

HM  3 9 1.365230013414096 1.0e-63 1.7e-33 

CM  4 12 1.365230013414096 0.0e-01 2.4e-26 

BGM 1 2 6 1.365230013414096 2.7e-16 1.6e-17 

BGM 2 3 9 1.365230013414096 1.2e-35 7.5e-37 

2 0, 2.0f x =  

NM  6 12 1.404491648215341 2.2e-32 1.0e-16 

WF  5 15 1.404491648215341 2.0e-63 6.0e-42 

MP  5 15 1.404491648215341 2.0e-63 7.1e-41 

HM  4 12 1.404491648215341 2.0e-63 1.0e-24 

CM  4 12 1.404491648215341 1.3e-63 3.4e-26 

BGM 1 3 9 1.404491648215341 4.1e-16 1.6e-16 

BGM 2 4 14 1.404491648215341 1.6e-39 6.5e-40 

3 0, 2.0f x =  

NM  6 12 0.257530285439860 2.9e-55 9.1e-28 

WF  5 15 0.257530285439860 1.0e-63 1.6e-34 

MP  4 12 0.257530285439860 1.0e-63 3.9e-24 

HM  5 15 0.257530285439860 0.0e-01 9.3ev43 

CM  5 15 0.257530285439860 1.0e-63 3.3e-39 

BGM 1 6 18 0.257530285439860 4.4e-33 1.1e-33 

BGM 2 4 12 0.257530285439860 2.5e-58 1.3e-58 

4 0, 1.4f x =  

NM  5 10 0.739085133215160 1.2ev32 1.8e-16 

WF  4 12 0.739085133215160 0.0e-01 5.3e-28 

MP  4 12 0.739085133215160 0.0e-01 6.7e-24 

HM  4 12 0.739085133215160 1.0e-64 1.1e-24 

CM  5 15 0.739085133215160 3.3e-50 2.3e-17 

BGM 1 3 9 0.739085133215160 8.9e-17 5.3e-17 

BGM 2 3 9 0.739085133215160 1.7e-21 1.0e-21 

5 0, 2.6f x =  

NM  7 14 2 5.5e-49 4.2e-25 

WF  5 15 2 0.0e-01 1.0e-29 

MP  5 15 2 0.0e-01 1.4e-32 

HM  4 12 2 2.8e-48 1.7e-16 

CM  4 12 2 0.0e-01 3.5e-22 

BGM 1 3 9 2 3.2e-19 1.0e-19 

BGM 2 4 12 2 2.2e-31 7.9e-33 

6 0, 2.3f x =  

NM  6 12 1.895494267033980 2.4e-48 2.2e-24 

WF  4 12 1.895494267033980 3.0e-64 1.1e-21 

MP  4 12 1.895494267033980 1.3e-59 3.6e-20 

HM  4 12 1.895494267033980 3.0e-64 2.2e-38 

CM  5 15 1.895494267033980 3.0e-64 1.0e-44 

BGM 1 4 12 1.895494267033980 1.4e-19 1.7e-19 

BGM 2 4 12 1.895494267033980 2.2e-31 7.9e-33 
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