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Abstract
The Stein-Chen method is used to determine a non-uniform bound for the

relative error of the negative binomial cumulative distribution function with
parameters n and p and the Poisson cumulative distribution functions with
mean nq = n(1 − p). In view of this bound, it is indicated that the Poisson
cumulative distribution function with this mean can be used as an estimate of
the negative binomial cumulative distribution function when q is sufficiently
small.
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1 Introduction

It is well-known that the negative binomial distribution with parameters n > 0
and p ∈ (0, 1) is a discrete distribution with a long history and is widely used
in many areas of probability and statistics as same as other important discrete
distributions. Its applications appear in fields such as automobile insurance,
inventory analysis, telecommunications networks analysis and population ge-
netics. For n ∈ N, it is called the Pascal distribution, which can be thought
of as the distribution of the number of failures before the number of successes
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reaches a fixed integer n in a sequence of independent Bernoulli trials, where
success occurs on each trial with a probability of p and failure occurs on each
trial with a probability of q = 1 − p. A special case, n = 1, it is referred
to as the geometric distribution with parameter p, which models the number
of failures before the first success. Let X be the negative binomial random
variable with parameters n and p, then its probability distribution function is
of the form

pX(x) =
Γ(n+ x)

Γ(n)x!
qxpn, x = 0, 1, ..., (1)

and the mean and variance of X are E(X) = nq
p

and variance V ar(X) = nq
p2

,

respectively. Under parametrization, λ = nq
p

and p = n
n+λ

, (1) becomes

pX(x) =
λx

x!

Γ(n+ x)

Γ(n)(n+ λ)x

(
1

1 + λ
n

)n

, x = 0, 1, .... (2)

It is a well-known result that if n → ∞ and q → 0 while λ = nq
p

remains

fixed, then pX(x)→ e−λλx

x!
for every x ∈ N∪{0}, that is, the negative binomial

distribution with parameters n and p converges to the Poisson distribution
with mean λ. With this Poisson mean, some authors have tried to approximate
the negative binomial distribution by the Poisson distribution in terms of the
total variation distance together with its uniform bound, which can be found
in Vervaat [12], Romanowska [6], Gerber [3], Pfeifer [5], Majsnerowska [4], and
Roos [7]. Let us consider the probability distribution function (1), by setting
λ = nq and p = n−λ

n
, it can be expressed as

pX(x) =
λx

x!

Γ(n+ x)

Γ(n)nx

(
1− λ

n

)n
, x = 0, 1, .... (3)

Observe that if n→∞ and q → 0 while λ = nq remains fixed, then pX(x)→
e−λλx

x!
for every x ∈ N ∪ {0}. Therefore, the negative binomial distribution

with parameters n and p also converges to the Poisson distribution with mean
λ = nq when n is large and q is small. Therefore, the Poisson distribution
with parameter λ = nq can be used as an estimate of the negative binomial
distribution with parameters n and p if n is sufficiently large and q is sufficiently
small. In this case, Teerapabolarn [10] determined a non uniform bound for
the difference of the negative binomial and Poisson cumulative distribution
functions in the form of

−(eλ − 1) min

{
1,

1

p(x0 + 1)
q

}
≤ NBn,p(x0)− Pλ(x0) ≤ 0, (4)



A Non-Uniform Bound on the... 3

where NBn,p(x0) =
∑x0

j=0
Γ(n+j)
Γ(n)j!

qjpn and Pλ(x0) =
∑x0

j=0
e−λλj

j!
are the nega-

tive binomial and Poisson cumulative distribution functions at x0 ∈ N ∪ {0}.
Subsequently, Teerapabolarn [11] determined the least upper bound

sup
x0≥0

∣∣∣∣ Pλ(x0)

NBn,p(x0)
− 1

∣∣∣∣ = e−λp−n − 1 (5)

for the relative error between the negative binomial and Poisson cumulative
distribution functions. This bound is a good criteria for measuring the accu-
racy of the approximation; however, it is a uniform bound. So, our interesting
is to determine a good bound for each x0 ∈ N ∪ {0}. In this study, we focus

on determining a non-uniform bound for

∣∣∣∣ Pλ(x0)

NBn,p(x0)
− 1

∣∣∣∣.
The Stein-Chen method is utilized to provide all results in the present

study as mentioned in Section 2. In Section 3, we use the Stein-Chen method
to yield a non-uniform bound for the approximation. In Section 4, we give some
examples to illustrate the results obtained. Concluding remarks are presented
in the last section.

2 Method

The classical Stein’s method was first introduced by Stein [8]. It is a tool
for approximating the distribution of random elements. His original work was
applied to the central limit theorem for sums of dependent random variables.
The Stein-Chen method as applied to the Poisson case was first developed by
Chen [2] and is also used to determine the main result presented in this study.

Consider Stein’s equation for the Poisson distribution with parameter λ >
0, for given h, of the form

h(x)− Pλ(h) = λf(x+ 1)− xf(x), (6)

where Pλ(h) = e−λ
∑∞

l=0 h(l)λ
l

l!
and f and h are bounded real-valued functions

defined on N ∪ {0}.
For x0 ∈ N ∪ {0}, let function hx0 : N ∪ {0} → R be defined by

hx0(x) =

{
1 if x ≤ x0,

0 if x > x0.

Putting h = hx0 for x0 ∈ N ∪ {0}, (6) becomes

hx0(x)− P(x0;λ) = λfx0(x+ 1)− xfx0(x), (7)
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where x ∈ N ∪ {0}.
Following Barbour et al. [1], the solution f of (7) can be expressed in the form

fx0(x) =


(x− 1)!λ−xeλ[Pλ(x− 1)[1− Pλ(x0)]] if x ≤ x0,

(x− 1)!λ−xeλ[Pλ(x0)[1− Pλ(x− 1)]] if x > x0,

0 if x = 0.

(8)

It should be noted that fx0(x) ≥ 0 for every x ∈ N ∪ {0}. The following
lemma yields a non-uniform bound of (8) that is used to determine the main
result.

Lemma 2.1. For x0 ∈ N ∪ {0}, let pλ(x0) = e−λλx0
x0!

. Then the following
inequality holds:

sup
x≥2

fx0(x) ≤ Pλ(x0)(1− Pλ(x0))

pλ(x0 + 1)(x0 + 1)
. (9)

Proof. It follows from Teerapabolarn [9] that fx0 is an increasing function
for x ≤ x0 and a decreasing function for x > x0. Therefore, we have fx0(x) ≤
fx0(x0) for x ≤ x0 and fx0(x) ≤ fx0(x0 + 1) for x > x0. Because

fx0(x0 + 1)− fx0(x0) = (x0 − 1)!λ−(x0+1)eλ(1− Pλ(x0))

x0∑
k=0

(x0 − k)
λk

k!

> 0,

we obtain fx0(x) ≤ fx0(x0 + 1) for every x ∈ N. Therefore, by (8), we have

fx0(x0 + 1) = x0!λ−(x0+1)eλPλ(x0)(1− Pλ(x0))

=
Pλ(x0)(1− Pλ(x0))

pλ(x0 + 1)(x0 + 1)
.

Hence, the inequality (9) holds. �

Lemma 2.2. Let x0 ∈ N ∪ {0} and λ = nq, then we have the following:

Pλ(x0)− NBn,p(x0) ≤
(
e−λp−n − 1

)
NBn,p(x0) (10)

and

Pλ(x0)− NBn,p(x0) ≤
(
1− eλpn

)
Pλ(x0). (11)

Proof. It is clear that (10) and (11) hold for x0 = 0. Next, we shall show
that the two inequalities hold for x0 ∈ N.

Pλ(x0)− NBn,p(x0) = e−λ
x0∑
k=0

λk

k!
− pn

x0∑
k=0

λk

k!

(
n+ k − 1

n
· · · n

n

)
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≤ e−λ
x0∑
k=0

λk

k!

(
n+ k − 1

n
· · · n

n

)
− pn

x0∑
k=0

λk

k!

(
n+ k − 1

n
· · · n

n

)
= (e−λ − pn)

x0∑
k=0

λk

k!

(
n+ k − 1

n
· · · n

n

)
=

(e−λ − pn)

pn
pn

x0∑
k=0

(nq)k

k!

(
n+ k − 1

n
· · · n

n

)
=
(
e−λp−n − 1

)
NBn,p(x0)

and

Pλ(x0)− NBn,p(x0) ≤ e−λ
x0∑
k=0

λk

k!
− pn

x0∑
k=0

λk

k!

= (e−λ − pn)

x0∑
k=0

λk

k!

=
(
1− eλpn

)
Pλ(x0).

Therefore, (10) and (11) hold. �

3 Main result

The following theorem shows a result of the Poisson approximation to the neg-
ative binomial cumulative distribution in terms of the relative error between
these cumulative distribution functions and its non uniform bound, which can
be derived by the Stein-Chen method and the properties in the two Lemmas.

Theorem 3.1. For x0 ∈ N ∪ {0}, if λ = nq then we have the following:∣∣∣∣ Pλ(x0)

NBn,p(x0)
− 1

∣∣∣∣ ≤ min

{
e−λp−n − 1,

(1− Pλ(x0))q

eλpn+1pλ(x0)

}
. (12)

Proof. Substituting x by X and taking expectation in (7), yields

NBn,p(x0)− Pλ(x0) = E[λfx0(X + 1)−Xfx0(X)]

=
∞∑
k=0

[nqfx0(x+ 1)− xfx0(x))]pX(x)
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= [nqfx0(1)]pX(0) + [nqfx0(2)− fx0(1)]pX(1)

+ [nqfx0(3)− 2fx0(2)]pX(2) + [nqfx0(4)− 3fx0(3)]pX(3)

+ [nqfx0(5)− 4fx0(4)]pX(4) +
∞∑
x=5

[nqfx0(x+ 1)− xfx0(x)]pX(x)

= nqpnfx0(1) + n2q2pnfx0(2)− nqpnfx0(1)

+
n2(n+ 1)q3pnfx0(3)

2
− 2n(n+ 1)q2pnfx0(2)

2

+
n2(n+ 1)(n+ 2)q4pnfx0(4)

3!
− n(n+ 1)(n+ 2)q3pnfx0(3)

2

+
n2(n+ 1)(n+ 2)(n+ 3)q5pnfx0(5)

4!

− n(n+ 1)(n+ 2)(n+ 3)q4pnfx0(4)

3!
+
∞∑
x=5

[nqfx0(x+ 1)− xfx0(x)]pX(x)

= −nq2pnfx0(2)− n(n+ 1)q3pnfx0(3)

− n(n+ 1)(n+ 2)q4pnfx0(4)

2
− n(n+ 1)(n+ 2)(n+ 3)q5pnfx0(5)

3

− · · · − n(n+ 1)(n+ 2)(n+ 3) · · · (n+ k)qx+2pnfx0(x+ 2)

x
− · · ·

= −
∞∑
x=1

xqpX(x)fx0(x+ 1)

< 0. (13)

From which it follows that

0 ≤ Pλ(x0)− NBn,p(x0)

≤
∞∑
x=1

xqpX(x)fx0(x+ 1)

≤ sup
x≥2

fx0(x)
∞∑
x=1

xqpX(x)

≤ Pλ(x0)(1− Pλ(x0))q

pλ(x0)p
, (14)

and follows from (10) in Lemma 2.2, we obtain

0 ≤ Pλ(x0)− NBn,p(x0) ≤
(
e−λp−n − 1

)
NBn,p(x0). (15)
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Dividing (14) and (15) by NBn,p(x0), we have

0 ≤ Pλ(x0)

NBn,p(x0)
− 1 ≤ Pλ(x0)

NBn,p(x0)

(1− Pλ(x0))q

pλ(x0)p

=
(1− Pλ(x0))q

eλpn+1pλ(x0)

and

0 ≤ Pλ(x0)

NBn,p(x0)
− 1 ≤ e−λp−n − 1,

which implies the inequality (12). Hence, (12) is obtained. �
Similarly, dividing (14) and (15) by Pλ(x0) and using Lemma 2.2, we also

obtain

0 ≤ 1− NBn,p(x0)

Pλ(x0)
≤ (1− Pλ(x0))q

pλ(x0)p

and

0 ≤ 1− NBn,p(x0)

Pλ(x0)
≤ 1− eλpn,

which gives the following corollary.

Corollary 3.1. For x0 ∈ N ∪ {0}, if λ = nq then we have the following:∣∣∣∣NBn,p(x0)

Pλ(x0)
− 1

∣∣∣∣ ≤ min

{
1− eλpn, (1− Pλ(x0))q

pλ(x0)p

}
. (16)

Note that, the non-uniform bounds in Theorem 3.1 and Corollary 3.1 can
be adapted to uniform bounds, which are the same results reported in Teera-
pabolarn (2012).

Corollary 3.2. For λ = nq, we have the following:

sup
x0≥0

∣∣∣∣ Pλ(x0)

NBn,p(x0)
− 1

∣∣∣∣ = e−λp−n − 1

and

sup
x0≥0

∣∣∣∣NBn,p(x0)

Pλ(x0)
− 1

∣∣∣∣ = 1− eλpn.
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4 Conclusion

In this study, a non-uniform bound on the relative error in Theorem 3.1, deter-
mined by the Stein-Chen method, is an approximation of the relative error be-
tween the negative binomial cumulative distribution function with parameters
n and p and the Poisson cumulative distribution with mean λ = nq = n(1−p).
With this bound, it is found that the result gives a good Poisson approxima-
tion when q is sufficiently small.
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