Gen. Math. Notes, Vol. 8, No. 2, February 2012, pp.1-10
ISSN 2219-7184; Copyright © ICSRS Publication, 2012
www.i-csrs.org
Available free online at http://www.geman.in

Edge-Domsaturation Number of a Graph

D. Nidha ${ }^{1}$ and R. Kala ${ }^{2}$
${ }^{1}$ Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, 627012, Tamil Nadu, India
E-mail: nidhamaths@gmail.com
${ }^{2}$ Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, 627012, Tamil Nadu, India
E-mail: karthipyi91@yahoo.co.in

(Received: 1-3-11/ Accepted: 15-2-12)

Abstract

The edge-domsaturation number $d s^{\prime}(G)$ of a graph $G=(V, E)$ is the least positive integer k such that every edge of G lies in an edge dominating set of cardinality k. The connected edge-domsaturation number $d s_{c}^{\prime}(G)$ of a graph $G=(V, E)$ is the least positive integer k such that every edge of G lies in a connected edge dominating set of cardinality k. In this paper, we obtain several results connecting $d s^{\prime}(G), d s_{c}^{\prime}(G)$ and other graph theoretic parameters.

Keywords: edge-dominating set, edge-domination number, edge-domsaturation number, connected edge-domsaturation number.

1 Introduction

Throughout this paper, G denotes a graph with order p and size q. By a graph we mean a finite undirected graph without loops or multiple edges. For graph theoretic terms we refer Harary [2]. In particular, for terminology related to domination theory we refer Haynes et.al [3].

Definition 1.1. Let $G=(V, E)$ be a graph. A subset D of E is said to be an edge dominating set if every edge in $E-D$ is adjacent to at least one edge in D. An edge dominating set D is said to be a minimal edge dominating set if no proper subset of D is a dominating set of G.

Acharya [1] introduced the concept of domsaturation number $d s(G)$ of a graph. Arumugam and Kala [4] observed that for any graph $G, d s(G)=\gamma(G)$ or $\gamma(G)+1$ and obtained several results on $d s(G)$. We now extend the concept of domsaturation to edges.

Definition 1.2. The least positive integer k such that every edge of G lies in an edge dominating set of cardinality k is called the edge-domsaturation number of G and is denoted by $d s^{\prime} G$).

Definition 1.3. The least positive integer k such that every edge of G lies in a connected edge dominating set of cardinality k is called the connected edgedomsaturation number of G and is denoted by $d s_{c}^{\prime}(G)$.

If G is a graph with edge set E and D is a γ^{\prime}-set of G, then for any edge $e \in E-D, D \cup\{e\}$ is also an edge dominating set and hence $d s^{\prime}(G)=\gamma^{\prime}(G)$ or $\gamma^{\prime}(G)+1$.
Thus we have the following definition.
Definition 1.4. A graph G is said to be of class 1 or class 2 according as $d s^{\prime}(G)=\gamma^{\prime}(G)$ or $\gamma^{\prime}(G)+1$.

Definition 1.5. A tree T of order 3 or more is a caterpillar if the removal of its leaves produces a path.

Definition 1.6. A tree containing exactly two vertices that are not leaves (which are necessarily adjacent) is called a double star. Thus a double star is a tree of diameter three.

We use the following theorems.
Theorem 1.7. [6] For any tree T of order $p \neq 2, \gamma^{\prime}(G) \leq(p-1) / 2$; equality holds if and only if T is isomorphic to the subdivision of a star.

Theorem 1.8. [6] Let T be any tree and let $e=u v$ be an edge of maximum degree $\Delta^{\prime}(T)$. Then $\gamma^{\prime}(T)=q-\Delta^{\prime}(T)$ if and only if $\operatorname{diam}(T) \leq 4$ and degw ≤ 2 for every vertex $w \neq u, v$.

2 Main Results

Theorem 2.1. The path P_{p} of order $p, p \geq 4$ is of class 1 if and only if $p \equiv 2(\bmod 3)$.

Proof. Let $P_{p}=(1,2, \ldots, p)$ be of class 1 . Let e_{i} be the edge joining i and $i+1$. If $p \equiv 0(\bmod 3)$, then e_{3} does not lie in an edge dominating set of cardinality $\gamma^{\prime}(G)$. If $p \equiv 1(\bmod 3)$, then either e_{1} or e_{3} does not lie in an edge
dominating set of cardinality $\gamma^{\prime}(G)$. Hence if $p \equiv 0$ or $1(\bmod 3)$, then P_{p} is of class 2.

Conversely, suppose $p=3 k+2$. Then $\gamma^{\prime}(G)=k+1$.

$$
\begin{array}{ll}
\text { Let } & D_{1}=\left\{e_{1}, e_{3}, e_{6}, \ldots, e_{3 k}\right\} \\
& D_{2}=\left\{e_{2}, e_{5}, e_{7}, \ldots, e_{3 k-1}, e_{3 k+1}\right\} \\
\text { and } & D_{3}=\left\{e_{1}, e_{4}, e_{7}, \ldots, e_{3 k-2}, e_{3 k+1}\right\} .
\end{array}
$$

Clearly D_{1}, D_{2} and D_{3} are $\gamma^{\prime}(G)$ sets of P_{p} and $\cup_{i=1}^{3} D_{i}=E\left(P_{p}\right)$. Hence $d s^{\prime}(G)=\gamma^{\prime}(G)$ so that P_{p} is of class 1 .

Definition 2.2. Let T be a caterpillar. Two supports u and v of T are said to be consecutive if either u and v are adjacent or every vertex in the $u-v$ path in T has degree 2.

Theorem 2.3. Let T be a caterpillar. Then T is of class 1 if and only if every support is adjacent to exactly one pendent vertex and for any two consecutive supports u and $v, d(u, v) \equiv 2(\bmod 3)$.

Proof. Suppose T is a caterpillar of class 1. If there exists two pendent vertices v_{1}, v_{2} which are adjacent to u, then there is no $\gamma^{\prime}(G)$-set containing $u v_{1}$. Hence every support is adjacent to exactly one pendent vertex. Now, let S denote the set of all supports of T. Suppose there exists two consecutive supports u and v such that $d(u, v) \equiv 0$ or $1(\bmod 3)$. Let $P=\left(u=u_{1}, u_{2}, \ldots, u_{k}=v\right)$ be the $u-v$ path in T. Then $u_{2} u_{3}$ does not lie in a $\gamma^{\prime}(G)$ - set and hence it follows that for any two consecutive supports u and $v, d(u, v) \equiv 2(\bmod 3)$.

Conversely, let T be a caterpillar in which every support is adjacent to exactly one pendent vertex and $d(u, v) \equiv 2(\bmod 3)$ for any two consecutive supports u and v . Let k denote the number of supports in T. We prove that T is of class 1 by induction on k. If $k=2, T$ is a path P_{p} with $p \equiv 2(\bmod 3)$ vertices and by the theorem [2.1], T is of class 1 . Suppose the theorem is true for all caterpillars with $k-1$ supports. Let T be a caterpillar with k supports $w_{1}, w_{2}, \ldots, w_{k}$ such that w_{i} and w_{i+1} are consecutive supports. Let x_{i} be the pendent vertex adjacent to w_{i}. Let $P_{1}=\left(w_{1}, v_{1}, \ldots, v_{3 m+1}, w_{2}\right)$ be the $w_{1}-w_{2}$ path and let $T_{1}=T-\left\{x_{1}, w_{1}, v_{1}, \ldots, v_{3 m+1}\right\}$. Clearly P_{1} is of class 1 and by induction hypothesis T_{1} is of class 1 . Further the union of any minimum edge dominating set of P_{1} and any minimum edge dominating set of T_{1} is a minimum edge dominating set of T. Hence T is of class 1 .

Theorem 2.4. If G is a k-regular graph which is edge domatically full, then G is of class 1 .

Proof. Since G is edge domatically full, $d^{\prime}(G)=\delta^{\prime}(G)+1=k+1$. Let $\left\{D_{1}^{\prime}, D_{2}^{\prime}, \ldots, D_{k+1}^{\prime}\right\}$ be an edge domatic partition of G. Any set D_{i}^{\prime} either
contains an edge x or exactly one of its neighbours. Hence each D_{i}^{\prime} is independent. Also for all $1 \leq j \leq k+1, i \neq j$, every edge in D_{i}^{\prime} is adjacent to exactly one edge in D_{j}^{\prime}. Hence all sets D_{i}^{\prime} are of equal cardinality and $\left|D_{i}^{\prime}\right|=\gamma^{\prime}(G)$ so that G is of class 1.

Lemma 2.5. Let G be a path of even order which is of class 1. Then $\gamma^{\prime}(G)+\beta_{1}(G)=p-1$ if and only if $G \cong P_{8}$.

Proof. If $G \cong P_{8}$, clearly $\gamma^{\prime}(G)+\beta_{1}(G)=p-1$. Conversely, suppose $\gamma^{\prime}(G)+\beta_{1}(G)=n-1$. Since G is a path of even order, obviously it is of class 1. By theorem 2.1, we have $p=3 k+2$. Obviously $\beta_{1}(G)=p / 2$. Then $\gamma^{\prime}(G)=p-2 / 2$. But P_{p} is a path and so $\gamma^{\prime}(G)=\left\lceil\frac{p-1}{3}\right\rceil$. Now $\frac{p-2}{2}=\left\lceil\frac{p-1}{3}\right\rceil \Rightarrow$ $\frac{3 k}{2}=\left\lceil\frac{3 k+1}{3}\right\rceil \Rightarrow k=2$. Therefore $\mathrm{k}=2$. Hence $G \cong P_{8}$.

Theorem 2.6. Let G be any connected graph which is of class 1. Then $d s^{\prime}(G)=q-\beta_{1}(G)$ (where q is the number of edges) if and only if G is isomorphic to C_{4}, the subdivision of a star or P_{8}.

Proof. Suppose $d s^{\prime}(G)=q-\beta_{1}(G)$. Then $d s^{\prime}(G)=\gamma^{\prime}(G)=q-\beta_{1}(G)$. Since $\gamma^{\prime}(G) \leq p / 2$ and $\beta_{1}(G) \leq p / 2$, we have $\gamma^{\prime}(G)+\beta_{1}(G) \leq p$ and hence $q \leq p$. If $q=p$, then p is even, $\gamma=\beta_{1}=p / 2$ and G is unicyclic. Hence it follows from [6] that $G=C_{4}$. If $q=p-1$,then we have the following cases:

Case(i). p is odd.
$\operatorname{Now} \gamma^{\prime}(G)=\beta_{1}(G)=\frac{(p-1)}{2}$ and G is a tree. Hence it follows from theorem 2.6 that G is isomorphic to the subdivision of a star.

Case(ii) p is even.
Now we have $\gamma^{\prime}(G)=\frac{(p-2)}{2}, \beta_{1}(G)=\frac{p}{2}$ and G is a path. Hence it follows from lemma 2.5 that G is isomorphic to P_{8}. The converse is obvious.

Theorem 2.7. For any (p, q) graph G which is of class 1, $d s^{\prime}(G)+d^{\prime}(G)=$ $q+1$ if and only if $G \cong C_{3}, K_{1, p-1}$ or $m K_{2}$.

Proof. Suppose $d s^{\prime}(G)+d^{\prime}(G)=q+1$. Since G is of class 1 , we have $d s^{\prime}(G)=\gamma^{\prime}(G)$, i.e. $\gamma^{\prime}(G)+d^{\prime}(G)=q+1$. Since $\gamma^{\prime}(G) d^{\prime}(G) \leq q$, we have $\left(d^{\prime}(G)-1\right)\left(q-d^{\prime}(G)\right) \leq 0$. Further, $d^{\prime}(G) \geq 1$ and $q \geq d^{\prime}(G)$. So $(q-$ $\left.d^{\prime}(G)\right)\left(d^{\prime}(G)-1\right)=0$. Hence $q=d^{\prime}(G)$ or $d^{\prime}(G)=1$. If $d^{\prime}(G)=1$, then G is isomorphic to $m K_{2}$. If $q=d^{\prime}(G)$, then $G=C_{3}$ or $K_{1, p-1}$. The converse is obvious.

Theorem 2.8. If T is a bistar, then T is of class 2.
Proof. Since the non-pendent edge of T is an edge dominating set of T, we have $\gamma^{\prime}(T)=1$. There is no γ-set containing any of the pendent edges and so T is of class 2 .

Theorem 2.9. Let T be any tree and let $e=u v$ be an edge of maximum degree $\Delta^{\prime}(T)$. Then $d s^{\prime}(T)=q-\Delta^{\prime}(T)+1$ if and only if T is isomorphic to bistar or $\operatorname{diam}(T)=4$, degw ≤ 2 for every vertex $w \neq u, v$ and there exist at least one pair of end vertices which are distant 3 apart.

Proof. By theorem 1.8, it is enough to investigate those graphs that are of class 2. If $\operatorname{diam}(T)=1$ or 2 , then obviously T is of class 1 . If $\operatorname{diam}(T)=3$, then T has exactly one non-pendent edge. Therefore T is of class 2. If $\operatorname{diam}(T)=4$, then each nonpendent edge of T is adjacent to a pendent edge of T and hence the set of all nonpendent edges of T forms a minimum edge dominating set and $\gamma^{\prime}(T)=q-\Delta^{\prime}(T)$. Based on the distance between the pendent vertices, we have the following cases:

Case(i). $d(u, v) \neq 3$, for every $u, v \in S$.
Then $d(u, v)=1,2$ or 4 . Since $\operatorname{diam}(T)=4$, it is impossible that $d(u, v)=1$ or 2 . Hence there exists $u, v \in S$ with $d(u, v)=4$. In this case T is of class 1 .

Case(ii). There exists $u, v \in S$ with $d(u, v)=3$.
Let e, e^{\prime} be the pendent edges incident with u, v respectively. Since $\operatorname{diam}(T)=$ 4 , at least one of e, e^{\prime} should be adjacent to two non-pendent edges. Without loss of generality let e be adjacent to two non-pendent edges. Then there os no two element edge dominating set containing e so that T is of class 2 .

Theorem 2.10. Let G be a graph with $\Delta^{\prime}(G)=q-2$. Let e be an edge of degree $q-2$ and let f be an edge which is non adjacent to e. Then G is of class 1 if and only if for every $g_{1} \in E(G) \backslash(N[f] \cup\{e\})$, there exists $g_{2} \in N[f]$ such that $N\left[g_{1}\right] \cup N\left[g_{2}\right]=E(G)$.

Proof. Suppose G is of class 1. Let e be an edge of degree $q-2$ and let f be an edge non-adjacent to e. Let $g_{1} \in E(G) \backslash(N[f] \cup\{e\})$. Since $d s^{\prime}(G)=\gamma^{\prime}(G)=2$, there exists $g_{2} \in E(G)$ such that $\left\{g_{1}, g_{2}\right\}$ is an edge dominating set. Clearly, $g_{2} \in N[f]$ and $N\left[g_{1}\right] \cup N\left[g_{2}\right]=E(G)$. The converse is immediate.

Theorem 2.11. Given three positive integers a, b and c with $2 \leq a \leq b \leq c$, there exists a graph G with $\gamma^{\prime}(G)=a, d s^{\prime}(G)=a+1, E I S(G)=b$ and $\beta(G)=c$ if and only if $b \leq 2 a-1$ and $c=b+1$.

Proof. If there exists a graph G with $\gamma^{\prime}(G)=a, d s^{\prime}(G)=a+1$, $\operatorname{EIS}(G)=b$ and $\beta(G)=b+1$, then it follows from [5] that $b \leq 2 a-1$ and $c=b+1$.

Conversely, let $b \leq 2 a-1$ and $c=b+1$. Let $b=a+k$, where $0 \leq k \leq a-1$. Construct a graph as follows: Let $\left\{u_{1} v_{1}, u_{2} v_{2}, \ldots ., u_{a} v_{a}\right\}$ be a set of independent edges. Add vertices $x_{1}, x_{2}, \ldots, x_{k+1}$ and $y_{1}, y_{2}, \ldots ., y_{k+1}$ and join x_{i} with
u_{i} and y_{i} with v_{i} for all $i, 1 \leq i \leq k+1$. Also add a vertex z and join z with u_{i} and v_{i} for all $i, k+2 \leq i \leq a$.

Clearly $\left\{u_{1} v_{1}, u_{2} v_{2}, \ldots . ., u_{a} v_{a}\right\}$ is a minimum edge dominating set of G and hence $\gamma^{\prime}(G)=a$. But $x_{i} u_{i}$ and $y_{i} v_{i}, 1 \leq i \leq k+2$ does not belong to any γ^{\prime} set. Therefore $d s^{\prime}(G)=\gamma^{\prime}(G)+1$. Therefore $\left\{x_{1} u_{1}, y_{1} v_{1}, u_{2} v_{2}, \ldots ., u_{a} v_{a}\right\}$ is an edge-domsaturation set with cardinality $a+1$.
Also, $I=\left\{u_{1} x_{1}, u_{2} x_{2}, \ldots . ., u_{k+1} x_{k+1}, v_{1} y_{1}, v_{2} y_{2}, \ldots . . v_{k+1} y_{k+1}, u_{k+2} v_{k+2}, \ldots . ., u_{a} v_{a}\right\}$ is a maximum matching in G. Hence $\beta_{1}(G)=a+k+1=c$. Since $I_{1}=$ $I-\left\{u_{1} x_{1}, v_{1} y_{1}\right\} \cup\left\{u_{1} v_{1}\right\}$ is a maximum matching containing $u_{1} v_{1}$, we have $\operatorname{EIS}\left(u_{1} v_{1}\right)=a+k$ and hence $\operatorname{EIS}(G)=\beta_{1}-1=b$.

3 Connected Edge-Domsaturation Number of a Graph

Definition 3.1. Let G be a connected graph. The least positive integer k such that every edge of G lies in a connected edge dominating set of cardinality k is called the connected edge-domsaturation number of G and is denoted by $d s_{c}^{\prime}(G)$.

Example 3.2. (i) $d s_{c}^{\prime}\left(K_{p}\right)=p-2$
(ii) $d s_{c}^{\prime}\left(P_{p}\right)=p-2$
(iii) $d s_{c}^{\prime}\left(K_{q, p}\right)=\min \{q, p\}$.

Observation 3.3. If G is any connected graph with $\Delta^{\prime}(G)=q-1$ and $G \nsupseteq K_{1, n}$, then $d s_{c}^{\prime}(G)=\gamma_{c}^{\prime}(G)+1$.

Proof. Since $\Delta^{\prime}(G)=q-1$, we have $\gamma_{c}^{\prime}(G)=1$. Further any edge with degree less than $q-1$ does not lie on a $\gamma_{c}^{\prime}(G)$-set. Therefore $d s_{c}^{\prime}(G)=\gamma_{c}^{\prime}(G)+1$.

Observation 3.4. For any connected graph G with $p \geq 4$ and $\delta^{\prime}(G)=1$, we have $d s_{c}^{\prime}(G)=\gamma_{c}^{\prime}(G)+1$.

Proof. Since no pendent edge lies on a $\gamma_{c}^{\prime}(G)$-set, the result follows.
We now find an upper bound on connected edge-domsaturation number for trees and unicyclic graphs.

Observation 3.5. For any tree T of order $p \geq 4, \gamma_{c}^{\prime}(T)=p-3$ if and only if T is a path or $K_{1,3}$.

Observation 3.6. For any tree T of order $p \geq 4, d s_{c}^{\prime}(T)=p-2$ if and only if Tis a path.

Corollary 3.7. For any tree T of order $p \geq 4, d s_{c}^{\prime}(T)+\chi(T) \leq p$ and equality holds if and only if T is a path.

Proof. It follows from observation 3.6 that for any tree $T, d s_{c}^{\prime}(G) \leq p-2$. Also $\chi(G)=2$. Therefore $d s_{c}^{\prime}(G)+\chi(G) \leq p$. Further $d s_{c}^{\prime}(G)+\chi(G)=p$ if and only if $d s_{c}^{\prime}(G)=p-2$ or equivalently T is a path.

Theorem 3.8. Let G be a connected unicyclic graph with cycle C. Then $d s_{c}^{\prime}(G)=p-2$ if and only if $G \cong C$ or a cycle C with exactly one pendent edge.

Proof. Let G be a unicyclic graph with $d s_{c}^{\prime}(G)=p-2$. Let C be the unique cycle in G and suppose $G \neq C$. Let S be the set of all pendent edges of G. We observe that $d s_{c}^{\prime}(G)=p-|S|$ if no vertex in C is of degree 2 and $d s_{c}^{\prime}(G)=p-|S|-1$ otherwise. In the former case, $|S|=2$. But this is impossible as in this case no vertex in C is of degree 2 . Therefore $d s_{c}^{\prime}(G)=p-|S|-1$. Now $|S|=1$ and so G has exactly one pendent edge.

Theorem 3.9. For any tree $T, T \not \not K_{1, n}, \quad d s_{c}^{\prime}(T)=q-\Delta^{\prime}(T)+1$ if and only if T has at most one vertex of degree greater than 2 or exactly two adjacent vertices of degree greater than 2.

Proof. We observe that, $d s_{c}^{\prime}(T)=q-k+1$, where k is the number of pendent edges of T. Hence $d s_{c}^{\prime}(G)=q-\Delta^{\prime}(G)+1$ if and only if $\Delta^{\prime}(G)=k$. However if T has two non-adjacent vertices of degree greater than 2 , then $k>\Delta^{\prime}(G)$ and hence the result follows.

Theorem 3.10. Let G be a connected unicyclic graph with cycle C and $G \nsupseteq C$. Then $d s_{c}^{\prime}(G)=q-\Delta^{\prime}(G)+1$ if and only if one of the following conditions hold.

1. G has exactly one vertex of degree greater than 2
2. G has exactly two vertices u, v of degree greater than 2 and u, v are adjacent
3. $C=C_{3}$, all the vertices of C are of degree ≥ 3, one vertex of C is of degree 3 and all the vertices not on C have degree one or two.

Proof. Let G be a connected unicyclic graph with $d s_{c}^{\prime}(G)=q-\Delta^{\prime}(G)+1$ and as in the proof of theorem 3.8, we have $|S|=\Delta^{\prime}(G)-1$ or $|S|=\Delta^{\prime}(G)-2$, where S is the number of pendent edges of T.

Case(i). $|S|=\Delta^{\prime}(G)-1$.
In this case, every vertex of C is of degree ≥ 3. Now if $C \neq C_{3}$, then G has at most $\Delta^{\prime}(G)$ pendent edges. Thus $C=C_{3}$. It follows that at most one vertex of C is of degree 3 and all vertices not on C have degree 1 or 2 . Hence G is of the form described in (3).

Case(ii). $|S|=\Delta^{\prime}(G)-2$
In this case, there exists at least one vertex of degree 2 on C. Let $e=u v$ be an edge of maximum degree $\Delta^{\prime}(G)$. Since $|S|=\Delta^{\prime}(G)-2$, at least one of u, v lies on C and all vertices different from u, v have degree one or two. If both u, v have degree at least 3 then G satisfies (2), Otherwise G satisfies (1).

4 Domsaturation Number of a Graph

Theorem 4.1. Let G be any connected graph and let G^{\prime} be the graph obtained from G by concatenating a vertex of G with the center of a star $k_{1, n},(n \geq 2)$. Then $d s(G)=\gamma(G)+1$.

Proof. Let $u \in V(G)$ be the support vertex of a star. Suppose u is not dominated by any vertex of G, then clearly u belongs to the γ-set. Suppose u is dominated by some vertices of G. Since number of pendent vertices ≥ 2. So in this case also u belongs to the γ-set.In both these cases the pendent vertices does not belong to any γ-set. So $d s(G)=\gamma(G)+1$.

Theorem 4.2. Given any three positive integers a, b, and c with $3 \leq a \leq$ $b \leq c$, their exists a graph G with $d s(G)=a, I S(G)=b$ and $\Gamma(G)=c$.

Proof. Case(i). $a=3$
Let $k=\left\{\begin{array}{ll}0 & \text { if } c \leq 2 b-2 \\ c-2 b+2 & \text { if } c>2 b-2\end{array} \quad\right.$ and
let $\alpha= \begin{cases}2 b-2-c & \text { if } c \leq 2 b-2 \\ 0 & \text { if } c>2 b-2 .\end{cases}$
Let $P_{4}=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ be a path on 4 vertices. Attach $b-2$ pendent vertices $u_{1}, u_{2}, \ldots, u_{b-2}$ to v_{2} and $b-2+k$ pendent vertices $w_{1}, w_{2}, \ldots, w_{b-2+k}$ to v_{3}. Add the edges $u_{1} w_{1}, u_{2} w_{2}, \ldots, u_{\alpha} w_{\alpha}$. For the resulting graph G, we have $\gamma(G)=2$. But the pendent vertices does not lie in any dominating set of cardinality 2 . Thus $d s(G)=3=a$.

If $b=c$, then clearly $I S(G)=I S\left(v_{2}\right)$ or $I S\left(v_{3}\right)$.
If $b<c$, then $I S(G)=I S\left(v_{3}\right)$. Since v_{3} is the only vertex which is the minimum of all $I S(v)^{\prime} s$, for every $v \in V(G)$. In both the cases, $\left\{v_{3}, u_{1}, u_{2}, \ldots, u_{b-2}, v_{1}\right\}$ is the desired $I S$-set of G. Hence $I S(G)=b-2+2=b$.

Also $\left\{u_{1}, u_{2}, \ldots, u_{b-2}, w_{\alpha+1}, w_{\alpha+2}, \ldots, w_{b-2+k}, v_{1}, v_{4}\right\}$ is the maximum cardinality of a minimal dominating set and hence $\Gamma(G)=2 b-2+k-\alpha$.

If $c \leq 2 b-2$, then $2 b-2+k-\alpha=2 b-2-(2 b-2-c)=c$.
If $c>2 b-2$, then $2 b-2+k-\alpha=2 b-2+c-2-2 b=c$. Hence $\Gamma(G)=c$.
Case(ii). $a \geq 4$
Let $k=\left\{\begin{array}{ll}0 & \text { if } c \leq 2 b-a \\ c-2 b+a & \text { if } c>2 b-a\end{array} \quad\right.$ and
let $\alpha= \begin{cases}2 b-a-c & \text { if } c \leq 2 b-2 \\ 0 & \text { if } c>2 b-a\end{cases}$
Let $P=\left(v_{1}, v_{2}, \ldots, v_{a}\right)$ be a path on a vertices. Attach pendent vertices $u_{1}, u_{4}, \ldots, u_{a}$ to $v_{1}, v_{4}, \ldots, v_{a}$ respectively. Attach $b-(a-1)$ pendent vertices $s_{1}, s_{2}, \ldots, s_{b-(a-1)}$ to v_{2}, attach $b-(a-1)+k$ pendent vertices $t_{1}, t_{2}, \ldots, t_{b-(a-1)+k}$ to v_{3} add the edge $u_{1} u_{a}$ and the edges $s_{1} t_{1}, s_{2} t_{2}, \ldots s_{\alpha} t_{\alpha}$.
Clearly $\left\{u_{1}, v_{2}, v_{3}, \ldots, v_{a-1}\right\}$ is a γ - set.But the pendent vertices adjacent to v_{2}, v_{3} and the vertices v_{1}, v_{a} does not belong to any γ set.Therefore $d s(G)=a$. If $a=b=c$,then $k=0$ and $\alpha=0$. Hence $I S(G)=I S(i)=a$ for all $i \in V$ If $a<b$ and $b=c$, then $I S\left(v_{2}\right)$ or $I S\left(v_{3}\right)$ is the $I S$-set of G. If $a<b<c$, then $I S\left(v_{3}\right)$ is the only set having minimum cardinality among all $I S$-sets. From these three cases, $\left\{v_{3}, s_{1}, s_{2}, \ldots, s_{b-(a-1)}, u_{1}, u_{4}, u_{5}, \ldots, u_{a-1}, v_{a}\right\}$ is the desired $I S$-set. Hence $I S(G)=b-(a-1)+1+1+a-3=b$. Also $\left\{s_{1}, s_{2}, \ldots, s_{b-(a-1)}, t_{\alpha+1}, t_{\alpha+2}, \ldots, t_{b-(a-1)+k}, u_{4}, u_{5}, \ldots, u_{a-1}, v_{a}, v_{1}\right\}$ is a dominating set of maximum cardinality and hence $\Gamma(G)=2 b-a+k-\alpha$. As in case(i), we have $\Gamma(G)=c$.

References

[1] B.D. Acharya, The strong domination number of a graph and related concepts, J. Math. Phys. Sci., 14(5) (1980), 471-475.
[2] F. Harary, Graph Theory, Addition-Wesley Publishing Company Inc, USA, (1969).
[3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., (1998).
[4] S. Arumugam and R. Kala, Domsaturation number of a graph, Indian J. Pure Appl. Math., 33(11) (2002), 1671-1676.
[5] S. Arumugam and M. Subramanian, Independence saturation and extended domination chain in graphs, AKCE J. Graph. Combin., 4(2) (2007), 59-69.
[6] S. Arumugam and Vellammal, Edge domination in graphs, Taiwanese Journal of Mathematics., 2(2) (1998), 173-179.
[7] S. Mitchell and S.T. Hedetniemi, Edge domination in trees, Congr. Numer., 19 (1977), 489-509.

