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Abstract

The edge-domsaturation number ds′(G) of a graph G = (V,E) is the least
positive integer k such that every edge of G lies in an edge dominating set of
cardinality k. The connected edge-domsaturation number ds′c(G) of a graph
G = (V,E) is the least positive integer k such that every edge of G lies in a
connected edge dominating set of cardinality k. In this paper, we obtain several
results connecting ds′(G), ds′c(G)and other graph theoretic parameters.

Keywords: edge-dominating set, edge-domination number, edge-domsaturation
number, connected edge-domsaturation number.

1 Introduction

Throughout this paper, G denotes a graph with order p and size q. By a graph
we mean a finite undirected graph without loops or multiple edges. For graph
theoretic terms we refer Harary [2]. In particular, for terminology related to
domination theory we refer Haynes et.al [3].

Definition 1.1. Let G = (V,E) be a graph. A subset D of E is said to be
an edge dominating set if every edge in E −D is adjacent to at least one edge
in D. An edge dominating set D is said to be a minimal edge dominating set
if no proper subset of D is a dominating set of G.
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Acharya [1] introduced the concept of domsaturation number ds(G) of a
graph. Arumugam and Kala [4] observed that for any graph G, ds(G) = γ(G)
or γ(G)+1 and obtained several results on ds(G). We now extend the concept
of domsaturation to edges.

Definition 1.2. The least positive integer k such that every edge of G lies
in an edge dominating set of cardinality k is called the edge-domsaturation
number of G and is denoted by ds′G).

Definition 1.3. The least positive integer k such that every edge of G lies
in a connected edge dominating set of cardinality k is called the connected edge-
domsaturation number of G and is denoted by ds′c(G).

If G is a graph with edge set E and D is a γ′-set of G, then for any edge
e ∈ E −D,D ∪ {e} is also an edge dominating set and hence ds′(G) = γ′(G)
or γ′(G) + 1.
Thus we have the following definition.

Definition 1.4. A graph G is said to be of class 1 or class 2 according as
ds′(G) = γ′(G) or γ′(G) + 1.

Definition 1.5. A tree T of order 3 or more is a caterpillar if the removal
of its leaves produces a path.

Definition 1.6. A tree containing exactly two vertices that are not leaves
(which are necessarily adjacent) is called a double star. Thus a double star is
a tree of diameter three.

We use the following theorems.

Theorem 1.7. [6] For any tree T of order p 6= 2, γ′(G) ≤ (p−1)/2; equality
holds if and only if T is isomorphic to the subdivision of a star.

Theorem 1.8. [6] Let T be any tree and let e = uv be an edge of maximum
degree ∆′(T ). Then γ′(T ) = q − ∆′(T ) if and only if diam(T ) ≤ 4 and
degw ≤ 2 for every vertex w 6= u, v.

2 Main Results

Theorem 2.1. The path Pp of order p, p ≥ 4 is of class 1 if and only if
p ≡ 2 (mod 3).

Proof. Let Pp = (1, 2, . . . , p) be of class 1. Let ei be the edge joining i
and i + 1. If p ≡ 0(mod 3), then e3 does not lie in an edge dominating set of
cardinality γ′(G). If p ≡ 1(mod 3), then either e1 or e3 does not lie in an edge
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dominating set of cardinality γ′(G). Hence if p ≡ 0 or 1(mod 3), then Pp is of
class 2.

Conversely, suppose p = 3k + 2. Then γ′(G) = k + 1.

Let D1 = {e1, e3, e6, . . . , e3k}
D2 = {e2, e5, e7, . . . , e3k−1, e3k+1}

and D3 = {e1, e4, e7, . . . , e3k−2, e3k+1}.

Clearly D1, D2 and D3 are γ′(G) sets of Pp and ∪3i=1Di = E(Pp). Hence
ds′(G) = γ′(G) so that Pp is of class 1.

Definition 2.2. Let T be a caterpillar. Two supports u and v of T are said
to be consecutive if either u and v are adjacent or every vertex in the u − v
path in T has degree 2.

Theorem 2.3. Let T be a caterpillar. Then T is of class 1 if and only
if every support is adjacent to exactly one pendent vertex and for any two
consecutive supports u and v, d(u, v) ≡ 2(mod 3).

Proof. Suppose T is a caterpillar of class 1. If there exists two pendent ver-
tices v1, v2 which are adjacent to u, then there is no γ′(G) -set containing uv1.
Hence every support is adjacent to exactly one pendent vertex. Now, let S de-
note the set of all supports of T . Suppose there exists two consecutive supports
u and v such that d(u, v) ≡ 0 or 1(mod 3). Let P = (u = u1, u2, . . . , uk = v)
be the u − v path in T . Then u2u3 does not lie in a γ′(G)- set and hence it
follows that for any two consecutive supports u and v, d(u, v) ≡ 2(mod 3).

Conversely, let T be a caterpillar in which every support is adjacent to
exactly one pendent vertex and d(u, v) ≡ 2(mod 3) for any two consecutive
supports u and v. Let k denote the number of supports in T . We prove that
T is of class 1 by induction on k. If k = 2, T is a path Pp with p ≡ 2(mod 3)
vertices and by the theorem [2.1], T is of class 1. Suppose the theorem is true
for all caterpillars with k− 1 supports. Let T be a caterpillar with k supports
w1, w2, . . . , wk such that wi and wi+1 are consecutive supports. Let xi be the
pendent vertex adjacent to wi. Let P1 = (w1, v1, . . . , v3m+1, w2) be the w1−w2

path and let T1 = T − {x1, w1, v1, . . . , v3m+1}. Clearly P1 is of class 1 and
by induction hypothesis T1 is of class 1. Further the union of any minimum
edge dominating set of P1 and any minimum edge dominating set of T1 is a
minimum edge dominating set of T . Hence T is of class 1.

Theorem 2.4. If G is a k-regular graph which is edge domatically full, then
G is of class 1.

Proof. Since G is edge domatically full, d′(G) = δ′(G) + 1 = k + 1.
Let {D′1, D′2, . . . , D′k+1} be an edge domatic partition of G. Any set D′i either
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contains an edge x or exactly one of its neighbours. Hence each D′i is indepen-
dent. Also for all 1 ≤ j ≤ k+ 1, i 6= j, every edge in D′i is adjacent to exactly
one edge in D′j. Hence all sets D′i are of equal cardinality and |D′i| = γ′(G) so
that G is of class 1.

Lemma 2.5. Let G be a path of even order which is of class 1. Then
γ′(G) + β1(G) = p− 1 if and only if G ∼= P8.

Proof. If G ∼= P8, clearly γ′(G) + β1(G) = p − 1. Conversely, suppose
γ′(G) + β1(G) = n − 1. Since G is a path of even order, obviously it is of
class 1. By theorem 2.1 , we have p = 3k + 2. Obviously β1(G) = p/2. Then
γ′(G) = p− 2/2. But Pp is a path and so γ′(G) =

⌈
p−1
3

⌉
.Now p−2

2
=
⌈
p−1
3

⌉
⇒

3k
2

=
⌈
3k+1
3

⌉
⇒ k = 2. Therefore k=2. Hence G ∼= P8.

Theorem 2.6. Let G be any connected graph which is of class 1. Then
ds′(G) = q−β1(G) (where q is the number of edges)if and only if G is isomor-
phic to C4, the subdivision of a star or P8.

Proof. Suppose ds′(G) = q − β1(G). Then ds′(G) = γ′(G) = q − β1(G).
Since γ′(G) ≤ p/2 and β1(G) ≤ p/2, we have γ′(G) + β1(G) ≤ p and hence
q ≤ p. If q = p, then p is even, γ = β1 = p/2 and G is unicyclic. Hence it
follows from [6] that G = C4. If q = p− 1,then we have the following cases:

Case(i). p is odd.

Nowγ′(G) = β1(G) = (p−1)
2

and G is a tree. Hence it follows from theorem 2.6
that G is isomorphic to the subdivision of a star.

Case(ii) p is even.

Now we have γ′(G) = (p−2)
2

, β1(G) = p
2

and G is a path. Hence it follows from
lemma 2.5 that G is isomorphic to P8. The converse is obvious.

Theorem 2.7. For any (p, q) graph G which is of class 1, ds′(G) +d′(G) =
q + 1 if and only if G ∼= C3, K1,p−1 or mK2.

Proof. Suppose ds′(G) + d′(G) = q + 1. Since G is of class 1, we have
ds′(G) = γ′(G), i.e. γ′(G) + d′(G) = q + 1. Since γ′(G)d′(G) ≤ q, we have
(d′(G) − 1)(q − d′(G)) ≤ 0. Further, d′(G) ≥ 1 and q ≥ d′(G). So (q −
d′(G))(d′(G) − 1) = 0. Hence q = d′(G) or d′(G) = 1. If d′(G) = 1, then G
is isomorphic to mK2. If q = d′(G), then G = C3 or K1,p−1. The converse is
obvious.

Theorem 2.8. If T is a bistar, then T is of class 2.

Proof. Since the non-pendent edge of T is an edge dominating set of T ,
we have γ′(T ) = 1. There is no γ-set containing any of the pendent edges and
so T is of class 2.
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Theorem 2.9. Let T be any tree and let e = uv be an edge of maximum
degree ∆′(T ). Then ds′(T ) = q −∆′(T ) + 1 if and only if T is isomorphic to
bistar or diam(T ) = 4, degw ≤ 2 for every vertex w 6= u, v and there exist at
least one pair of end vertices which are distant 3 apart.

Proof. By theorem 1.8, it is enough to investigate those graphs that
are of class 2. If diam(T ) = 1 or 2, then obviously T is of class 1. If
diam(T ) = 3, then T has exactly one non-pendent edge. Therefore T is of
class 2. If diam(T ) = 4, then each nonpendent edge of T is adjacent to a
pendent edge of T and hence the set of all nonpendent edges of T forms a
minimum edge dominating set and γ′(T ) = q −∆′(T ). Based on the distance
between the pendent vertices, we have the following cases:

Case(i). d(u, v) 6= 3, for every u, v ∈ S.
Then d(u, v) = 1, 2 or 4. Since diam(T ) = 4, it is impossible that d(u, v) = 1
or 2. Hence there exists u, v ∈ S with d(u, v) = 4. In this case T is of class 1.

Case(ii). There exists u, v ∈ S with d(u, v) = 3.
Let e, e′ be the pendent edges incident with u, v respectively. Since diam(T ) =
4, at least one of e, e′ should be adjacent to two non-pendent edges. Without
loss of generality let e be adjacent to two non-pendent edges. Then there os
no two element edge dominating set containing e so that T is of class 2.

Theorem 2.10. Let G be a graph with ∆′(G) = q − 2. Let e be an edge
of degree q − 2 and let f be an edge which is non adjacent to e. Then G is of
class 1 if and only if for every g1 ∈ E(G)\ (N [f ]∪{e}), there exists g2 ∈ N [f ]
such that N [g1] ∪N [g2] = E(G).

Proof. Suppose G is of class 1. Let e be an edge of degree q − 2 and
let f be an edge non-adjacent to e. Let g1 ∈ E(G) \ (N [f ] ∪ {e}). Since
ds′(G) = γ′(G) = 2, there exists g2 ∈ E(G) such that {g1, g2} is an edge
dominating set. Clearly, g2 ∈ N [f ] and N [g1] ∪ N [g2] = E(G). The converse
is immediate.

Theorem 2.11. Given three positive integers a, b and c with 2 ≤ a ≤ b ≤ c,
there exists a graph G with γ′(G) = a, ds′(G) = a + 1, EIS(G) = b and
β(G) = c if and only if b ≤ 2a− 1 and c = b+ 1.

Proof. If there exists a graph G with γ′(G) = a, ds′(G) = a + 1,
EIS(G) = b and β(G) = b + 1, then it follows from [5] that b ≤ 2a − 1
and c = b+ 1.

Conversely, let b ≤ 2a−1 and c = b+1. Let b = a+k, where 0 ≤ k ≤ a−1.
Construct a graph as follows: Let {u1v1, u2v2, ....., uava} be a set of indepen-
dent edges. Add vertices x1, x2, ...., xk+1 and y1, y2, ....., yk+1 and join xi with
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ui and yi with vi for all i, 1 ≤ i ≤ k + 1. Also add a vertex z and join z with
ui and vi for all i, k + 2 ≤ i ≤ a.

Clearly {u1v1, u2v2, ....., uava} is a minimum edge dominating set of G and
hence γ′(G) = a. But xiui and yivi, 1 ≤ i ≤ k + 2 does not belong to any γ′

set. Therefore ds′(G) = γ′(G) + 1.Therefore {x1u1, y1v1, u2v2, ....., uava} is an
edge-domsaturation set with cardinality a+ 1.
Also, I = {u1x1, u2x2, ....., uk+1xk+1, v1y1, v2y2, .....vk+1yk+1, uk+2vk+2, ....., uava}
is a maximum matching in G. Hence β1(G) = a + k + 1 = c. Since I1 =
I − {u1x1, v1y1} ∪ {u1v1} is a maximum matching containing u1v1, we have
EIS(u1v1) = a+ k and hence EIS(G) = β1 − 1 = b.

3 Connected Edge-Domsaturation Number of

a Graph

Definition 3.1. Let G be a connected graph. The least positive integer k
such that every edge of G lies in a connected edge dominating set of cardinality
k is called the connected edge-domsaturation number of G and is denoted by
ds′c(G).

Example 3.2. (i) ds′c(Kp) = p− 2
(ii) ds′c(Pp) = p− 2
(iii) ds′c(Kq,p) = min{q, p}.

Observation 3.3. If G is any connected graph with ∆′(G) = q − 1 and
G � K1,n, then ds

′
c(G) = γ′c(G) + 1.

Proof. Since ∆′(G) = q − 1, we have γ′c(G) = 1. Further any edge with
degree less than q−1 does not lie on a γ′c(G)-set. Therefore ds′c(G) = γ′c(G)+1.

Observation 3.4. For any connected graph G with p ≥ 4 and δ′(G) = 1,
we have ds′c(G) = γ′c(G) + 1.

Proof. Since no pendent edge lies on a γ′c(G)-set, the result follows.
We now find an upper bound on connected edge-domsaturation number for

trees and unicyclic graphs.

Observation 3.5. For any tree T of order p ≥ 4, γ′c(T ) = p−3 if and only
if T is a path or K1,3.
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Observation 3.6. For any tree T of order p ≥ 4, ds′c(T ) = p − 2 if and
only if T is a path.

Corollary 3.7. For any tree T of order p ≥ 4, ds′c(T ) + χ(T ) ≤ p and
equality holds if and only if T is a path.

Proof. It follows from observation 3.6 that for any tree T , ds′c(G) ≤ p− 2.
Also χ(G) = 2. Therefore ds′c(G) + χ(G) ≤ p. Further ds′c(G) + χ(G) = p if
and only if ds′c(G) = p− 2 or equivalently T is a path.

Theorem 3.8. Let G be a connected unicyclic graph with cycle C. Then
ds′c(G) = p − 2 if and only if G ∼= C or a cycle C with exactly one pendent
edge.

Proof. Let G be a unicyclic graph with ds′c(G) = p − 2. Let C be the
unique cycle in G and suppose G 6= C. Let S be the set of all pendent
edges of G. We observe that ds′c(G) = p − |S| if no vertex in C is of degree
2 and ds′c(G) = p − |S| − 1 otherwise. In the former case, |S| = 2. But
this is impossible as in this case no vertex in C is of degree 2. Therefore
ds′c(G) = p− |S| − 1. Now |S| = 1 and so G has exactly one pendent edge.

Theorem 3.9. For any tree T, T � K1,n, ds′c(T ) = q − ∆′(T ) + 1 if
and only if T has at most one vertex of degree greater than 2 or exactly two
adjacent vertices of degree greater than 2.

Proof. We observe that, ds′c(T ) = q − k + 1, where k is the number of
pendent edges of T . Hence ds′c(G) = q −∆′(G) + 1 if and only if ∆′(G) = k.
However if T has two non-adjacent vertices of degree greater than 2, then
k > ∆′(G) and hence the result follows.

Theorem 3.10. Let G be a connected unicyclic graph with cycle C and
G � C. Then ds′c(G) = q − ∆′(G) + 1 if and only if one of the following
conditions hold.

1. G has exactly one vertex of degree greater than 2

2. G has exactly two vertices u, v of degree greater than 2 and u, v are
adjacent

3. C = C3, all the vertices of C are of degree ≥ 3, one vertex of C is of
degree 3 and all the vertices not on C have degree one or two.

Proof. Let G be a connected unicyclic graph with ds′c(G) = q−∆′(G) + 1
and as in the proof of theorem 3.8, we have |S| = ∆′(G)−1 or |S| = ∆′(G)−2,
where S is the number of pendent edges of T .
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Case(i). |S| = ∆′(G)− 1.
In this case, every vertex of C is of degree ≥ 3. Now if C 6= C3, then G has at
most ∆′(G) pendent edges. Thus C = C3. It follows that at most one vertex
of C is of degree 3 and all vertices not on C have degree 1 or 2. Hence G is of
the form described in (3).

Case(ii). |S| = ∆′(G)− 2
In this case, there exists at least one vertex of degree 2 on C. Let e = uv be
an edge of maximum degree ∆′(G). Since |S| = ∆′(G)− 2, at least one of u, v
lies on C and all vertices different from u, v have degree one or two. If both
u, v have degree at least 3 then G satisfies (2), Otherwise G satisfies (1).

4 Domsaturation Number of a Graph

Theorem 4.1. Let G be any connected graph and let G′ be the graph
obtained from G by concatenating a vertex of G with the center of a star
k1,n, (n ≥ 2). Then ds(G) = γ(G) + 1 .

Proof. Let u ∈ V (G) be the support vertex of a star. Suppose u is not
dominated by any vertex of G, then clearly u belongs to the γ-set. Suppose u
is dominated by some vertices of G. Since number of pendent vertices ≥ 2. So
in this case also u belongs to the γ-set.In both these cases the pendent vertices
does not belong to any γ-set. So ds(G) = γ(G) + 1.

Theorem 4.2. Given any three positive integers a, b, and c with 3 ≤ a ≤
b ≤ c, their exists a graph G with ds(G) = a, IS(G) = b and Γ(G) = c.

Proof. Case(i). a = 3

Let k =

{
0 if c ≤ 2b− 2

c− 2b+ 2 if c > 2b− 2
and

let α =

{
2b− 2− c if c ≤ 2b− 2

0 if c > 2b− 2.

Let P4 = (v1, v2, v3, v4) be a path on 4 vertices. Attach b − 2 pendent
vertices u1, u2, . . . , ub−2 to v2 and b− 2 + k pendent vertices w1, w2, . . . , wb−2+k
to v3. Add the edges u1w1, u2w2, . . . , uαwα. For the resulting graph G, we
have γ(G) = 2. But the pendent vertices does not lie in any dominating set of
cardinality 2. Thus ds(G) = 3 = a.

If b = c, then clearly IS(G) = IS(v2) or IS(v3).
If b < c, then IS(G) = IS(v3). Since v3 is the only vertex which is the mini-

mum of all IS(v)′s, for every v ∈ V (G). In both the cases, {v3, u1, u2, . . . , ub−2, v1}
is the desired IS-set of G. Hence IS(G) = b− 2 + 2 = b.
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Also {u1, u2, . . . , ub−2, wα+1, wα+2, . . . , wb−2+k, v1, v4} is the maximum car-
dinality of a minimal dominating set and hence Γ(G) = 2b− 2 + k − α.

If c ≤ 2b− 2, then 2b− 2 + k − α = 2b− 2− (2b− 2− c) = c.
If c > 2b−2, then 2b−2+k−α = 2b−2+ c−2−2b = c. Hence Γ(G) = c.

Case(ii). a ≥ 4

Let k =

{
0 if c ≤ 2b− a
c− 2b+ a if c > 2b− a

and

let α =

{
2b− a− c if c ≤ 2b− 2

0 if c > 2b− a
Let P = (v1, v2, . . . , va) be a path on a vertices. Attach pendent vertices

u1, u4, . . . , ua to v1, v4, . . . , va respectively. Attach b− (a− 1) pendent vertices
s1, s2, . . . , sb−(a−1) to v2, attach b−(a−1)+k pendent vertices t1, t2, . . . , tb−(a−1)+k
to v3 add the edge u1ua and the edges s1t1, s2t2, . . . sαtα.
Clearly {u1, v2, v3, ...., va−1} is a γ- set.But the pendent vertices adjacent to
v2, v3 and the vertices v1, va does not belong to any γ set.Therefore ds(G) = a.
If a = b = c,then k = 0 and α = 0. Hence IS(G) = IS(i) = a for all
i ∈ V If a < b and b = c, then IS(v2) or IS(v3) is the IS-set of G. If
a < b < c, then IS(v3) is the only set having minimum cardinality among all
IS-sets. From these three cases, {v3, s1, s2, . . . , sb−(a−1), u1, u4, u5, . . . , ua−1, va}
is the desired IS-set. Hence IS(G) = b − (a − 1) + 1 + 1 + a − 3 = b. Also
{s1, s2, . . . , sb−(a−1), tα+1, tα+2, . . . , tb−(a−1)+k, u4, u5, . . . , ua−1, va, v1} is a domi-
nating set of maximum cardinality and hence Γ(G) = 2b − a + k − α. As in
case(i), we have Γ(G) = c.
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