

Gen. Math. Notes, Vol. 8, No. 2, February 2012, pp.1-10 ISSN 2219-7184; Copyright ©ICSRS Publication, 2012 www.i-csrs.org Available free online at http://www.geman.in

Edge-Domsaturation Number of a Graph

D. Nidha¹ and **R.** Kala²

¹Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, 627012, Tamil Nadu, India E-mail: nidhamaths@gmail.com
²Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli, 627012, Tamil Nadu, India E-mail: karthipyi91@yahoo.co.in

(Received: 1-3-11/ Accepted: 15-2-12)

Abstract

The edge-domsaturation number ds'(G) of a graph G = (V, E) is the least positive integer k such that every edge of G lies in an edge dominating set of cardinality k. The connected edge-domsaturation number $ds'_c(G)$ of a graph G = (V, E) is the least positive integer k such that every edge of G lies in a connected edge dominating set of cardinality k. In this paper, we obtain several results connecting $ds'(G), ds'_c(G)$ and other graph theoretic parameters.

Keywords: *edge-dominating set, edge-domination number, edge-domsaturation number, connected edge-domsaturation number.*

1 Introduction

Throughout this paper, G denotes a graph with order p and size q. By a graph we mean a finite undirected graph without loops or multiple edges. For graph theoretic terms we refer Harary [2]. In particular, for terminology related to domination theory we refer Haynes et.al [3].

Definition 1.1. Let G = (V, E) be a graph. A subset D of E is said to be an edge dominating set if every edge in E - D is adjacent to at least one edge in D. An edge dominating set D is said to be a minimal edge dominating set if no proper subset of D is a dominating set of G. Acharya [1] introduced the concept of domsaturation number ds(G) of a graph. Arumugam and Kala [4] observed that for any graph G, $ds(G) = \gamma(G)$ or $\gamma(G) + 1$ and obtained several results on ds(G). We now extend the concept of domsaturation to edges.

Definition 1.2. The least positive integer k such that every edge of G lies in an edge dominating set of cardinality k is called the edge-domsaturation number of G and is denoted by ds'G).

Definition 1.3. The least positive integer k such that every edge of G lies in a connected edge dominating set of cardinality k is called the connected edgedomsaturation number of G and is denoted by $ds'_c(G)$.

If G is a graph with edge set E and D is a γ' -set of G, then for any edge $e \in E - D, D \cup \{e\}$ is also an edge dominating set and hence $ds'(G) = \gamma'(G)$ or $\gamma'(G) + 1$.

Thus we have the following definition.

Definition 1.4. A graph G is said to be of class 1 or class 2 according as $ds'(G) = \gamma'(G)$ or $\gamma'(G) + 1$.

Definition 1.5. A tree T of order 3 or more is a caterpillar if the removal of its leaves produces a path.

Definition 1.6. A tree containing exactly two vertices that are not leaves (which are necessarily adjacent) is called a double star. Thus a double star is a tree of diameter three.

We use the following theorems.

Theorem 1.7. [6] For any tree T of order $p \neq 2$, $\gamma'(G) \leq (p-1)/2$; equality holds if and only if T is isomorphic to the subdivision of a star.

Theorem 1.8. [6] Let T be any tree and let e = uv be an edge of maximum degree $\Delta'(T)$. Then $\gamma'(T) = q - \Delta'(T)$ if and only if $diam(T) \leq 4$ and $degw \leq 2$ for every vertex $w \neq u, v$.

2 Main Results

Theorem 2.1. The path P_p of order $p, p \ge 4$ is of class 1 if and only if $p \equiv 2 \pmod{3}$.

Proof. Let $P_p = (1, 2, ..., p)$ be of class 1. Let e_i be the edge joining i and i + 1. If $p \equiv 0 \pmod{3}$, then e_3 does not lie in an edge dominating set of cardinality $\gamma'(G)$. If $p \equiv 1 \pmod{3}$, then either e_1 or e_3 does not lie in an edge

Edge-Domsaturation Number of a Graph

dominating set of cardinality $\gamma'(G)$. Hence if $p \equiv 0$ or $1 \pmod{3}$, then P_p is of class 2.

Conversely, suppose p = 3k + 2. Then $\gamma'(G) = k + 1$.

Let
$$D_1 = \{e_1, e_3, e_6, \dots, e_{3k}\}$$

 $D_2 = \{e_2, e_5, e_7, \dots, e_{3k-1}, e_{3k+1}\}$
and $D_3 = \{e_1, e_4, e_7, \dots, e_{3k-2}, e_{3k+1}\}$

Clearly D_1, D_2 and D_3 are $\gamma'(G)$ sets of P_p and $\bigcup_{i=1}^3 D_i = E(P_p)$. Hence $ds'(G) = \gamma'(G)$ so that P_p is of class 1.

Definition 2.2. Let T be a caterpillar. Two supports u and v of T are said to be consecutive if either u and v are adjacent or every vertex in the u - v path in T has degree 2.

Theorem 2.3. Let T be a caterpillar. Then T is of class 1 if and only if every support is adjacent to exactly one pendent vertex and for any two consecutive supports u and v, $d(u, v) \equiv 2 \pmod{3}$.

Proof. Suppose T is a caterpillar of class 1. If there exists two pendent vertices v_1, v_2 which are adjacent to u, then there is no $\gamma'(G)$ -set containing uv_1 . Hence every support is adjacent to exactly one pendent vertex. Now, let S denote the set of all supports of T. Suppose there exists two consecutive supports u and v such that $d(u, v) \equiv 0$ or $1 \pmod{3}$. Let $P = (u = u_1, u_2, \ldots, u_k = v)$ be the u - v path in T. Then u_2u_3 does not lie in a $\gamma'(G)$ - set and hence it follows that for any two consecutive supports u and v, $d(u, v) \equiv 2 \pmod{3}$.

Conversely, let T be a caterpillar in which every support is adjacent to exactly one pendent vertex and $d(u, v) \equiv 2 \pmod{3}$ for any two consecutive supports u and v. Let k denote the number of supports in T. We prove that T is of class 1 by induction on k. If k = 2, T is a path P_p with $p \equiv 2 \pmod{3}$ vertices and by the theorem [2.1], T is of class 1. Suppose the theorem is true for all caterpillars with k - 1 supports. Let T be a caterpillar with k supports w_1, w_2, \ldots, w_k such that w_i and w_{i+1} are consecutive supports. Let x_i be the pendent vertex adjacent to w_i . Let $P_1 = (w_1, v_1, \ldots, v_{3m+1}, w_2)$ be the $w_1 - w_2$ path and let $T_1 = T - \{x_1, w_1, v_1, \ldots, v_{3m+1}\}$. Clearly P_1 is of class 1 and by induction hypothesis T_1 is of class 1. Further the union of any minimum edge dominating set of P_1 and any minimum edge dominating set of T_1 is a minimum edge dominating set of T. Hence T is of class 1.

Theorem 2.4. If G is a k-regular graph which is edge domatically full, then G is of class 1.

Proof. Since G is edge domatically full, $d'(G) = \delta'(G) + 1 = k + 1$. Let $\{D'_1, D'_2, \ldots, D'_{k+1}\}$ be an edge domatic partition of G. Any set D'_i either contains an edge x or exactly one of its neighbours. Hence each D'_i is independent. Also for all $1 \leq j \leq k+1$, $i \neq j$, every edge in D'_i is adjacent to exactly one edge in D'_j . Hence all sets D'_i are of equal cardinality and $|D'_i| = \gamma'(G)$ so that G is of class 1.

Lemma 2.5. Let G be a path of even order which is of class 1. Then $\gamma'(G) + \beta_1(G) = p - 1$ if and only if $G \cong P_8$.

Proof. If $G \cong P_8$, clearly $\gamma'(G) + \beta_1(G) = p - 1$. Conversely, suppose $\gamma'(G) + \beta_1(G) = n - 1$. Since G is a path of even order, obviously it is of class 1. By theorem 2.1, we have p = 3k + 2. Obviously $\beta_1(G) = p/2$. Then $\gamma'(G) = p - 2/2$. But P_p is a path and so $\gamma'(G) = \left\lceil \frac{p-1}{3} \right\rceil$. Now $\frac{p-2}{2} = \left\lceil \frac{p-1}{3} \right\rceil \Rightarrow \frac{3k}{2} = \left\lceil \frac{3k+1}{3} \right\rceil \Rightarrow k = 2$. Therefore k=2. Hence $G \cong P_8$.

Theorem 2.6. Let G be any connected graph which is of class 1. Then $ds'(G) = q - \beta_1(G)$ (where q is the number of edges) if and only if G is isomorphic to C_4 , the subdivision of a star or P_8 .

Proof. Suppose $ds'(G) = q - \beta_1(G)$. Then $ds'(G) = \gamma'(G) = q - \beta_1(G)$. Since $\gamma'(G) \leq p/2$ and $\beta_1(G) \leq p/2$, we have $\gamma'(G) + \beta_1(G) \leq p$ and hence $q \leq p$. If q = p, then p is even, $\gamma = \beta_1 = p/2$ and G is unicyclic. Hence it follows from [6] that $G = C_4$. If q = p - 1, then we have the following cases:

Case(i). p is odd.

Now $\gamma'(G) = \beta_1(G) = \frac{(p-1)}{2}$ and G is a tree. Hence it follows from theorem 2.6 that G is isomorphic to the subdivision of a star.

Case(ii) p is even.

Now we have $\gamma'(G) = \frac{(p-2)}{2}$, $\beta_1(G) = \frac{p}{2}$ and G is a path. Hence it follows from lemma 2.5 that G is isomorphic to P_8 . The converse is obvious.

Theorem 2.7. For any (p,q) graph G which is of class 1, ds'(G) + d'(G) = q+1 if and only if $G \cong C_3$, $K_{1,p-1}$ or mK_2 .

Proof. Suppose ds'(G) + d'(G) = q + 1. Since G is of class 1, we have $ds'(G) = \gamma'(G)$, i.e. $\gamma'(G) + d'(G) = q + 1$. Since $\gamma'(G)d'(G) \leq q$, we have $(d'(G) - 1)(q - d'(G)) \leq 0$. Further, $d'(G) \geq 1$ and $q \geq d'(G)$. So (q - d'(G))(d'(G) - 1) = 0. Hence q = d'(G) or d'(G) = 1. If d'(G) = 1, then G is isomorphic to mK_2 . If q = d'(G), then $G = C_3$ or $K_{1,p-1}$. The converse is obvious.

Theorem 2.8. If T is a bistar, then T is of class 2.

Proof. Since the non-pendent edge of T is an edge dominating set of T, we have $\gamma'(T) = 1$. There is no γ -set containing any of the pendent edges and so T is of class 2.

Theorem 2.9. Let T be any tree and let e = uv be an edge of maximum degree $\Delta'(T)$. Then $ds'(T) = q - \Delta'(T) + 1$ if and only if T is isomorphic to bistar or diam(T) = 4, $degw \leq 2$ for every vertex $w \neq u, v$ and there exist at least one pair of end vertices which are distant 3 apart.

Proof. By theorem 1.8, it is enough to investigate those graphs that are of class 2. If diam(T) = 1 or 2, then obviously T is of class 1. If diam(T) = 3, then T has exactly one non-pendent edge. Therefore T is of class 2. If diam(T) = 4, then each nonpendent edge of T is adjacent to a pendent edge of T and hence the set of all nonpendent edges of T forms a minimum edge dominating set and $\gamma'(T) = q - \Delta'(T)$. Based on the distance between the pendent vertices, we have the following cases:

Case(i). $d(u, v) \neq 3$, for every $u, v \in S$. Then d(u, v) = 1, 2 or 4. Since diam(T) = 4, it is impossible that d(u, v) = 1or 2. Hence there exists $u, v \in S$ with d(u, v) = 4. In this case T is of class 1.

Case(ii). There exists $u, v \in S$ with d(u, v) = 3.

Let e, e' be the pendent edges incident with u, v respectively. Since diam(T) = 4, at least one of e, e' should be adjacent to two non-pendent edges. Without loss of generality let e be adjacent to two non-pendent edges. Then there os no two element edge dominating set containing e so that T is of class 2.

Theorem 2.10. Let G be a graph with $\Delta'(G) = q - 2$. Let e be an edge of degree q - 2 and let f be an edge which is non adjacent to e. Then G is of class 1 if and only if for every $g_1 \in E(G) \setminus (N[f] \cup \{e\})$, there exists $g_2 \in N[f]$ such that $N[g_1] \cup N[g_2] = E(G)$.

Proof. Suppose G is of class 1. Let e be an edge of degree q - 2 and let f be an edge non-adjacent to e. Let $g_1 \in E(G) \setminus (N[f] \cup \{e\})$. Since $ds'(G) = \gamma'(G) = 2$, there exists $g_2 \in E(G)$ such that $\{g_1, g_2\}$ is an edge dominating set. Clearly, $g_2 \in N[f]$ and $N[g_1] \cup N[g_2] = E(G)$. The converse is immediate.

Theorem 2.11. Given three positive integers a, b and c with $2 \le a \le b \le c$, there exists a graph G with $\gamma'(G) = a, ds'(G) = a + 1, EIS(G) = b$ and $\beta(G) = c$ if and only if $b \le 2a - 1$ and c = b + 1.

Proof. If there exists a graph G with $\gamma'(G) = a$, ds'(G) = a + 1, EIS(G) = b and $\beta(G) = b + 1$, then it follows from [5] that $b \leq 2a - 1$ and c = b + 1.

Conversely, let $b \leq 2a-1$ and c = b+1. Let b = a+k, where $0 \leq k \leq a-1$. Construct a graph as follows: Let $\{u_1v_1, u_2v_2, \dots, u_av_a\}$ be a set of independent edges. Add vertices x_1, x_2, \dots, x_{k+1} and y_1, y_2, \dots, y_{k+1} and join x_i with u_i and y_i with v_i for all $i, 1 \le i \le k+1$. Also add a vertex z and join z with u_i and v_i for all $i, k+2 \le i \le a$.

Clearly $\{u_1v_1, u_2v_2, \dots, u_av_a\}$ is a minimum edge dominating set of G and hence $\gamma'(G) = a$. But x_iu_i and y_iv_i , $1 \le i \le k+2$ does not belong to any γ' set. Therefore $ds'(G) = \gamma'(G) + 1$. Therefore $\{x_1u_1, y_1v_1, u_2v_2, \dots, u_av_a\}$ is an edge-domsaturation set with cardinality a + 1.

Also, $I = \{u_1x_1, u_2x_2, \dots, u_{k+1}x_{k+1}, v_1y_1, v_2y_2, \dots, v_{k+1}y_{k+1}, u_{k+2}v_{k+2}, \dots, u_av_a\}$ is a maximum matching in G. Hence $\beta_1(G) = a + k + 1 = c$. Since $I_1 = I - \{u_1x_1, v_1y_1\} \cup \{u_1v_1\}$ is a maximum matching containing u_1v_1 , we have $EIS(u_1v_1) = a + k$ and hence $EIS(G) = \beta_1 - 1 = b$.

3 Connected Edge-Domsaturation Number of a Graph

Definition 3.1. Let G be a connected graph. The least positive integer k such that every edge of G lies in a connected edge dominating set of cardinality k is called the connected edge-domsaturation number of G and is denoted by $ds'_{c}(G)$.

Example 3.2. (i) $ds'_c(K_p) = p - 2$ (ii) $ds'_c(P_p) = p - 2$ (iii) $ds'_c(K_{q,p}) = min\{q, p\}.$

Observation 3.3. If G is any connected graph with $\Delta'(G) = q - 1$ and $G \not\cong K_{1,n}$, then $ds'_c(G) = \gamma'_c(G) + 1$.

Proof. Since $\Delta'(G) = q - 1$, we have $\gamma'_c(G) = 1$. Further any edge with degree less than q-1 does not lie on a $\gamma'_c(G)$ -set. Therefore $ds'_c(G) = \gamma'_c(G)+1$.

Observation 3.4. For any connected graph G with $p \ge 4$ and $\delta'(G) = 1$, we have $ds'_c(G) = \gamma'_c(G) + 1$.

Proof. Since no pendent edge lies on a $\gamma'_{c}(G)$ -set, the result follows.

We now find an upper bound on connected edge-domsaturation number for trees and unicyclic graphs.

Observation 3.5. For any tree T of order $p \ge 4$, $\gamma'_c(T) = p-3$ if and only if T is a path or $K_{1,3}$.

Edge-Domsaturation Number of a Graph

Observation 3.6. For any tree T of order $p \ge 4$, $ds'_c(T) = p - 2$ if and only if T is a path.

Corollary 3.7. For any tree T of order $p \ge 4$, $ds'_c(T) + \chi(T) \le p$ and equality holds if and only if T is a path.

Proof. It follows from observation 3.6 that for any tree T, $ds'_c(G) \leq p-2$. Also $\chi(G) = 2$. Therefore $ds'_c(G) + \chi(G) \leq p$. Further $ds'_c(G) + \chi(G) = p$ if and only if $ds'_c(G) = p-2$ or equivalently T is a path.

Theorem 3.8. Let G be a connected unicyclic graph with cycle C. Then $ds'_c(G) = p - 2$ if and only if $G \cong C$ or a cycle C with exactly one pendent edge.

Proof. Let G be a unicyclic graph with $ds'_c(G) = p - 2$. Let C be the unique cycle in G and suppose $G \neq C$. Let S be the set of all pendent edges of G. We observe that $ds'_c(G) = p - |S|$ if no vertex in C is of degree 2 and $ds'_c(G) = p - |S| - 1$ otherwise. In the former case, |S| = 2. But this is impossible as in this case no vertex in C is of degree 2. Therefore $ds'_c(G) = p - |S| - 1$. Now |S| = 1 and so G has exactly one pendent edge.

Theorem 3.9. For any tree T, $T \ncong K_{1,n}$, $ds'_c(T) = q - \Delta'(T) + 1$ if and only if T has at most one vertex of degree greater than 2 or exactly two adjacent vertices of degree greater than 2.

Proof. We observe that, $ds'_c(T) = q - k + 1$, where k is the number of pendent edges of T. Hence $ds'_c(G) = q - \Delta'(G) + 1$ if and only if $\Delta'(G) = k$. However if T has two non-adjacent vertices of degree greater than 2, then $k > \Delta'(G)$ and hence the result follows.

Theorem 3.10. Let G be a connected unicyclic graph with cycle C and $G \not\cong C$. Then $ds'_c(G) = q - \Delta'(G) + 1$ if and only if one of the following conditions hold.

- 1. G has exactly one vertex of degree greater than 2
- 2. G has exactly two vertices u, v of degree greater than 2 and u, v are adjacent
- 3. $C = C_3$, all the vertices of C are of degree ≥ 3 , one vertex of C is of degree 3 and all the vertices not on C have degree one or two.

Proof. Let G be a connected unicyclic graph with $ds'_c(G) = q - \Delta'(G) + 1$ and as in the proof of theorem 3.8, we have $|S| = \Delta'(G) - 1$ or $|S| = \Delta'(G) - 2$, where S is the number of pendent edges of T. **Case(i).** $|S| = \Delta'(G) - 1$.

In this case, every vertex of C is of degree ≥ 3 . Now if $C \neq C_3$, then G has at most $\Delta'(G)$ pendent edges. Thus $C = C_3$. It follows that at most one vertex of C is of degree 3 and all vertices not on C have degree 1 or 2. Hence G is of the form described in (3).

Case(ii). $|S| = \Delta'(G) - 2$

In this case, there exists at least one vertex of degree 2 on C. Let e = uv be an edge of maximum degree $\Delta'(G)$. Since $|S| = \Delta'(G) - 2$, at least one of u, vlies on C and all vertices different from u, v have degree one or two. If both u, v have degree at least 3 then G satisfies (2), Otherwise G satisfies (1).

4 Domsaturation Number of a Graph

Theorem 4.1. Let G be any connected graph and let G' be the graph obtained from G by concatenating a vertex of G with the center of a star $k_{1,n}, (n \ge 2)$. Then $ds(G) = \gamma(G) + 1$.

Proof. Let $u \in V(G)$ be the support vertex of a star. Suppose u is not dominated by any vertex of G, then clearly u belongs to the γ -set. Suppose u is dominated by some vertices of G. Since number of pendent vertices ≥ 2 . So in this case also u belongs to the γ -set. In both these cases the pendent vertices does not belong to any γ -set. So $ds(G) = \gamma(G) + 1$.

Theorem 4.2. Given any three positive integers a, b, and c with $3 \le a \le b \le c$, their exists a graph G with ds(G) = a, IS(G) = b and $\Gamma(G) = c$.

Proof. Case(i).
$$a = 3$$

Let $k = \begin{cases} 0 & \text{if } c \le 2b - 2 \\ c - 2b + 2 & \text{if } c > 2b - 2 \end{cases}$ and
let $\alpha = \begin{cases} 2b - 2 - c & \text{if } c \le 2b - 2 \\ 0 & \text{if } c > 2b - 2. \end{cases}$

Let $P_4 = (v_1, v_2, v_3, v_4)$ be a path on 4 vertices. Attach b - 2 pendent vertices $u_1, u_2, \ldots, u_{b-2}$ to v_2 and b - 2 + k pendent vertices $w_1, w_2, \ldots, w_{b-2+k}$ to v_3 . Add the edges $u_1w_1, u_2w_2, \ldots, u_\alpha w_\alpha$. For the resulting graph G, we have $\gamma(G) = 2$. But the pendent vertices does not lie in any dominating set of cardinality 2. Thus ds(G) = 3 = a.

If b = c, then clearly $IS(G) = IS(v_2)$ or $IS(v_3)$.

If b < c, then $IS(G) = IS(v_3)$. Since v_3 is the only vertex which is the minimum of all IS(v)'s, for every $v \in V(G)$. In both the cases, $\{v_3, u_1, u_2, \ldots, u_{b-2}, v_1\}$ is the desired IS-set of G. Hence IS(G) = b - 2 + 2 = b. Also $\{u_1, u_2, \ldots, u_{b-2}, w_{\alpha+1}, w_{\alpha+2}, \ldots, w_{b-2+k}, v_1, v_4\}$ is the maximum cardinality of a minimal dominating set and hence $\Gamma(G) = 2b - 2 + k - \alpha$.

If $c \le 2b - 2$, then $2b - 2 + k - \alpha = 2b - 2 - (2b - 2 - c) = c$. If c > 2b - 2, then $2b - 2 + k - \alpha = 2b - 2 + c - 2 - 2b = c$. Hence $\Gamma(G) = c$.

Case(ii).
$$a \ge 4$$

Let $k = \begin{cases} 0 & \text{if } c \le 2b - a \\ c - 2b + a & \text{if } c > 2b - a \end{cases}$ and
let $\alpha = \begin{cases} 2b - a - c & \text{if } c \le 2b - 2 \\ 0 & \text{if } c > 2b - a \end{cases}$

Let $P = (v_1, v_2, \ldots, v_a)$ be a path on *a* vertices. Attach pendent vertices u_1, u_4, \ldots, u_a to v_1, v_4, \ldots, v_a respectively. Attach b - (a - 1) pendent vertices $s_1, s_2, \ldots, s_{b-(a-1)}$ to v_2 , attach b - (a-1) + k pendent vertices $t_1, t_2, \ldots, t_{b-(a-1)+k}$ to v_3 add the edge u_1u_a and the edges $s_1t_1, s_2t_2, \ldots, s_at_a$.

Clearly $\{u_1, v_2, v_3, \dots, v_{a-1}\}$ is a γ - set.But the pendent vertices adjacent to v_2, v_3 and the vertices v_1, v_a does not belong to any γ set.Therefore ds(G) = a. If a = b = c, then k = 0 and $\alpha = 0$. Hence IS(G) = IS(i) = a for all $i \in V$ If a < b and b = c, then $IS(v_2)$ or $IS(v_3)$ is the *IS*-set of *G*. If a < b < c, then $IS(v_3)$ is the only set having minimum cardinality among all *IS*-sets. From these three cases, $\{v_3, s_1, s_2, \dots, s_{b-(a-1)}, u_1, u_4, u_5, \dots, u_{a-1}, v_a\}$ is the desired *IS*-set. Hence IS(G) = b - (a - 1) + 1 + 1 + a - 3 = b. Also $\{s_1, s_2, \dots, s_{b-(a-1)}, t_{\alpha+1}, t_{\alpha+2}, \dots, t_{b-(a-1)+k}, u_4, u_5, \dots, u_{a-1}, v_a, v_1\}$ is a dominating set of maximum cardinality and hence $\Gamma(G) = 2b - a + k - \alpha$. As in case(i), we have $\Gamma(G) = c$.

References

- [1] B.D. Acharya, The strong domination number of a graph and related concepts, J. Math. Phys. Sci., 14(5) (1980), 471-475.
- [2] F. Harary, *Graph Theory*, Addition-Wesley Publishing Company Inc, USA, (1969).
- [3] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., (1998).
- [4] S. Arumugam and R. Kala, Domsaturation number of a graph, Indian J. Pure Appl. Math., 33(11) (2002), 1671-1676.
- [5] S. Arumugam and M. Subramanian, Independence saturation and extended domination chain in graphs, AKCE J. Graph. Combin., 4(2) (2007), 59-69.

- [6] S. Arumugam and Vellammal, Edge domination in graphs, *Taiwanese Journal of Mathematics.*, 2(2) (1998), 173-179.
- [7] S. Mitchell and S.T. Hedetniemi, Edge domination in trees, Congr. Numer., 19 (1977), 489-509.