Gen. Math. Notes, Vol. 11, No. 1, July 2012, pp. 1-9
ISSN 2219-7184; Copyright © ICSRS Publication, 2012
www.i-csrs.org
Available free online at http://www.geman.in

Lie and Jordan Structure in Simple Γ - Regular Ring

D. Krishnaswamy ${ }^{1}$ and N. Kumaresan ${ }^{2}$
${ }^{1}$ Associate Professor in Mathematics, Department of Mathematics
Annamalai University, Annamalai nagar
E-mail: krishna_swamy2004@yahoo.co.in
${ }^{2}$ Assistant Professor in Mathematics, Faculty of Marine Sciences
Annamalai University, Parangipettai
E-mail: karunnyasreebk@gmail.com

(Received: 12-6-12/Accepted: 18-7-12)

Abstract

In this paper, we study Lie and Jordan Structure in Simple Γ - Regular Ring of characteristic not equal to two. Some Properties of these Γ - Regular Ring are determined.

Keywords: Γ - Ring, Γ - Regular Ring, Ideal, Jordan Ring, Lie Ring, Simple Γ - Regular Ring

1 Introduction

The concept of Γ - ring was first introduced by Nobusawa [4] in 1964 and generalized by Barnes [1] in 1996. The idea of Γ - regular ring was studied by Krishnaswamy [2] in 2009. S.Kyuno [3] worked on the Simple Γ - ring with simple conditions and Herstein [8] studied the Lie and Jordan Strucutures in Simple ring. In this paper, we have extended the results of Paul[5] into Lie and Jordan Structure in Simple Γ - regular ring. Some characterization of this Γ - regular ring have been established.

2 Preliminaries

Definition 2.1 Let M and Γ be two additive abelian groups. There is a mapping from $M \times \Gamma \times M \rightarrow M$ such that

1. $(x+y) \alpha z=x \alpha z+y \alpha z ; x(\alpha+\beta) z=x \alpha z+x \beta z ; x \alpha(y+z)=x \alpha y+x \alpha z$.
2. $(x \alpha y) \beta z=x \alpha(y \beta z)$ where $x, y, z \in M$ and $\alpha, \beta \in \Gamma$.

Then, M is called $a \Gamma$ - ring.
Definition 2.2 An element a of a ring R is said to be regular if there exists an element $x \in R$ such that axa $=a$. The ring R is regular if and only if each element of R is regular.

Definition 2.3 Let R and Γ be two additive abelian groups. An element $a \in R$ is said to be Γ - Regular if there exists an element $x \in \Gamma$ such that axa $=a . A \Gamma-$ ring is said to be $\Gamma-$ regular ring if and only if each element of R is Γ - regular.

Definition 2.4 A Lie ring L is to be defined as an abelian group with an operation $[\bullet, \bullet]$ having the properties

1. for all $x \in L,[x, x]=0$.
2. Bilinearity: $[x+y, z]=[x, z]+[y, z] ;[z, x+y]=[z, x]+[z, y]$
3. Jacobi identity : $[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0$ for all $x, y, z \in L$.

Remark 2.5 Any associative ring can be made into a Lie ring by defining the bracket opertaion by $[x, y]=x y-y x$.

Definition 2.6 A subset S of the Γ - regular ring R is a left(right) ideal of R if S is an additive sub-group of R and $R \Gamma S=\{c \alpha a / c \in R, \alpha \in \Gamma, a \in S\}$ $(S \Gamma R=\{a \alpha c / c \in R, \alpha \in \Gamma, a \in S\})$ is contained in S. If S is both left and right ideal of R, then we say that S is an ideal of two sided ideal of R.

If A and B are ideals in Γ - regular ring R, then the sum of A and B is also an ideal of R that is $A+B=\{a+b / a \in A, b \in B\}$.

Definition 2.7 Let R be a Γ - regular ring. An element $a \in R$ is called a nil-potent of a Γ - regular ring for some $\alpha \in \Gamma$ there exists a least positive integer n such that $(a \alpha)^{n} a=($ a $\alpha a \alpha a \alpha$. \qquad ..ntimes) $a=0$.

Definition 2.8 $A n$ ideal A of a Γ - regular ring R is called a nil-potent ideal of $a \Gamma$ - regular ring R if $(A \Gamma)^{n} A=(A \Gamma A \Gamma A \Gamma$ \qquad .ntimes) $A=0$ where n is the least positive integer.

Definition 2.9 For any Γ - regular ring R, the Lie and Jordan Structure of $a \Gamma$ - regular ring is to be defined as the new product of $[x, y]_{\alpha}=x \alpha y-y \alpha x$ and $(x, y)_{\alpha}=x \alpha y+y \alpha x$ for every $x, y \in R$ and $\alpha \in \Gamma$.

Definition 2.10 A subset S of R is a Lie sub Γ - regular ring R if S is an additive sub-group such that for $a, b \in S, a \alpha b-b \alpha a$ must also be in S for all $\alpha \in \Gamma$. A subset S of R is a Jordan sub Γ - regular ring R if S is an additive sub-group such that for $a, b \in S, a \alpha b+b \alpha a$ must also be in S for all $\alpha \in \Gamma$.

Definition 2.11 Let S be a Lie sub Γ - regular ring of R. The additive sub group $V \subset S$ is said to be Lie ideal of S if whenever $v \in V, \alpha \in \Gamma, a \in S$ then $[V, a]_{\alpha}=V \alpha a-a \alpha V$ is in V. Again let S be a Jordan sub Γ - regular ring of R. The additive sub group $V \subset S$ is said to be Jordan ideal of S if whenever $v \in V, \alpha \in \Gamma, a \in S$ then $(V, a)_{\alpha}=V \alpha a+a \alpha V$ is in V.

Definition 2.12 $A \Gamma$ - regular ring R is called a Simple Γ - regular ring if $R \Gamma R \neq 0$ and its ideals are 0 and R.

Definition 2.13 Let A be an ideal in Γ - regular ring R. Then, the set R / A is defined by $R / A=\{x+a \alpha c / x \in R, a, c \in A, \alpha \in \Gamma\}$ and

1. $(x+a \alpha c)+(y+a \alpha c)=(x+y)+a \alpha c ;$
2. $(x+a \alpha c) \alpha(y+a \alpha c)=x \alpha y+a \alpha c$ under the operation $(+, \bullet)$.

Then, the set $(R / A,+, \bullet)$ form a Γ - regular ring R.

Definition 2.14 Let R be a Γ - regular ring. The centre of R written as Z is the set of those elements in R, that is $Z=\{m \in R / m \alpha x=x \alpha m\}$ for all $x \in R$ and $\alpha \in \Gamma$.

Definition 2.15 Let R be a Γ - regular ring and let $R_{m n}$ and $\Gamma_{n m}$ denote respectively, the sets of $m \times n$ matrices with entries from R and the sets of $n \times m$ matrices with entries from Γ. Then, the set $R_{m n}$ is a $\Gamma_{n m}$ regular ring and multiplication is defined by $\left(a_{i j}\right)\left(\alpha_{j i}\right)\left(b_{i j}\right)=\left(c_{i j}\right)$ where $\left(c_{i j}\right)=\sum_{p} \sum_{q} a_{i p} \alpha_{p q} b_{q j}$. If $m=n$, then R_{n} is a $\Gamma_{n}-$ ring.

Definition 2.16 Let R be a Γ - regular ring. Then, R is called a division Γ - regular ring if it has an identity element and its only non-zero ideal is itself.

3 Lie and Jordan Structure

In this section, we have developed some characterization of Lie and Jordan Structures in Simple Γ - regular ring.

Theorem 3.1 Let R be $a \Gamma$ - regular ring and $A \neq 0$ is a right ideal of R. For given $a \in A,(a \alpha)^{n} a=0$ for all $\alpha \in \Gamma$ and for fixed integer n. Then, R has a non-zero nilpotent ideal.

Proof: To prove this Theorem by using Mathematical induction on n.
Let $a \neq 0 \in A$ satisfying $a \alpha a=0$ and let us suppose that $B=a \Gamma A \neq 0$. If $x \in R$, then $[(a+a \alpha x) \alpha]^{n}[a+a \alpha x]=0$. Since it is in A, we obtain $[(a \alpha x) \alpha]^{n-1}(a \alpha x) \alpha a=0$. Thus, $[(a \alpha x) \alpha]^{n-1}(a \alpha x) \Gamma A=0$.

Let $T=\{x \in A / x \Gamma A=0\}$ of course T is an ideal of A. Moreover, let $y \in B \Rightarrow(y \alpha)^{n-1} y \in T$. Therefore $\bar{B}=B / T$ every element satisfies $(y \alpha)^{n-1} y=0$. By our induction hypothesis, \bar{B} has a nilpotent ideal $\bar{U} \neq 0$. Let U be its inverse image in B. Since $(\bar{U} T)^{k} \bar{U}=0,(U \Gamma)^{k} U \subset T$. Hence, $(U \Gamma)^{k+1} U \subset T \Gamma B=0$. Also, since $\bar{U} \neq 0, U$ is not a sub-set of T and hence $U \supset U \Gamma B \neq 0$. But $U \Gamma B=U \Gamma a \Gamma B \neq 0$ is a nil-potent ideal of R.

Suppose that $a \in A$ satisfying $a \alpha a=0 \Rightarrow a \Gamma A=0$. For any $x \in A$, $(x \alpha)^{n} x=0$, we have $(x \alpha)^{n-1} x \alpha x=0$ and so $(x \alpha)^{n-1} x \Gamma A=0$.

Let $W=\{x \in A / x \Gamma A=0\}, W$ is an ideal of A. If $W=A$, then $A \Gamma A=0$ and would provide us a nilpotent right ideal. If $W=A$, then $\bar{A}=A / W,(\bar{x} \alpha)^{n} \bar{x}=0$. Our induction gives us a nilpotent ideal $\bar{V} \neq 0 \in \bar{A}$. If V is the inverse image of $\bar{V} \in A$ then $V \Gamma A \neq 0 \subset V$ and is nilpotent. Since, V is nilpotent, again we have seen that R must have a non-zero nilpotent right ideal.

If R has a non-zero nilpotent right ideal and it has almost trivially a non zero nilpotent ideal.

Our first objective will be to determine the Lie and Jordan ideals of the Γ - regular ring R itself in the case R is restricted to a Simple Γ - regular ring.

Theorem 3.2 If U is a Jordan ideal of R, then $x \alpha(a \alpha b+b \alpha a)-(a \alpha b+b \alpha a) \alpha x \in U$ for all $a, b \in U$ and $x \in R$ and $\alpha \in \Gamma$.

Proof: Since $a, b \in U$ and $\alpha \in \Gamma$ for any $x \in R$, we have $a \alpha(x \alpha b-b \alpha x)+(x \alpha b-b \alpha x) \alpha a \in U$. But $a \alpha(x \alpha b-b \alpha x)+(x \alpha b-b \alpha x) \alpha a=$ $\{(a \alpha x-x \alpha a) \alpha b+b \alpha(a \alpha x-x \alpha a)\}+\{x \alpha(a \alpha b+b \alpha a)-(a \alpha b+b \alpha a) \alpha x\}$. The left side and the first term on the right side are in U. Hence $x \alpha(a \alpha b+b \alpha a)-(a \alpha b+b \alpha a) \alpha x \in U$

Theorem 3.3 Let R be a Γ - regular ring in which $2 x=0 \Rightarrow x=0$ and suppose further that R has no non-zero nilpotent ideal of R contains a nonzero(associative) ideal of R.

Proof: Let $U \neq 0$ be a Jordan ideal of R and suppose that $a, b \in R$. By Theorem 3.2, for any $x \in R$ and $\alpha \in \Gamma$,

We have $x \alpha c-c \alpha x$ where $c=a \alpha b+b \alpha a \in U . \quad \rightarrow 3.31$
However, since $c \in U, x \alpha c+c \alpha x \in U . \quad \rightarrow 3.32$
Adding 3.31 and 3.32, we get $2 x \alpha c \in U$ for all x. Hence, for $y \in R,(2 x \alpha c) \alpha y+$ $y \alpha(2 x \alpha c) \in U$. Since $2 y \alpha x \alpha c \in U$, we obtain $2 x \alpha c \alpha y \in U$ i.e., $2 R \Gamma c \Gamma R \subset U$. Now $2 R \Gamma c \Gamma R$ is an ideal of R so we do unless $2 R \Gamma c \Gamma R=0$. If $2 R \Gamma c \Gamma R=0$, by our assumption $R \Gamma c \Gamma R=0$. Since R has no nilpotent ideals this forces $c=0$, that is given $a, b \in U$ then $a \alpha b+b \alpha a=0$.

Let $a \neq 0 \in U$, then for any $x \in R, \alpha \in \Gamma$ and $b=a \alpha x+x \alpha a \in U$. Hence, $a \alpha(a \alpha x+x \alpha a)+(a \alpha x+x \alpha a) \alpha a=0$. that is $a \alpha a \alpha x+x \alpha a \alpha a+2 a \alpha x \alpha a=0$. Now, for $a \in U$ and $a \alpha a=0$, this reduces to $2 a \alpha x \alpha a=0$ for all $x \in R, \alpha \in \Gamma$ and so $a \Gamma R \Gamma a=0$. But $a \Gamma R \neq 0$ is a nilpotent right ideal of R. This is a contradiction to our assumption. Inotherwords, we have shown that U contains a non-zero ideal of R.

Lemma 3.4 Let R be a Γ - regular ring with no non-zero nilpotent ideals in which $2 x=0 \Rightarrow x=0$. Suppose that $U \neq 0$ is both a Lie ideal and $\Gamma-$ regular ring of R. Then, either $U \subset Z$ or U contains a non-zero ideal of R.

Proof: Let us first suppose that U has a Γ - regular ring is not commutative. Then, for some $x, y \in U$ and $\alpha \in \Gamma$, we have $x \alpha y-y \alpha x \neq 0$. For any $m \in R$ and $\beta \in \Gamma$ we have $x \beta(y \alpha m)-(y \alpha m) \beta x \in U$ that is $(x \alpha y-y \alpha x) \beta m+$ $y \beta(x \alpha m-m \alpha x) \in U$. The second memeber of this is in U since both y and $(x \alpha m-m \alpha x)$ are in U (U is both Lie ideal and sub Γ - regular ring). The net result of all this is that $(x \alpha y-y \alpha x) \Gamma R \subset U$. But then for some $m, s \in R$ and $\alpha, \beta \in \Gamma$, we have $((x \alpha y-y \alpha x) \alpha m) \beta s-s \beta((x \alpha y-y \alpha x) \alpha m) \in U \Rightarrow R \Gamma(x \alpha y-$ $y \alpha x) \Gamma R=0$, then $R \Gamma(x \alpha y-y \alpha x) \Gamma R \Gamma(x \alpha y-y \alpha x) \Gamma R=0$. This is a contradiction to our assumption. We have shown that the result is correct if U is a sub Γ - regular ring of R is not commutative. So, by using sub-lemma 3.5 a must be in Z as follows.

Sub-Lemma 3.5 Let R be a Γ - regular ring with no non-zero nilpotent ideals in which $2 x=0 \Rightarrow x=0$. If $a \in R$ commutes with $a \alpha x-x \alpha a$ for all $x \in R, \alpha \in \Gamma$ then a is in Z.

Proof: Suppose that U is commutative, we want to show that it lies in Z. Given $a \in U, x \in R$ then $a \alpha x-x \alpha a \in U$. Now for $x, y \in R$ we have $a \alpha c-c \alpha a$ where $c=(a \alpha(x \alpha y-y \alpha x) \alpha a-a \alpha(x \alpha y-y \alpha x) \alpha a)$.

Expanding $a \alpha(x \alpha y-y \alpha x) \alpha a$ as $(a \alpha x-x \alpha a) \alpha y+x \alpha(a \alpha y-y \alpha a)$ using this and commutes with $(a \alpha x-x \alpha a)$ and $(a \alpha y-y \alpha a)$ yields $2(a \alpha x-x \alpha a) \beta \alpha(a \alpha y-y \alpha a)=0$ for all $x, y \in R$ and $\beta \in \Gamma$. Since $2 m=0$ forces $m=0$ we obtain $(a \alpha x-x \alpha a) \beta(a \alpha y-y \alpha a)=0$. In this, put $y=a \alpha x$
this results in $(a \alpha x-x \alpha a) \Gamma R \Gamma(a \alpha x-x \alpha a)=0$. Since R has no nilpotent, we conclude that $(a \alpha x-x \alpha a)=0$ and so a must be in Z.

Theorem 3.6 Let R be a Simple Γ - regular ring of characteristic $\neq 2$. Then any Lie ideal of R which is also a sub Γ - regular ring if R must either be R itself or it contained in Z.

Proof: Lemma 3.4 immediately gives the result of the Theorem.
Definition 3.7 If U is a Lie ideal of R, let $T(U)=\left\{x \in R /[x, R]_{\Gamma} \subset U\right\}$.
Lemma 3.8 For any Γ - regular ring R, if U is a Lie ideal of R. Then, $T(U)$ is both a sub Γ - regular ring and a Lie ideal of R. Moreover $U \subset T(U)$.

Proof: If U is a Lie ideal of R then $U \subset T(U)$. Since $[T(U), M]_{\Gamma} \subset U \subset$ $T(U)$ must be a Lie ideal of R. Suppose that $a, b \in T(U)$ and $m \in R$ then $(a \alpha b) \alpha m-m \alpha(a \alpha b)=a \alpha(b \alpha m)-(b \alpha m) \alpha a+b \alpha(m \alpha a)-(m \alpha a) \alpha b$. Since $a, b \in T(U)$, the right side of $a \alpha(b \alpha m)-(b \alpha m) \alpha a+b \alpha(m \alpha a)-(m \alpha a) \alpha b \in U$ and therefore $[a \alpha b, R]_{\Gamma} \subset U$ that is $a \alpha b \in T(U)$.

Theorem 3.9 Let R be a Simple Γ - regular ring of characteristic $\neq 2$ and let U be a Lie ideal of R. Then, either $U \subset Z$ or $U \supset[R, R]_{\Gamma}$.

Proof: By Theorem 3.6 and Lemma 3.8, $T(U)$ is a both a sub Γ - regular ring and a Lie ideal of R. Therefore, $T(U) \subset Z$ or $T(U)=R$. If $T(U)=R$, then by the Definition 3.7, we have $[R, R]_{\Gamma} \subset U$. If $T(U) \subset Z$ and $U \subset T(U)$, we obtain $U \subset Z$.

Corollary 3.10 If R has a non-commutative Simple Γ - regular ring of characteristic $\neq 2$, then the sub Γ - regular ring generated by $[R, R]_{\Gamma}$ is R.

Proof: Any additive sub-group containing $[R, R]_{\Gamma}$ is trivially a Lie ideal of R. Hence, the sub Γ - regular ring is generated by $[R, R]_{\Gamma}$ is a Lie ideal of R. Hence, by Theorem 3.6, it equals to R or is in Z. If it is in Z, then $[R, R]_{\Gamma} \subset Z$. Thus, for $a \in R$, a commutates with all $a \alpha a$. In $a \alpha a, \alpha \in \Gamma$ then by the SubLemma 3.5, we get $a \in Z$, that is $R \subset Z$. Since R to be non-commutative, that is ruled out hence the corollary.

In Theorem 3.6, R has a Simple Γ - regular ring of characteristic $\neq 2$. Now, we should like to settle the problem when R has characteristic 2 , Theorem 3.6 fail?

Suppose that R has a Simple Γ - regular ring of characteristic 2 and that U is a Lie ideal and sub Γ - regular ring of R, we obtain $U \neq R$ and U is not a subset of Z. As in the proof of Lemma 3.4, we obtain U as a sub Γ - regular

Lie and Jordan Structure in Simple...
ring of R must be commutative. That is given $u, v \in U$, then $u \alpha v+v \alpha u=0$ for all $\alpha \in \Gamma$.

Let $a \in U$ then $a \alpha s+s \alpha a \in U$ for all $s \in R$ and $\alpha \in \Gamma$. Hence, $a \alpha(a \alpha s+$ $s \alpha a)=(a \alpha s+s \alpha a) \alpha a$. This says that $a \alpha a \in Z$. Since, for any $m \in R$, we have $a \alpha m+m \alpha a \in U$, also $(a \alpha m+m \alpha a) \alpha(a \alpha m+m \alpha a) \in Z$. If $Z=0$, then $a \alpha a=0$. that is $(a \alpha m+m \alpha a) \alpha(a \alpha m+m \alpha a) \in Z=0$ from which we get $((a \alpha m) \alpha)^{2}(a \alpha m)=0$. But $a \Gamma R$ is a right ideal of R in which every element in the form $((a \alpha m) \alpha)^{2}(a \alpha m)=0$. By Theorem 3.1, R would have a nilpotent ideal, that is R would be nilpotent which is impossible for a Simple Γ - regular ring.

Therefore, we assume that $Z \neq 0$ and that there is an element $a \in U$, $a \notin Z$ such that $a \alpha a \neq 0 \in Z$ and $(a \alpha m+m \alpha a) \alpha(a \alpha m+m \alpha a) \in Z$ for all $m \in R$ and $\alpha \in \Gamma$.

Theorem 3.11 Let R be a Simple Γ - regular ring of characteristic 2 and suppose that there exist an element $a \in R, a \notin R$ such that for all a $a \mathfrak{a} \in Z$, $\alpha \in \Gamma$ and $[(a \alpha x+x \alpha a) \alpha]^{3}(a \alpha x+x \alpha a) \in Z$ for all $x \in R$ and $\alpha \in \Gamma$. Then, R is a 4 -dimensional over Z.

Proof: If $Z=0$, then both $a \alpha a=0$ and $[(a \alpha x+x \alpha a) \alpha]^{3}(a \alpha x+x \alpha a)=0$. Hence, $[(a \alpha x) \alpha]^{4}[a \alpha x]=a \alpha[(a \alpha x+x \alpha a) \alpha]^{3}(a \alpha x+x \alpha a) \alpha x=0$ for all $x \in R$. But then the right ideal $a \Gamma R$ satisfies $(u \alpha)^{4} u=0$ for all elements of $u \in a \Gamma R$, by Theorem 3.1, this is not possible in a simple Γ - regular ring.

Suppose that $Z \neq 0$, hence $1 \in R$. If $a \alpha a=0$, then $b=a+1$ satisfies $b \alpha b=1$ and $[(b \alpha x+x \alpha b) \alpha]^{3}[b \alpha x+x \alpha b] \in Z$ for all $x \in R$. Therefore, we may assume that $a \alpha a=p \neq 0 \in Z$. Let $\bar{Z}=Z(\sqrt{P})$, then $\bar{R}=R \otimes Z \neq \bar{Z}$ is simple. Moreover in \bar{R}, we have $[(a \alpha \bar{x}+\bar{x} \alpha a) \alpha]^{3}(a \alpha \bar{x}+\bar{x} \alpha a) \in \bar{Z}$ for all $\bar{x} \in \bar{R}$.

Since, $\operatorname{dim} \bar{R} / Z=\operatorname{dim} R / Z$, to prove the theorem it is enough to do so in \bar{R}. Also $b=a / q$ where $q \in \bar{Z}$, then $q \alpha q=p$ satisifes $b \alpha b=1$ and $[(b \alpha \bar{x}+\bar{x} \alpha b) \alpha]^{3}[b \alpha \bar{x}+\bar{x} \alpha b] \in Z$. Hence without loss of generality we may suppose that $a \in R, a \neq Z, a \alpha a=1$ and $[(a \alpha x+x \alpha a) \alpha]^{3}(a \alpha x+x \alpha a) \in Z$ for all $x \in R$.

Now R is a dense Γ - regular ring of linear Γ - regular transformations on a vector space V over a division Γ - regular ring Δ (Since $Z \neq 0$ and R is simple). Since $(a+1) \alpha(a+1)=0,(a+1) \neq 0, V$ must be more than $1-$ dimensional over Δ. Since $a \neq 1$ it is immediate that there is a $v \in V$ such that $v, v \alpha a$ are linearly Γ - regular independent over Δ.

If for some $w \in V, v, v \alpha a$ and $w \alpha(1+a)$ are linearly Γ - regular independent over Δ, then the sub Γ - regular space V_{0} spanned by these is invariant under a and a induces the linear Γ - regular transformations $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$ on V_{0}. By
density of R on V, there is an $x \in R$ which includes $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ on V_{0}. Hence, $(a \alpha x+x \alpha a)$ induces $\left(\begin{array}{ccc}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ on V_{0}. But $[(a \alpha x+x \alpha a) \alpha]^{3}(a \alpha x+x \alpha a) \in Z$. Yet does not induces a scalar on V_{0}. Since it induces $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$. Thus, we have that for all $w \in V$ such that $v, v \alpha a, w$ are linearly Γ - regular independent over Δ. If V is more than 2-dimensional over Δ, there is a $w \in V$ such that $v, v \alpha a, w$ are linearly Γ - regular independent over Δ. By the above, $w \alpha a$ is in the sub Γ - regular space V, they span. The matrix of a on V is $\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ p & q & r\end{array}\right)$. By density there is an $x \in R$ which induces $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ on V_{1}. But $(a \alpha x+x \alpha a)$ induces $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & p & 0\end{array}\right)$. We hve $[(a \alpha x+x \alpha a) \alpha]^{3}(a \alpha x+x \alpha a)$ is not a scalar.

Thus, we must have that V is 2 -dimensional over Δ. All the remains is to show that Δ is commutative. Let $a=\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)$, then $a \Gamma_{2} a=I_{2}$ where Γ_{2} is the set of all 2×2 matrices of Γ - regular ring over Δ and I_{2} is the identity matrix. Now, we have $a \Gamma_{2} a=I_{2}$ becomes $\left(\begin{array}{cc}p & q \\ r & s\end{array}\right)\left(\begin{array}{ll}\alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{array}\right)\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. It yields

1. $p \alpha_{11} p+q \alpha_{21} p+p \alpha_{12} r+q \alpha_{22} r=1$
2. $p \alpha_{11} q+q \alpha_{21} q+p \alpha_{12} s+q \alpha_{22} s=0$
3. $r \alpha_{11} p+s \alpha_{21} p+r \alpha_{12} r+s \alpha_{22} r=0$
4. $r \alpha_{11} p+s \alpha_{21} p+r \alpha_{12} q+s \alpha_{22} s=1$.

In particular not both $p, r=0$. If $t \in \Delta$, then using $x=\left(\begin{array}{ll}0 & t \\ 0 & 0\end{array}\right)$ and $\left[\left(a \Gamma_{2} x+x \Gamma_{2} a\right) \Gamma\right]^{3}\left(a \Gamma_{2} x+x \Gamma_{2} a\right) \in Z$. Now $a \Gamma_{2} x+x \Gamma_{2} a=\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)\left(\begin{array}{ll}\alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{array}\right)\left(\begin{array}{ll}0 & t \\ 0 & 0\end{array}\right)+\left(\begin{array}{ll}0 & t \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}\alpha_{11} & \alpha_{12} \\ \alpha_{21} & \alpha_{22}\end{array}\right)\left(\begin{array}{ll}p & q \\ r & s\end{array}\right)=$ $\left(\begin{array}{cc}t \alpha_{11} p+t \alpha_{22} r & p \alpha_{11} t+q \alpha_{21} t+t \alpha_{12} q+t \alpha_{22} r \\ 0 & r \alpha_{11} t+s \alpha_{22} t\end{array}\right)$. Therefore,
$\left[\left(a \Gamma_{2} x+x \Gamma_{2} a\right) \Gamma\right]^{3}\left(a \Gamma_{2} x+x \Gamma_{2} a\right) \in Z$. This gives for all $t \in \Delta, 4$ times of $\left(t \alpha_{11} p+\right.$ $\left.t \alpha_{22} r\right)$ and $\left(r \alpha_{11} t+s \alpha_{22} t\right)$ are in Z. If $p \neq 0$, then $\left(t \alpha_{11} p+t \alpha_{22} r\right)$ runs through as t does, so every $x \in \Delta$ would satisfy $\left(x \Gamma_{2}\right)^{3} x \in Z$. But a non-commutative division Γ - regular ring cannot be purely inseparable over its centre. This $p \neq$ 0 implies Δ is commutative. Similarly, $r \neq 0$ implies Δ is commutative. Since, one of these must hold we get that Δ is commutative and so R is 4 - dimensional over Z.

Theorem 3.12 If R is a simple Γ - regular ring and if U is a Lie ideal of R, then either $U \subset Z$ or $U \supset[R, R]_{\Gamma}$ except R is of characteristic 2 and is 4-dimensional over its centre.

Corollary 3.13 If R is a simple non-commutative Γ - regular ring, then the sub Γ - regular ring generated by $[R, R]_{\Gamma}$ is R.

References

[1] W.E. Barnes, On the gamma rings of Nobusawa, Pacific Jour. of Math., 18(1966), 411-422.
[2] D. Krishnaswamy and N. Kumaresan, On the fundamental theorems of Γ - regular ring, Res. Jour. of Math. and Stat., 1(1) (2009), 1-3.
[3] S. Kyuno, On the semi simple gamma rings, Toyoku Math. Journal, 29(1977), 217-225.
[4] N. Nobusawa, On a generalization of the ring theory, Osaka Journal of Math., 1(1964), 81-89.
[5] A.C. Paul and Md. S. Uddin, Lie and Jordan structure in simple gamma rings, Journal of Physical Sci., 14(2010), 77-86.
[6] W. Baxter, Lie simplicity of a special class of associative rings, Proc., Amer., Math., Soc., 7(1958), 855-863.
[7] J. Von Neumann, On the regular ring, Proc. National Academic Sciences, U.S.A., 22(1936), 707-713.
[8] I.N. Herstein, Topics in Ring Theory, The University of Chicago Press, (1969).

