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§1 Introduction

In 1996, Dontchev introduced contra-continuous functions. J. Dontchev
and T. Noiri introduced Contra-semicontinuous functions in 1999. S. Ja-
fari and T. Noiri defined Contra-super-continuous functions in 1999; Contra-
α−continuous functions in 2001 and contra-precontinuous functions in 2002.
M. Caldas and S. Jafari studied Some Properties of Contra-β−Continuous
Functions in 2001. T. Noiri and V. Popa studied unified theory of contra-
continuity in 2002. A.A. Nasef studied some properties of contra-γ−continuous
functions in 2005. M.K.R.S.V.Kumar introduced Contra-Pre-Semi-Continuous
Functions in 2005. Ekici E., introduced and studied another form of contra-
continuity in 2006. Jamal M. Mustafa introduced Contra Semi-I-Continuous
functions in 2010. Recently S. Balasubramanian and P.A.S.Vyjayanthui de-
fined and studied contra ν−continuity in 2011. Inspired with these devel-
opments, I introduce a new class of functions called contra νg−continuous
function. Moreover, we obtain basic properties, preservation theorem and re-
lationship with other types of functions.
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§2 Preliminaries

Definition 2.1. A ⊂ X is called
(i) closed if its complement is open.
(ii) regular open[pre-open; semi-open; α-open; β-open] if A = (A)0[A ⊆ (A)o;

A ⊆ (Ao); A ⊆ ((Ao))o; A ⊆ ((A)o)] and regular closed[pre-closed; semi-closed;

α-closed; β-closed] if A = A0[(Ao) ⊆ A; (A)o ⊆ A; ((A)o) ⊆ A; ((Ao))o ⊆ A]
(iii) ν−open[rα−open] if there exists a regular open set O such that O ⊂ A ⊂
O[O ⊂ A ⊂ α(O)]
(iv) semi-θ−open if it is the union of semi-regular sets and its complement is
semi-θ−closed.
(v) g-closed[resp: rg-closed] if A ⊆ U whenever A ⊆ U and U is open[resp:
r-open] in X.
(vi) sg-closed[resp: gs-closed] if s(A) ⊆ U whenever A ⊆ U and U is semi-
open[resp: open] in X.
(vii) pg-closed[resp: gp-closed; gpr-closed] if p(A) ⊆ U whenever A ⊆ U and
U is pre-open[resp: open; regular-open] in X.
(viii)αg-closed[resp: gα−closed; rgα-closed] if α(A) ⊆ U whenever A ⊆ U and
U is open[resp: α−open; rα−open] in X.
(ix) νg-closed if ν(A) ⊆ U whenever A ⊆ U and U is ν−open in X.

Note 1: From definition 2.1 we have the following interrelations among
the closed sets.

g-closed gs-closed
↓ ↓ ↖

rgα−closed → rg-closed → νg−closed ← sg-closed ← βg-closed
↑ ↑ ↑ ↑ ↑

↗ rα−closed → ν−closed ↘ ↑ ↑
Regular closed → π−closed → closed → α−closed → semi closed → β−closed

↙ ↓ ↘ ↘
πg-closed pre-closed → ω−closed 6↔ gα−closed

↘ ↘
gp-closed ← pg-closed rω−closed

Definition 2.2: A function f : X → Y is called
(i) contra-[resp: contra-semi-; contra-pre-;contra-r-;contra-rα−; contra-α−;
contra-β−; contra-ω−; contra-pre-semi-; contra ν−]continuuos if inverse image
of every open set in Y is closed[resp: semi-closed; pre-closed; regular-closed;
rα−closed; α−closed; β−closed; ω−closed; pre-semi-closed; ν−closed] in X.

§3 Contra νg-continuous maps:

Definition 3.1: A function f : X → Y is said to be contra νg−continuous
if the inverse image of every open set is νg−closed.
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Note 2: Here after we call contra νg−continuous function as c.νg.c func-
tion shortly.

Example 1: X = Y = {a, b, c}; τ = {φ, {a}, {b}, {a, b}, X} and σ = {φ, {a}, {b, c}, Y }.
Let f be identity function, then f is c.νg.c.

Example 2: X = Y = {a, b, c, d}; τ = {φ, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c},
{a, b, d}, X} = σ. Let f be identity function, then f is not c.νg.c.

Example 3: X = Y = {a, b, c, d} : τ = {φ, {a}, {b}, {a, b}, X} and σ =
{φ, {a}, {b}, {a, b}, {a, b, c}, Y }. Let f be identity function, then f is c.νg.c;
c.gpr.c; but not c.gr.c; c.rg.c; c.gs.c; c.sg.c; c.g.c; c.pg.c; c.gp.c; c.rpg.c.

Theorem 3.1:
(i) f is c.νg.c. iff f−1(A) ∈ νGO(X) whenever A is closed in Y.
(ii)Let f be c.rg.c. and r-open, and A ∈ νGO(X) then f(A) ∈ νGC(Y ).

Remark 1: Above theorem is false if r-open is removed from the statement
as shown by:

Example 4: Let X = Y = < and f be defined as f(x) = 1 for all x ∈ X
then X is νg−open in X but f(X) is not νg−closed in Y.

Remark 2: We have the following implication diagram for a function
f : (X, τ) → (Y, σ)

c.g.c c.gs.c
↓ ↓ ↖

c.rgα.c → c.rg.c → c.νg.c ← c.sg.c ← c.βg.c
↑ ↑ ↑ ↑ ↑

↗ c.rα.c → c.ν.c ↘ ↑ ↑
c.n.c → c.π.c → c.c → c.α.c → c.s.c → c.β.c

↙ ↓ ↘ ↘
c.πg.c c.p.c → c.ω.c 6↔ c.gα.c

↘ ↘
c.gp.c ← c.pg.c c.rω.c

Example 5: If f in Example 4 is defined as f (a) = b; f (b) = c; f (c) = a,
then f is c.νg.c. but not c.g.c; c.rg.c; c.gr.c; c.rgα.c. and c.ν.c.

Example 6: Let X = Y = {a, b, c}; τ = {φ, {a}, {b}, {a, b}, X} and σ =
{φ, {b}, {a, b}, {b, c}, Y }. Let f be defined as f (a) = b; f (b) = c; f (c) = a, then
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f is c.νg.c. but not c.sg.c.

Example 7: Let X = Y = {a, b, c}; τ = {φ, {a}, {b}, {a, b}, X} and σ =
{φ, {a}, {a, b}, Y }. Let f be defined as f (a) = c; f (b) = a; f (c) = b. Then f is
c.rg.c; c.νg..c. but not c.c; c.r.c; and c.ν..c.
under usual topology on < both c.g.c and c.rg.c. are same.
under usual topology on < both c.sg.c. and c.νg.c. are same.

Theorem 3.2: (i) If f is νg−open and c.νg.c., then f−1(A) ∈ νGC(X)
whenever A ∈ νGO(Y ).
(ii) If f is an r-open and c.rg.c. mapping, then f−1(A) ∈ νGC(X) whenever
A ∈ νGO(Y ).

Theorem 3.3: Let fi : Xi → Yi be c.νg.c. for i = 1, 2. Let f :
X1 × X2 → Y1 × Y2 be defined as follows: f(x1, x2) = (f1(x1), f2(x2)). Then
f : X1 ×X2 → Y1 × Y2 is c.νg.c.
Proof: Let U1×U2 ⊂ Y1×Y2 where Ui be regular open in Yi for i = 1, 2. Then
f−1(U1×U2) = f−1

1 (U1)× f−1
2 (U2). But f−1

1 (U1) and f−1
2 (U2) are νg−closed in

X1 and X2 respectively and thus f−1
1 (U1)× f−1

2 (U2) is νg−closed in X1 ×X2.
Now if U is any regular open set in Y1 × Y2, then f−1(U) = f−1(∪Ui) where
Ui = U i

1 × U i
2. Then f−1(U) = ∪f−1(Ui) which is νg−closed, since f−1(Ui) is

νg−closed by the above argument.

Theorem 3.4: Let h : X → X1×X2 be c.νg.c., where h(x) = (h1(x), h2(x)).
Then hi : X → Xi is c.νg.c. for i = 1, 2.
Proof: Let U1 is regular open in X1. Then Let U1 × X2 is regular open in
X1 ×X2, and h−1(U1 ×X2) is νg−closed in X. But h−1

1 (U1) = h−1(U1 ×X2),
therefore h1 : X → X1 is c.νg.c. Similar argument gives h2 : X → X2 is c.νg.c.
and thus hi : X → Xi is c.νg.c. for i = 1, 2.

In general we have the following extenstion of theorems 3.3 and 3.4:

Theorem 3.5: (i) If f : X → ΠYλ is c.νg.c, then Pλ ◦ f : X → Yλ is
c.νg.c for each λ ∈ Λ, where Pλ is the projection of ΠYλ onto Yλ.
(ii) f : ΠXλ → ΠYλ is c.νg.c, iff fλ : Xλ → Yλ is c.νg.c for each λ ∈ Λ.

Note 3: Converse of Theorem 3.5 is not true in general, as shown by the
following example.

Example 8: Let X = X1 = X2 = [0, 1]. Let f1 : X → X1 be defined as
follows: f1(x) = 1 if 0 ≤ x ≤ 1

2
and f1(x) = 0 if 1

2
< x ≤ 1.

Let f2 : X → X2 be defined as follows: f2(x) = 1 if 0 ≤ x < 1
2

and
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f2(x) = 0 if 1
2

< x < 1. Then fi : X → Xi is clearly c.νg.c. for i = 1,
2., but h(x) = (f1(x1), f2(x2)) : X → X1 × X2 is not c.νg.c., for S 1

2
(1, 0) is

regular open in X1×X2, but h−1(S 1
2
(1, 0)) = {1

2
} which is not νg−closed in X.

Remark 3:In general,
(i) The algebraic sum and product of two c.νg.c. functions is not c.νg.c. How-
ever the scalar multiple of a c.νg.c. function is c.νg.c.
(ii)The pointwise limit of a sequence of c.νg.c. functions is not c.νg.c. as
shown by the following example.

Example 9: Let X = X1 = X2 = [0, 1]. Let f1 : X → X1 and f2 : X → X2

are defined as follows: f1(x) = x if 0 < x < 1
2

and f1(x) = 0 if 1
2

< x <
1; f2(x) = 0 if 0 < x < 1

2
and f2(x) = 1 if 1

2
< x < 1. Then their product is

not c.νg.c.

Example 10: Let X = Y = [0, 1]. Let fn is defined as follows: fn(x) = xn

for n ≥ 1 then f is the limit of the sequence where f(x) = 0 if 0 ≤ x < 1 and
f(x) = 1 if x = 1. Therefore f is not c.νg.c. For (1

2
, 1] is open in Y, f−1((1

2
, 1])

= (1) is not νg−closed in X.

However we can prove the following theorem.

Theorem 3.6: Let fn : (X, dX) → (Y, dY ), be c.νg.c., for n = 1, 2... and
let f : (X, dX) → (Y, dY ) be the uniform limit of {fn}, then f : (X, dX) → (Y, dY )
is c.νg.c.

Problem: (i) Are sup{f, g} and inf{f, g} are c.νg.c. if f, g are c.νg.c.
(ii) Is Cc.νg.c(X,R), the set of all c.νg.c. functions,
(1) a Group. (2) a Ring. (3) a Vector space. (4) a Lattice.
(iii) Suppose fi : X → Xi(i = 1, 2) are c.νg.c. If f : X → X1 ×X2 defined by
f(x) = (f1(x), f2(x)), then f is c.νg.c. .
Solution: No.

Note 4: In general c.gpr.c; c.gp.c; c.pg.c and c.gα.c. are independent of
c.νg.c. maps

Example 11: f as in Example 1 is c.νg.c, but not c.gpr.c.

Example 12: f as in Example 2 is c.gpr.c. but not c.νg.c.

Theorem 3.7: If f is νg−irresolute and g is c.νg.c.[c.g.c; c.rg.c], then g ◦ f
is c.νg.c.
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Theorem 3.8: If f is νg−irresolute, νg−open and νGO(X) = τ and g be
any function, then g ◦ f is c.νg.c iff g is c.νg.c.
Proof:If part: Theorem 3.7
Only if part: Let A be closed in Z. Then (g◦f)−1(A) is νg−open and hence open
in X[by assumption]. Since f is νg−open f(g ◦ f)−1(A) = g−1(A) is νg−open
in Y. Thus g is c.νg.c.

Corollary 3.1: If f is νg−irresolute, νg−open and bijective, g is a func-
tion. Then g is c.νg.c. iff g ◦ f is c.νg.c.

Theorem 3.9: If g : X → X × Y , defined by g(x) = (x, f(x))∀x ∈ X be
the graph function of f : X → Y . Then g is c.νg.c iff f is c.νg.c.
Proof: Let V ∈ C(Y ), then X × V ∈ C(X × Y ). Since g is c.νg.c., then
f−1(V ) = g−1(X × V ) ∈ νGO(X). Thus, f is c.νg.c.
Conversely, let x ∈ X and F be closed in X × Y containing g(x). Then
F ∩ ({x} × Y ) is closed in {x} × Y containing g(x). Also {x} × Y is home-
omorphic to Y. Hence {y ∈ Y : (x, y) ∈ F} is closed in Y. Since f is c.νg.c.⋃{f−1(y) : (x, y) ∈ F} is νg−open in X. Further x ∈ ⋃{f−1(y) : (x, y) ∈ F} ⊆
g−1(F ). Hence g−1(F ) is νg−open. Thus g is c.νg.c.

Theorem 3.10: (i) If f is c.νg.c. and g is continuous then g ◦ f is c.νg.c.
(ii) If f is c.νg.c. and g is nearly-continuous then g ◦ f is c.νg.c.
(iii)If f and g are c.rg.c. then g ◦ f is νg.c
(iv) If f is c.νg.c. and g is c.rg.c., then g◦f is semi-continuous and β−continuous.

Remark 4:In general, composition of two c.νg.c. functions is not c.νg.c.
However we have the following example:

Example 13: Let X = Y = Z = {a, b, c} and τ = ℘(X); σ = {φ, {a}, {b, c}, Y },
and η = {φ, {a}, {b}, {a, b}, Z}. Let f and g be identity maps which are c.νg.c.,
then g ◦ f is c.νg.c.

Theorem 3.11: Let X, Y, Z be spaces and every νg−closed set be open[r-
open] in Y, then the composition of two c.νg.c. maps is c.νg.c.

Theorem 3.12: (i) If f is c.νg.c.[c.rg.c.] g is g-continuous[rg-continuous]
and Y is T 1

2
[rT 1

2
] space, then g ◦ f is c.νg.c.

(ii) If f is c.ν.c.[c.r.c.], g is continuous[r-continuous], then g ◦ f is c.νg.c.
(iii)If f is c.ν.c.[c.r.c.], g is g-continuous{rg-continuous} and Y is T 1

2
{rT 1

2
},

then g ◦ f is c.νg.c.
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Theorem 3.13: (i) If RαC(X) = RC(X) then f is c.rα.c. iff f is c.rg.c.
(ii) If RαC(X) = νgC(X) then f is c.rα.c. iff f is c.νg.c.
(iii)If νgC(X) = RC(X) then f is c.rα.c. iff f is c.νg.c.
(iv) If νgC(X) = αC(X) then f is c.α.c. iff f is c.νg.c.
(v) If νgC(X) = SC(X) then f is c.sg.c. iff f is c.νg.c.
(vi) If νgC(X) = βC(X) then f is c.βg.c. iff f is c.νg.c.

Example 14: X = Y = {a, b, c}; τ = {φ, {a}, {b}, {a, b}, X} and σ =
{φ, {a}, {b, c}, Y }. Let f be identity function, then f is c.νg.c; c.sg.c. but
not c.rg.c

Note 5: Pasting Lemma is not true with respect to c.νg.c. functions.
However we have the following weaker versions.

Theorem 3.14: Let X and Y be such that X = A ∪ B. Let f/A : A → Y
and g/B : B → Y are c.rg.c. such that f(x) = g(x)∀x ∈ A ∩ B. Suppose A
and B are r-closed sets in X and RC(X) is closed under finite unions, then the
combination α : X → Y is c.νg.c.

Theorem 3.15: Pasting Lemma Let X and Y be such that X = A∪B.Let
f/A : A → Y and g/B : B → Y are c.νg.c. such that f(x) = g(x) ∀x ∈ A ∩ B.
Suppose A, B are r-closed sets in X and νgC(X) is closed under finite unions,
then the combination α : X → Y is c.νg.c.
Proof: Let F be open set in Y, then α−1(F ) = f−1(F ) ∪ g−1(F ) where f−1(F )
is νg−closed in A and g−1(F ) is νg−closed in B ⇒ f−1(F ) and g−1(F ) are
νg−closed in X⇒ f−1(F )∪g−1(F ) is νg−closed in X[by assumption]⇒ α−1(F )
is νg−closed in X. Hence α is c.νg.c.

Theorem 3.16: The following are equivalent:
(i) f is c.νg.c.
(ii) ∀x ∈ X and each V ∈ C(Y, f(x)), ∃U ∈ νGO(X, x) and f(U) ⊂ V.
(iii)f−1(V ) is νg−open in X whenever V is closed in Y.

Definition 3.2: A function f is said to be
(i) strongly νg−continuous if the inverse image of every set is νg−clopen.
(ii) perfectly νg−continuous if the inverse image of every open set is νg−clopen.
(iii)M-νg−open if the image of each νg−open set of X is νg−open in Y.

Theorem 3.17:
(i) Everly strongly νg.c function is c.νg.c. and νg.c.
(ii) Everly perfectly νg.c function is c.νg.c. and νg.c.
(iii) Everly strongly νg.c function is perfectly νg.c.
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Theorem 3.18: The following statements are equivalent for a function f:
(1) f is c.νg.c.;
(2) f−1(F ) ∈ νGO(X) for every F ∈ C(Y );
(3) for each x ∈ X and each F ∈ C(Y, f(x)), ∃ U ∈ νGO(X, x) 3 f(U) ⊂ F ;
(4) for each x ∈ X and V ∈ σ(Y ) non-containing f(x), ∃ K ∈ νGC(X) non-
containing x 3 f−1(V ) ⊂ K;
(5) f−1((G)o) ∈ νGC(X) for every open subset G of Y;
(6) f−1(F o) ∈ νGO(X) for every closed subset F of Y.
Proof: (1)⇔ (2): Let F ∈ C(Y ). Then Y −F ∈ RO(Y ). By (1), f−1(Y −F ) =
X − f−1(F ) ∈ νGC(X). We have f−1(F ) ∈ νGO(X). Reverse can be obtained
similarly.

(2)⇒(3): Let F ∈ C(Y, f(x)). By (2), f−1(F ) ∈ νGO(X) and x ∈ f−1(F ).
Take U = f−1(F ). Then f(U) ⊂ F.

(3)⇒(2): Let F ∈ C(Y ) and x ∈ f−1(F ). From (3), ∃ Ux ∈ νGO(X, x) 3
Ux ⊂ f−1(F ). We have f−1(F ) =

⋃
x∈f−1(F ) Ux. Thus f−1(F ) is νg−open.

(3)⇔(4): Let V ∈ σ(Y ) not containing f (x). Then, Y −V ∈ C(Y, f(x)). By
(3), ∃ U ∈ νGO(X, x) 3 f(U) ⊂ Y −V . Hence, U ⊂ f−1(Y −V ) ⊂ X − f−1(V )
and then f−1(V ) ⊂ X − U . Take H = X − U , then H ∈ νGC(X) non-
containing x. The converse can be shown easily.

(1)⇔(5): Let G ∈ σ(Y ). Since (G)o ∈ σ(Y ), by (1), f−1((G)o) ∈ νGC(X).
The converse can be shown easily.

(2)⇔(6): It can be obtained smilar as (1)⇔(5).

Example 15: Let X = {a, b, c}, τ = {φ, {a}, {b}, {a, b}, {a, c}, X} and σ =
{φ, {b}, {c}, {b, c}, X}. Then the identity function f : X → X is c.νg.c. But it
is not regular set-connected.

Theorem 3.19: If f is c.νg.c. and A ∈ RO(X)[resp: RC(X)], then
f|A : A → Y is c.νg.c.

Proof: Let V ∈ σ(Y )⇒ f−1
/A (V ) = f−1(V )∩A ∈ νGC(A). Hence f/A is c.νg.c.

Remark 5: Every restriction of an c.νg.c. function is not necessarily
c.νg.c.

Theorem 3.20: Let f be a function and Σ = {Uα : α ∈ I} be a νg−cover
of X. If for each α ∈ I, f|Uα

is c.νg.c., then f is an c.νg.c. function.
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Proof: Let F ∈ C(Y ). f|Uα
is c.νg.c. for each α ∈ I, f−1

|Uα
(F ) ∈ νgO|Uα .

Since Uα ∈ νGO(X), f−1
|Uα

(F ) ∈ νGO(X) for each α ∈ I. Then f−1(F ) =⋃
α∈I f−1

|Uα
(F ) ∈ νGO(X). This gives f is an c.νg.c.

Theorem 3.21: If f and g are functions. Then, the following properties
hold:
(1) If f is c.νg.c. and g is regular set-connected, then g ◦ f is c.νg.c. and νg.c.
(2) If f is c.νg.c. and g is perfectly continuous, then g ◦ f is νg.c. and c.νg.c.
Proof: (1) LetV ∈ η(Z). Since g is regular set-connected, g−1(V ) is clopen.
Since f is c.νg.c., f−1(g−1(V )) = (g◦f)−1(V ) is νg−open and νg−closed. There-
fore, g ◦ f is c.νg.c. and νg.c.

(2) can be obtained similarly.

Theorem 3.22: If f is a surjective M-νg−open[resp: M-νg−closed] and
g is a function such that g ◦ f is c.νg.c., then g is νg.c.

Theorem 3.23: If f is c.νg.c., then for each point x ∈ X and each fil-
ter base Λ in X νg−converging to x, the filter base f(Λ) is rc-convergent to f(x).

Theorem 3.24: Let f be a function and x ∈ X. If there exists U ∈
νGO(X, x) and f|U is c.νg.c. at x, then f is c.νg.c. at x.
Proof: If F ∈ C(Y, f(x)). Since f|U is c.νg.c. at x, there exists V ∈ νGO(U, x) 3
f(V ) = (f|U)(V ) ⊂ F. Since U ∈ νGO(X, x), V ∈ νGO(X, x). Hencef is c.νg.c.
at x.

Lemma 3.1:
(i) If V is an open set, then sClθ(V ) = sCl(V ).
(ii)If V is an regular-open set, then sCl(V) = Int(Cl(V).

Lemma 3.2: For V ⊂ Y, σ), the following properties hold:
(1) αV = V for every V ∈ βO(Y ),
(2) νV = V for every V ∈ SO(Y ),
(3) sV = (V )o for every V ∈ RO(Y ).

Theorem 3.25: For a function f, the following properties are equivalent:
(1) f is (νg, s)-continuous;
(2) f is c.νg.c.;
(3) f−1(V ) is νg−open in X for each θ-semi-open set V of Y;
(4) f−1(F ) is νg−closed in X for each θ-semi-closed set F of Y.
Proof: (1)⇒(2): Let F ∈ RC(Y ) and x ∈ f−1(F ). Then f(x) ∈ F and F is
semi-open. Since f is (νg, s)-continuous, ∃U ∈ νGO(X, x) 3 f(U) ⊂ F = F.



10 S. Balasubramanian

Hence x ∈ U ⊂ f−1(F ) which implies that x ∈ νg(f−1(F ))0. Therefore,
f−1(F ) ⊂ νg(f−1(F ))0 and hence f−1(F ) = νg(f−1(F ))0. This shows that
f−1(F ) ∈ νGO(X). It follows that f is c.νg.c.

(2)⇒(3): Follows from the fact that every θ-semi-open set is the union of
regular closed sets.

(3)⇔(4): This is obvious.

(4) ⇒ (1): Let x ∈ X and V ∈ SO(Y, f(x)). Since V is closed, it is θ-semi-
open. Now, put U = f−1(V ). Then U ∈ νGO(X, x) and f(U) ⊂ V . Hence f is
(νg, s)-continuous.

Theorem 3.26: For a function f, the following properties are equivalent:
(1) f is c.νg.c.;
(2) f−1(V ) is νg−open in X for every V ∈ βO(Y );
(3) f−1(V ) is νg−open in X for every V ∈ SO(Y );
(4) f−1((V )o) is νg−closed in X for every V ∈ RO(Y ).
Proof: (1) ⇒ (2): Let V ∈ βO(Y). By Theorem 2.4 of [3] V is closed and by
Theorem 3.18 f−1(V ) ∈ νGO(X).

(2) ⇒ (3): This is obvious since SO(Y ) ⊂ βO(Y ).

(3) ⇒ (4): Let V ∈ RO(Y ) ⇒ Y −(V )o is closed and hence it is semi-open.

Then X − f−1((V )o) = f−1(Y − (V )o) = f−1((Y − (V ))
o
) ∈ νGO(X). Hence

f−1((V )o) ∈ νGC(X).

(4) ⇒ (1): Let V ∈ RO(Y ). Then f−1(V ) = f−1((V )o) ∈ νGC(X).

Corollary 3.2: For a function f, the following properties are equivalent:
(1) f is c.νg.c.;
(2) f−1(αV ) is νg−open in X for every V ∈ βO(Y );
(3) f−1(νV ) is νg−open in X for every V ∈ SO(Y );
(4) f−1(sV ) is νg−closed in X for every V ∈ RO(Y ).
Proof: This is an immediate consequence of Theorem 3.26 and Lemma 3.2.

The νg−frontier of A ⊂ X; is defined by νgFr(A) = νg(A)−νg(X − A) =
νg(A)− νg(A)0.

Theorem 3.27: {x ∈ X : f : X → Y is not c.νg.c.} is identical with the
union of the νg−frontier of the inverse images of closed sets of Y containing
f(x).



Contra νg−Continuity 11

Proof: If f is not c.νg.c. at x ∈ X. By Theorem 3.18, ∃ a closed set
F ∈ C(Y, f(x) 3 f(U) ∩ (Y − F ) 6= φ for every U ∈ νGO(X, x). Then

x ∈ νg(f−1(Y − F )) = νg(X − f−1(F )). On the other hand, we get x ∈
f−1(F ) ⊂ νg(f−1(F )) and hence x ∈ νgFr(f−1(F )).
Conversely, If f is c.νg.c. at x and let F ∈ C(Y, f(x)). By Theorem 3.18, there
exists U ∈ νGO(X, x) 3 x ∈ U ⊂ f−1(F ). Therefore, x ∈ νg(f−1(F ))o. This
contradicts that x ∈ νgFr(f−1(F )). Thus f is not c.νg.c.

§4 Contra νg−Irresolute Maps

Definition 4.1: A function f is said to be contra νg−irresolute if the in-
verse image of every νg−open set is νg−closed.

Example 16:
(i) Let X = Y = {a, b, c}; τ = {φ, {a}, {b}, {a, b}, X} = σ. Let f be iden-
tity map. Then f is contra νg−irresolute, contra rg-irresolute, contra gr-
irresolute, contra sg-irresolute, contra gs-irresolute, contra g-irresolute, and
contra rα−irresolute but not contra-irresolute, contra r-irresolute, contra pre-
irresolute, contra α−irresolute and contra β−irresolute.

(ii) The identity map f in Example 7 is contra νg−irresolute, contra r-irresolute
but not contra rg-irresolute, contra gr-irresolute, contra sg-irresolute, contra
gs-irresolute, contra g-irresolute, contra continuous, contra-irresolute, contra
pre-irresolute, contra α−irresolute, contra β−irresolute, and contra rα−irresolute.

Example 17: Let X = Y = {a, b, c, d}; τ = {φ, {a}, {b}, {a, b}, {a, b, c}, X} =
σ. Let f be defined as f (a) = f (b) = f (c) = d,f (d) = a. Then f is contra
νg−irresolute and νg−irresolute.

Theorem 4.1: (i) Let f be c.rg.c. and r-open, then f is contra νg−irresolute.
(ii) f is contra νg−irresolute iff inverse image of every νg−closed set is νg−open.

Theorem 4.2: If f; g are contra νg−irresolute, then g ◦ f is νg−irresolute.

Remark 6: We have the following implication diagram for a function
f : X → Y
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c.g.i c.gs.i
↓ ↓ ↖

c.rgα.i → c.rg.i → c.νg.i ← c.sg.i ← c.βg.i
↑ ↑ ↑ ↑ ↑

↗ c.rα.i → c.ν.i ↘ ↑ ↑
c.n.i → c.π.i → c.c → c.α.i → c.s.c → c.β.i

↙ ↓ ↘ ↘
c.πg.i c.p.i → c.ω.i 6↔ c.gα.i

↘ ↘
c.gp.i ← c.pg.i c.rω.i

Example 18: The identity map f in Example 1 is contra νg−irresolute,
contra-irresolute but not contra rgα-irresolute, contra rg-irresolute, contra gr-
irresolute, contra sg-irresolute, contra gs-irresolute, contra g-irresolute, contra
r-irresolute.

Theorem 4.3: If f is contra νg−irresolute and
(i) g is r-irresolute,then g ◦ f is contra νg−irresolute.
(ii)g is contra r-irresolute,then g ◦ f is νg−irresolute.

Note 6: contra νg−irresolute and c.νg.c.; contra gα-irresolute; contra pg-
irresolute; contra gp-irresolute maps are independent to each other

Theorem 4.4: (i) If RαC(X) = RC(X) and RαC(Y) = RC(Y), then f is
contra rα−irresolute iff f is contra r-irresolute.
(ii) If RαC(X) = νgC(X) and RαC(Y) = νgC(Y), then f is contra rα−irresolute
iff f is contra νg−irresolute.
(iii) If νgC(X) = RC(X) and νgC(Y) = RC(Y), then f is contra r-irresolute
iff f is contra νg−irresolute.
(iv) If νgC(X) = αC(X) and νgC(Y) = αC(Y), then f is contra α−irresolute
iff f is contra νg−irresolute.

Theorem 4.5: Pasting Lemma Let X and Y be spaces such that X =
A ∪ B and let f/A : A → Y and g/B : B → Y are contra νg−irresolute maps
such that f(x) = g(x) ∀x ∈ A ∩ B. Suppose A, B are r-open sets in X and
νgC(X) is closed under finite unions, then the combination α : X → Y is
contra νg−irresolute.

Theorem 4.6: (i) If f is contra νg−irresolute and g is νg.c.[rg.c.], then
g ◦ f is c.νg.c.
(ii)If f is contra νg−irresolute and g is c.νg.c.[c.rg.c.] then g ◦ f is νg.c.
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Theorem 4.7: If νGO(Y, σ) = σ in Y, then f is contra νg−irresolute iff
f is c.νg.c.

Theorem 4.8: If νGO(X, τ) = τ ; νGO(Y, σ) = σ, then the following are
equivalent:
(i) f is c.g.c (ii) f is c.νg.c. (iii)f is contra νg−irresolute.

Theorem 4.9: The set of all contra νg−irresolute mappings do not form
a group under the operation usual composition of mappings.

Theorem 4.10: If f is contra νg−irresolute then for every subset A of
X, f(νg(A)) ⊂ νg(f(A)).
Proof: Let A ⊆ X and consider νg(f(A)) which is νg−closed in Y, then
f−1(νg(f(A))) is νg−open in X, by theorem 4.1(ii). Furthermore A ⊆ f−1(f(A)) ⊆
f−1(νg(f(A))) and νg(A) ⊆ f−1(νg(f(A))), we have f(νg(A)) ⊆ f(f−1(νg(f(A))))
= (νg(f(A))) ∩ f(Y )) ⊆ νg(f(A))). Hence f(νg(A) ⊆ νg(f(A).

Theorem 4.11: If f is contra νg−irresolute then for every subset A of

Y, νg(f−1(νg(A))) ⊂ f−1(νg(A)).

§5 The Preservation Theorems and Some Other

Properties

Theorem 5.1: If f is c.νg.c.[resp: c.r.c] surjection and X is νg−compact,
then Y is closed compact.
Proof: Let {Gi : i ∈ I} be any closed cover for Y. For Gi is closed in Y and
f is c.νg.c., f−1(Gi) is νg−open in X. Thus {f−1(Gi)} forms a νg−open cover
for X and hence have a finite subcover, since X is νg−compact. Since f is
surjection, Y = f(X) =

⋃n
i=1 Gi. Therefore Y is closed compact.

Theorem 5.2: If f is a r-irresolute and continuous surjection and X is
mildly compact (resp. mildly countably compact, mildly Lindelof), then Y is
nearly compact (resp. nearly countably compact, nearly Lindelof) and S-closed
(resp. countably S-closed, S-Lindelof).
Proof: Let V ∈ C(Y ). Since f is r-irresolute and continuous, f−1(V ) is
regular-open and closed in X and hence f−1(V ) is clopen. Let {Vα : α ∈ I} be
any closed (respectively open) cover of Y. Then {f−1(Vα : α ∈ I} is a clopen
cover of X and since X is mildly compact, ∃ a finite subset I0 of I such that
X =

⋃{f−1(Vα : α ∈ I0}. Since f is surjective, we get Y =
⋃{Vα : α ∈ I0}.

Hence Y is S-closed (respectively nearly compact). The other proofs can be
obtained similarly.
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Theorem 5.3:If f is c.νg.c.[c.rg.c.], surjection. Then the following state-
ments hold:
(i) If X is locally νg−compact, then Y is locally closed compact[locally nearly
closed compact; locally mildly compact.]
(ii) If X is νg−Lindeloff[locally νg−lindeloff], then Y is closed Lindeloff[resp:
locally closed Lindeloff; nearly closed Lindeloff; locally nearly closed Lindeloff;
locally mildly lindeloff].
(iii)If X is νg−compact[countably νg−compact], then Y is S-closed[countably
S-closed].
(iv) If X is νg−Lindelof, then Y is S-Lindelof[nearly Lindelof ].
(v) If X is νg−closed[countably νg−closed], then Y is nearly compact[nearly
countably compact].
(vi) X is νg−compact[νg−lindeloff], then Y is nearly closed compact; mildly
closed compact[mildly closed lindeloff].

Theorem 5.4: If f is c.νg.c.[contra νg−irreolute] surjection and X is
νg−connected, then Y is connected[νg−connected]
Proof: If Y is disconnected. Then Y = V1 ∪ V2, where V1 and V2 are clopen
in Y. Since f is c.νg.c., f−1(V1) and f−1(V2) are disjoint νg−open sets in X and
X = f−1(V1) ∪ f−1(V2), which is a contradiction for νg−connectedness of X.
Hence, Y is connected.

Corollary 5.1: The inverse image of a disconnected[νg−disconnected]
space under a c.νg.c.,[contra νg−irreolute] surjection is νg−disconnected.

Theorem 5.5:If f is c.νg.c., injection and
(i) Y is UTi, then X is νg − Ti i = 0,1,2.
(ii) Y is URi, then X is νg −Ri i = 0, 1.
(iii)Y is UCi[resp : UDi] then X is νg − Ti[resp: νg −Di], i = 0, 1, 2.
(iv)If f is closed and Y is UTi, then X is νg − Ti, i = 3, 4.

Theorem 5.6: If f is c.νg.c.[resp: c.rg.c] and Y is UT2, then the graph
G(f) of f is νg−closed in the product space X × Y .
Proof: Let (x, y) 6∈ G(f) ⇒ y 6= f(x) ⇒ ∃ disjoint clopen sets V and W
3 f(x) ∈ V and y∈ W . Since f is c.νg.c., ∃U ∈ νGO(X) 3 x ∈ U and
f(U) ⊂ W . Therefore (x, y) ∈ U × V ⊂ X × Y − G(f). Hence G(f ) is
νg−closed in X × Y .

Theorem 5.7: If f is c.νg.c.[c.rg.c] and Y is UT2, then A = {(x1, x2)|f(x1) =
f(x2)} is νg−closed in the product space X ×X.
Proof:If (x1, x2) ∈ X ×X −A, then f(x1) 6= f(x2) ⇒ ∃ disjoint Vj ∈ CO(σ) 3
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f(xj) ∈ Vj, and since f is c.νg.c., f−1(Vj) ∈ νGO(X, xj) for each j = 1,2. Thus
(x1, x2) ∈ f−1(V1)× f−1(V2) ∈ νGO(X×X) and f−1(V1)× f−1(V2) ⊂ X×X−A.
Hence A is νg−closed.

Theorem 5.8: If f is c.r.c.{c.c.}; g : X → Y is c.νg.c; and Y is UT2, then
E = {x ∈ X : f(x) = g(x)} is νg−closed[and hence semi-closed and β−closed]
in X.

Theorem 5.9: If f is c.νg.c. injection and Y is weakly Hausdorff, then
X is νg − T1.
Proof: Suppose that Y is weakly Hausdorff. For any x 6= y ∈ X, ∃V,W ∈
RC(Y ) 3 f(x) ∈ V, f(y) 6∈ V, f(x) 6∈ W and f(y) ∈ W . Since f is c.νg.c., f−1(V )
and f−1(W ) are νg−open subsets of X such that x ∈ f−1(V ), y 6∈ f−1(V ), x 6∈
f−1(W ) and y ∈ f−1(W ). This shows that X is νg − T1.

Theorem 5.10: If X is νg−ultra-connected and f is c.νg.c., and surjec-
tive, then Y is hyperconnected.
Proof: If Y is not hyperconnected, ∃ V ∈ σ(Y ) 3 V is not dense in Y. Then
Y = B1 ∪ B2; B1 ∩ B2 = φ. Since f is c.νg.c. and onto, A1 = f−1(B1) and
A2 = f−1(B2) are disjoint non-empty νg−closed subsets of X. By assumption,
the νg−ultra-connectedness of X implies that A1 and A2 must intersect, which
is a contradiction. Therefore Y is hyperconnected.

Theorem 5.11: If for each x1 6= x2 in a space X there exists a function
f of X into a Urysohn space Y such that f(x1) 6= f(x2) and f is c.νg.c., at x1

and x2, then X is νg − T2.
Proof: Let x1 6= x2. By the hypothesis ∃ a function f which satisfies the con-
dition of this theorem. Since Y is Urysohn and f(x1) 6= f(x2), there exist open
sets V1 and V2 containing f(x1) and f(x2), respectively, such that V1 ∩ V2 = φ.
Since f is c.νg.c., at xi, ∃Ui ∈ νGO(X, xi) 3 f(Ui) ⊂ Vi for i = 1, 2. Hence
U1 ∩ U2 = φ. Therefore, X is νg − T2.

Corollary 5.2: If f is an c.νg.c. injection and Y is Urysohn, then X is
νg − T2.

§6 νg−Regular Graphs:

Recall that for a function f, the subset {(x, f(x)) : x ∈ X} ⊂ X × Y is
called the graph of f and is denoted by G(f ).

Definition 6.1: A graph G(f ) of a function f is said to be νg−regular
if for each (x, y) ∈ (X × Y ) − G(f), ∃U ∈ νGC(X, x) and V ∈ RO(Y, y) 3
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(U × V ) ∩G(f) = φ.

Lemma 6.1: The following properties are equivalent for a graph G(f) of
a function:
(1) G(f) is νg−regular;
(2) for each point (x, y) ∈ (X × Y ) − G(f), ∃U ∈ νGC(X, x) and V ∈
RO(Y, y) 3 f(U) ∩ V = φ.
Proof: It is an immediate consequence of definition of νg−regular graph and
the fact that for any subsets A ⊂ X and B ⊂ Y, (A × B) ∩ G(f) = φ iff
f(A) ∩B = φ.

Theorem 6.2: If f is c.νg.c., and Y is T2 , then G(f) is νg−regular graph
in X × Y.
Proof: Assume Y is T2. Let (x, y) ∈ (X × Y )−G(f). It follows that f(x) 6= y.
Since Y is T2, there exist disjoint open sets V and W containing f (x) and
y, respectively. We have ((V )o) ∩ ((W )o) = φ. Since f is c.νg.c., f−1((V )o)
is νg−closed in X containing x. Take U = f−1((V )o). Then f(U) ⊂ ((V )o).
Therefore, f(U) ∩ ((W )o) = φ and G(f) is νg−regular in X × Y.

Theorem 6.3: Let f have a νg−regular graph G(f). If f is injective, then
X is νg − T1.
Proof: Let x 6= y ∈ X. Then, we have (x, f(y)) ∈ (X×Y )−G(f). By definition
6.1, ∃U ∈ νGC(X) and V ∈ RO(Y ) 3 (x, f(y)) ∈ U × V and f(U) ∩ V = φ;
hence U ∩ f−1(V ) = φ. Therefore, we have y 6∈ U. Thus, y ∈ X − U and
x 6∈ X −U. We obtain that X −U ∈ νGO(X). This implies that X is νg− T1.

Theorem 6.4: Let f have a νg−regular graph G(f). If f is surjective, then
Y is weakly T2.
Proof: Let y1 6= y2 ∈ Y . Since f is surjective f(x) = y1 for some x ∈ X and
(x, y2) ∈ (X × Y )−G(f). By definition 6.1, ∃U ∈ νGC(X) and F ∈ RO(Y ) 3
(x, y2) ∈ U × F and f(U) ∩ F = φ; hence y1 6∈ F. Then y2 6∈ Y − F ∈ RC(Y )
and y1 ∈ Y − F. This implies that Y is weakly T2.

Example 19: Let X = {a, b, c}, τ = {φ, {a, b}, X} and σ = {φ, {a}, {b, c}, X}.
Then, the identity function f is contra-νg−continuous but it is not weakly con-
tinuous.

Corollary 6.1:
(i) If f is M-νg−open and c.νg.c., then f is al.νg.c.
(ii)If f is c.νg.c. and Y is almost regular, then f is al.νg.c.
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Definition 6.2:. A function f is said to be faintly νg−continuous if
for each x ∈ X and each θ-open set V of Y containing f (x), there exists
U ∈ νGO(X, x) 3 f(U) ⊂ V.

Theorem 6.5: Let Y be E.D. Then, f is c.νg.c. iff it is νg.c.
Proof: Necessity. Let x ∈ X and V ∈ σ(Y, f(x)). Since Y is E.D., V is
clopen and hence V is closed. By Theorem 3.18, ∃ U ∈ νGO(X, x) 3 f(U) ⊂ V.
Therefore f is νg−continuous.
Sufficiency. Let F be any closed set in Y. Since Y is E.D., F is also open and
f−1(F ) ∈ νGO(X). Hence f is c.νg.c.

§7 Contra-νg−Closed Graphs

Definition 7.1: A function f is said to have a contra-νg−closed graph if
for each (x, y) ∈ (X × Y )−G(f) there exists U ∈ νGO(X, x) and a closed set
V of Y containing y such that (U × V ) ∩G(f) = φ.

Lemma 7.1: f has a contra-νg−closed graph iff for each (x, y) ∈ (X ×
Y )−G(f)∃U ∈ νGO(X, x) and V ∈ C(Y, y) 3 f(U) ∩ V = φ.

Theorem 7.1: If f is c.νg.c., and Y is C2, then G(f) is contra-νg−closed.
Proof: Suppose that (x, y) ∈ (X × Y ) − G(f). Then y 6= f(x). Since Y is C2,
there exist open sets V and W in Y containing y and f (x), respectively, such
that V ∩W = φ. Since f is c.νg.c., there exists U ∈ νGO(X, x) 3 f(U) ⊂ W.
This shows that f(U) ∩ V = φ and hence G(f) is ontra-νg−closed.

Corollary 7.1: If f is c.νg.c. and Y is C2, then G(f) is contra-νg−closed.

Theorem 7.2: If f is an injective c.νg.c. function with the contra-
νg−closed graph, then X is νg − T2.
Proof: Let x 6= y ∈ X. Since f is injective, f(x) 6= f(y) and (x, f(y)) ∈ (X ×
Y ) − G(f). Since G(f) is contra-νg−closed, by Lemma 7.1 ∃ U ∈ νGO(X, x)
and V ∈ RC(Y, f(y)) 3 f(U) ∩ V = φ. Since f is c.νg.c., by Theorem 3.18
∃ G ∈ νGO(X, y) 3 f(G) ⊂ V. Therefore, we have f(U) ∩ f(G) = φ; hence
U ∩G = φ. Hence X is νg − T2.
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