

Gen. Math. Notes, Vol. 10, No. 1, May 2012, pp.1-18 ISSN 2219-7184; Copyright ©ICSRS Publication, 2012 www.i-csrs.org Available free online at http://www.geman.in

Contra νg -Continuity

S. Balasubramanian

Department of Mathematics, Government Arts College (Autonomous), Karur-639 005(T.N.) E-mail: mani55682@rediffmail.com

(Received: 28-11-11/Accepted: 6-6-12)

Abstract

The object of the present paper is to study the basic properties of Contra νg -continuous functions.

Keywords: νg -open sets, νg -continuity, νg -irresolute, νg -open map, νg -closed map, νg -homeomorphisms and Contra νg -continuity. **2010 MSC No:** 54C10,54C08,54C05.

2010 MSC INO: 34010,34008,3400

§1 Introduction

In 1996, Dontchev introduced contra-continuous functions. J. Dontchev and T. Noiri introduced Contra-semicontinuous functions in 1999. S. Jafari and T. Noiri defined Contra-super-continuous functions in 1999; Contra- α -continuous functions in 2001 and contra-precontinuous functions in 2002. M. Caldas and S. Jafari studied Some Properties of Contra- β -Continuous Functions in 2001. T. Noiri and V. Popa studied unified theory of contracontinuity in 2002. A.A. Nasef studied some properties of contra- γ -continuous functions in 2005. M.K.R.S.V.Kumar introduced Contra-Pre-Semi-Continuous Functions in 2005. Ekici E., introduced and studied another form of contracontinuity in 2006. Jamal M. Mustafa introduced Contra Semi-I-Continuous functions in 2010. Recently S. Balasubramanian and P.A.S.Vyjayanthui defined and studied contra ν -continuity in 2011. Inspired with these developments, I introduce a new class of functions called contra νg -continuous function. Moreover, we obtain basic properties, preservation theorem and relationship with other types of functions.

§2 Preliminaries

Definition 2.1. $A \subset X$ is called

(i) closed if its complement is open.

(ii) regular open[pre-open; semi-open; α -open; β -open] if $A = (\overline{A})^0 [A \subseteq (\overline{A})^o;$ $A \subseteq \overline{(A^o)}; A \subseteq (\overline{(A^o)})^o; A \subseteq \overline{((\overline{A})^o)}]$ and regular closed[pre-closed; semi-closed; α -closed; β -closed] if $A = \overline{A^0}[\overline{(A^o)} \subseteq A; \overline{(A)^o} \subseteq A; \overline{((\overline{A})^o)} \subseteq A; \overline{((\overline{A^o}))^o} \subseteq A]$ (iii) ν -open[r α -open] if there exists a regular open set O such that $O \subset A \subset \overline{O}[O \subset A \subset \alpha(\overline{O})]$

(iv) semi- θ -open if it is the union of semi-regular sets and its complement is semi- θ -closed.

(v) g-closed[resp: rg-closed] if $\overline{A} \subseteq U$ whenever $A \subseteq U$ and U is open[resp: r-open] in X.

(vi) sg-closed[resp: gs-closed] if $s(\overline{A}) \subseteq U$ whenever $A \subseteq U$ and U is semiopen[resp: open] in X.

(vii) pg-closed[resp: gp-closed; gpr-closed] if $p(\overline{A}) \subseteq U$ whenever $A \subseteq U$ and U is pre-open[resp: open; regular-open] in X.

(viii) α g-closed[resp: $g\alpha$ -closed; $rg\alpha$ -closed] if $\alpha(\overline{A}) \subseteq U$ whenever $A \subseteq U$ and U is open[resp: α -open; $r\alpha$ -open] in X.

(ix) ν g-closed if $\nu(\overline{A}) \subseteq U$ whenever $A \subseteq U$ and U is ν -open in X.

Note 1: From definition 2.1 we have the following interrelations among the closed sets.

Definition 2.2: A function $f: X \to Y$ is called

(i) contra-[resp: contra-semi-; contra-pre-; contra- $r\alpha$ -; contra- α -; contra- α -; contra- β -; contra- ω -; contra-pre-semi-; contra ν -]continuous if inverse image of every open set in Y is closed[resp: semi-closed; pre-closed; regular-closed; $r\alpha$ -closed; α -closed; β -closed; ω -closed; pre-semi-closed; ν -closed] in X.

§3 Contra νg -continuous maps:

Definition 3.1: A function $f: X \to Y$ is said to be contra νg -continuous if the inverse image of every open set is νg -closed.

Note 2: Here after we call contra νg -continuous function as c. νg .c function shortly.

Example 1: $X = Y = \{a, b, c\}; \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\} \text{ and } \sigma = \{\phi, \{a\}, \{b, c\}, Y\}.$ Let *f* be identity function, then *f* is c.*vg*.c.

Example 2: $X = Y = \{a, b, c, d\}; \tau = \{\phi, \{a\}, \{b\}, \{d\}, \{a, b\}, \{a, d\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, X\} = \sigma$. Let f be identity function, then f is not c. νg .c.

Example 3: $X = Y = \{a, b, c, d\}$: $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, Y\}$. Let *f* be identity function, then *f* is c. $\nu g.c$; c.gpr.c; but not c.gr.c; c.rg.c; c.gs.c; c.sg.c; c.g.c; c.gp.c; c.rpg.c.

Theorem 3.1:

(i) f is c. $\nu g.c.$ iff $f^{-1}(A) \in \nu GO(X)$ whenever A is closed in Y. (ii)Let f be c.rg.c. and r-open, and $A \in \nu GO(X)$ then $f(A) \in \nu GC(Y)$.

Remark 1: Above theorem is false if r-open is removed from the statement as shown by:

Example 4: Let $X = Y = \Re$ and f be defined as f(x) = 1 for all $x \in X$ then X is νg -open in X but f(X) is not νg -closed in Y.

Remark 2: We have the following implication diagram for a function $f: (X, \tau) \to (Y, \sigma)$

Example 5: If f in Example 4 is defined as f(a) = b; f(b) = c; f(c) = a, then f is $c.\nu g.c.$ but not c.g.c; c.rg.c; c.rg.c; c.rg.a.c. and c. $\nu.c.$

Example 6: Let $X = Y = \{a, b, c\}; \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{b\}, \{a, b\}, \{b, c\}, Y\}$. Let f be defined as f(a) = b; f(b) = c; f(c) = a, then

f is c. νg .c. but not c.sg.c.

Example 7: Let $X = Y = \{a, b, c\}; \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{a, b\}, Y\}$. Let f be defined as f(a) = c; f(b) = a; f(c) = b. Then f is c.rg.c; c. νq ..c. but not c.c; c.r.c; and c. ν ..c.

under usual topology on \Re both c.g.c and c.rg.c. are same.

under usual topology on \Re both c.sg.c. and c. $\nu g.c.$ are same.

Theorem 3.2: (i) If f is νg -open and $c.\nu g.c.$, then $f^{-1}(A) \in \nu GC(X)$ whenever $A \in \nu GO(Y)$.

(ii) If f is an r-open and c.rg.c. mapping, then $f^{-1}(A) \in \nu GC(X)$ whenever $A \in \nu GO(Y)$.

Theorem 3.3: Let $f_i : X_i \to Y_i$ be $c.\nu g.c.$ for i = 1, 2. Let $f : X_1 \times X_2 \to Y_1 \times Y_2$ be defined as follows: $f(x_1, x_2) = (f_1(x_1), f_2(x_2))$. Then $f : X_1 \times X_2 \to Y_1 \times Y_2$ is $c.\nu g.c.$

Proof: Let $U_1 \times U_2 \subset Y_1 \times Y_2$ where U_i be regular open in Y_i for i = 1, 2. Then $f^{-1}(U_1 \times U_2) = f_1^{-1}(U_1) \times f_2^{-1}(U_2)$. But $f_1^{-1}(U_1)$ and $f_2^{-1}(U_2)$ are νg -closed in X_1 and X_2 respectively and thus $f_1^{-1}(U_1) \times f_2^{-1}(U_2)$ is νg -closed in $X_1 \times X_2$. Now if U is any regular open set in $Y_1 \times Y_2$, then $f^{-1}(U) = f^{-1}(\cup U_i)$ where $U_i = U_1^i \times U_2^i$. Then $f^{-1}(U) = \cup f^{-1}(U_i)$ which is νg -closed, since $f^{-1}(U_i)$ is νg -closed by the above argument.

Theorem 3.4: Let $h: X \to X_1 \times X_2$ be $c.\nu g.c.$, where $h(x) = (h_1(x), h_2(x))$. Then $h_i: X \to X_i$ is $c.\nu g.c.$ for i = 1, 2. **Proof:** Let U_1 is regular open in X_1 . Then Let $U_1 \times X_2$ is regular open in $X_1 \times X_2$ and $h^{-1}(U_1 \times X_2)$ is μg -closed in X. But $h^{-1}(U_1) = h^{-1}(U_1 \times X_2)$.

 $X_1 \times X_2$, and $h^{-1}(U_1 \times X_2)$ is νg -closed in X. But $h_1^{-1}(U_1) = h^{-1}(U_1 \times X_2)$, therefore $h_1 : X \to X_1$ is c. νg .c. Similar argument gives $h_2 : X \to X_2$ is c. νg .c. and thus $h_i : X \to X_i$ is c. νg .c. for i = 1, 2.

In general we have the following extension of theorems 3.3 and 3.4:

Theorem 3.5: (i) If $f: X \to \Pi Y_{\lambda}$ is $c.\nu g.c$, then $P_{\lambda} \circ f: X \to Y_{\lambda}$ is $c.\nu g.c$ for each $\lambda \in \Lambda$, where P_{λ} is the projection of ΠY_{λ} onto Y_{λ} . (ii) $f: \Pi X_{\lambda} \to \Pi Y_{\lambda}$ is $c.\nu g.c$, iff $f_{\lambda}: X_{\lambda} \to Y_{\lambda}$ is $c.\nu g.c$ for each $\lambda \in \Lambda$.

Note 3: Converse of Theorem 3.5 is not true in general, as shown by the following example.

Example 8: Let $X = X_1 = X_2 = [0,1]$. Let $f_1 : X \to X_1$ be defined as follows: $f_1(x) = 1$ if $0 \le x \le \frac{1}{2}$ and $f_1(x) = 0$ if $\frac{1}{2} < x \le 1$. Let $f_2 : X \to X_2$ be defined as follows: $f_2(x) = 1$ if $0 \le x < \frac{1}{2}$ and $f_2(x) = 0$ if $\frac{1}{2} < x < 1$. Then $f_i : X \to X_i$ is clearly $c.\nu g.c.$ for i = 1, 2., but $h(x) = (f_1(x_1), f_2(x_2)) : X \to X_1 \times X_2$ is not $c.\nu g.c.$, for $S_{\frac{1}{2}}(1, 0)$ is regular open in $X_1 \times X_2$, but $h^{-1}(S_{\frac{1}{2}}(1, 0)) = \{\frac{1}{2}\}$ which is not νg -closed in X.

Remark 3:In general,

(i) The algebraic sum and product of two $c.\nu g.c.$ functions is not $c.\nu g.c.$ However the scalar multiple of a $c.\nu g.c.$ function is $c.\nu g.c.$

(ii) The pointwise limit of a sequence of $c.\nu g.c.$ functions is not $c.\nu g.c.$ as shown by the following example.

Example 9: Let $X = X_1 = X_2 = [0, 1]$. Let $f_1 : X \to X_1$ and $f_2 : X \to X_2$ are defined as follows: $f_1(x) = x$ if $0 < x < \frac{1}{2}$ and $f_1(x) = 0$ if $\frac{1}{2} < x < 1$; $f_2(x) = 0$ if $0 < x < \frac{1}{2}$ and $f_2(x) = 1$ if $\frac{1}{2} < x < 1$. Then their product is not c. $\nu g.c.$

Example 10: Let X = Y = [0, 1]. Let f_n is defined as follows: $f_n(x) = x_n$ for $n \ge 1$ then f is the limit of the sequence where f(x) = 0 if $0 \le x < 1$ and f(x) = 1 if x = 1. Therefore f is not $c.\nu g.c.$ For $(\frac{1}{2}, 1]$ is open in Y, $f^{-1}((\frac{1}{2}, 1]) = (1)$ is not νg -closed in X.

However we can prove the following theorem.

Theorem 3.6: Let $f_n : (X, d_X) \to (Y, d_Y)$, be $c.\nu g.c.$, for n = 1, 2... and let $f : (X, d_X) \to (Y, d_Y)$ be the uniform limit of $\{f_n\}$, then $f : (X, d_X) \to (Y, d_Y)$ is $c.\nu g.c.$

Problem: (i) Are $\sup\{f, g\}$ and $\inf\{f, g\}$ are $c.\nu g.c.$ if f, g are $c.\nu g.c.$ (ii) Is $C_{c.\nu g.c}(X, R)$, the set of all $c.\nu g.c.$ functions, (1) a Group. (2) a Ring. (3) a Vector space. (4) a Lattice. (iii) Suppose $f_i : X \to X_i (i = 1, 2)$ are $c.\nu g.c.$ If $f : X \to X_1 \times X_2$ defined by $f(x) = (f_1(x), f_2(x))$, then f is $c.\nu g.c.$. Solution: No.

Note 4: In general c.gpr.c; c.gp.c; c.pg.c and c.g α .c. are independent of c. νg .c. maps

Example 11: f as in Example 1 is $c.\nu g.c.$, but not c.gpr.c.

Example 12: f as in Example 2 is c.gpr.c. but not $c.\nu g.c.$

Theorem 3.7: If f is νg -irresolute and g is c. νg .c.[c.g.c; c.rg.c], then $g \circ f$ is c. νg .c.

Theorem 3.8: If f is νg -irresolute, νg -open and $\nu GO(X) = \tau$ and g be any function, then $g \circ f$ is c. νg .c iff g is c. νg .c.

Proof:If part: Theorem 3.7

Only if part: Let A be closed in Z. Then $(g \circ f)^{-1}(A)$ is νg -open and hence open in X[by assumption]. Since f is νg -open $f(g \circ f)^{-1}(A) = g^{-1}(A)$ is νg -open in Y. Thus g is c. νg .c.

Corollary 3.1: If f is νg -irresolute, νg -open and bijective, g is a function. Then g is c. νg .c. iff $g \circ f$ is c. νg .c.

Theorem 3.9: If $g: X \to X \times Y$, defined by $g(x) = (x, f(x)) \forall x \in X$ be the graph function of $f: X \to Y$. Then g is $c.\nu g.c$ iff f is $c.\nu g.c$.

Proof: Let $V \in C(Y)$, then $X \times V \in C(X \times Y)$. Since g is c. νg .c., then $f^{-1}(V) = g^{-1}(X \times V) \in \nu GO(X)$. Thus, f is c. νg .c.

Conversely, let $x \in X$ and F be closed in $X \times Y$ containing $g(\mathbf{x})$. Then $F \cap (\{x\} \times Y)$ is closed in $\{x\} \times Y$ containing $g(\mathbf{x})$. Also $\{x\} \times Y$ is homeomorphic to Y. Hence $\{y \in Y : (x, y) \in F\}$ is closed in Y. Since f is $c.\nu g.c.$ $\bigcup\{f^{-1}(y) : (x, y) \in F\}$ is νg -open in X. Further $x \in \bigcup\{f^{-1}(y) : (x, y) \in F\} \subseteq g^{-1}(F)$. Hence $g^{-1}(F)$ is νg -open. Thus g is $c.\nu g.c.$

Theorem 3.10: (i) If f is $c.\nu g.c.$ and g is continuous then $g \circ f$ is $c.\nu g.c.$ (ii) If f is $c.\nu g.c.$ and g is nearly-continuous then $g \circ f$ is $c.\nu g.c.$ (iii) If f and g are c.rg.c. then $g \circ f$ is $\nu g.c$ (iv) If f is $c.\nu g.c.$ and g is c.rg.c., then $g \circ f$ is semi-continuous and β -continuous.

Remark 4:In general, composition of two $c.\nu g.c.$ functions is not $c.\nu g.c.$ However we have the following example:

Example 13: Let $X = Y = Z = \{a, b, c\}$ and $\tau = \wp(X)$; $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$, and $\eta = \{\phi, \{a\}, \{b\}, \{a, b\}, Z\}$. Let f and g be identity maps which are c. $\nu g.c.$, then $g \circ f$ is c. $\nu g.c.$

Theorem 3.11: Let X, Y, Z be spaces and every νg -closed set be open[ropen] in Y, then the composition of two c. $\nu g.c.$ maps is c. $\nu g.c.$

Theorem 3.12: (i) If f is c. $\nu g.c.[c.rg.c.]$ g is g-continuous[rg-continuous] and Y is $T_{\frac{1}{2}}[rT_{\frac{1}{2}}]$ space, then $g \circ f$ is c. $\nu g.c.$ (ii) If f is c. $\nu.c.[c.r.c.]$, g is continuous[r-continuous], then $g \circ f$ is c. $\nu g.c.$ (iii) If f is c. $\nu.c.[c.r.c.]$, g is g-continuous{rg-continuous} and Y is $T_{\frac{1}{2}}\{rT_{\frac{1}{2}}\}$, then $g \circ f$ is c. $\nu g.c.$ **Theorem 3.13:** (i) If $R\alpha C(X) = RC(X)$ then f is $c.r\alpha.c.$ iff f is c.rg.c.(ii) If $R\alpha C(X) = \nu gC(X)$ then f is $c.r\alpha.c.$ iff f is $c.\nu g.c.$ (iii) If $\nu gC(X) = RC(X)$ then f is $c.\alpha.c.$ iff f is $c.\nu g.c.$ (iv) If $\nu gC(X) = \alpha C(X)$ then f is $c.\alpha.c.$ iff f is $c.\nu g.c.$ (v) If $\nu gC(X) = SC(X)$ then f is c.sg.c. iff f is $c.\nu g.c.$ (vi) If $\nu gC(X) = \beta C(X)$ then f is $c.\beta g.c.$ iff f is $c.\nu g.c.$

Example 14: $X = Y = \{a, b, c\}; \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$. Let f be identity function, then f is c. $\nu g.c$; c.sg.c. but not c.rg.c

Note 5: Pasting Lemma is not true with respect to $c.\nu g.c.$ functions. However we have the following weaker versions.

Theorem 3.14: Let X and Y be such that $X = A \cup B$. Let $f_{A} : A \to Y$ and $g_{B} : B \to Y$ are c.rg.c. such that $f(x) = g(x) \forall x \in A \cap B$. Suppose A and B are r-closed sets in X and RC(X) is closed under finite unions, then the combination $\alpha : X \to Y$ is c. $\nu g.c.$

Theorem 3.15: Pasting Lemma Let X and Y be such that $X = A \cup B$. Let $f_{A} : A \to Y$ and $g_{B} : B \to Y$ are c. $\nu g.c.$ such that $f(x) = g(x) \ \forall x \in A \cap B$. Suppose A, B are r-closed sets in X and $\nu gC(X)$ is closed under finite unions, then the combination $\alpha : X \to Y$ is c. $\nu g.c.$

Proof: Let F be open set in Y, then $\alpha^{-1}(F) = f^{-1}(F) \cup g^{-1}(F)$ where $f^{-1}(F)$ is νg -closed in A and $g^{-1}(F)$ is νg -closed in B $\Rightarrow f^{-1}(F)$ and $g^{-1}(F)$ are νg -closed in X $\Rightarrow f^{-1}(F) \cup g^{-1}(F)$ is νg -closed in X[by assumption] $\Rightarrow \alpha^{-1}(F)$ is νg -closed in X. Hence α is c. νg .c.

Theorem 3.16: The following are equivalent:

(i) f is $c.\nu g.c.$ (ii) $\forall x \in X$ and each $V \in C(Y, f(x))$, $\exists U \in \nu GO(X, x)$ and $f(U) \subset V$. (iii) $f^{-1}(V)$ is νg -open in X whenever V is closed in Y.

Definition 3.2: A function f is said to be

(i) strongly νg -continuous if the inverse image of every set is νg -clopen.

(ii) perfectly νg -continuous if the inverse image of every open set is νg -clopen.

(iii)M- νg -open if the image of each νg -open set of X is νg -open in Y.

Theorem 3.17:

(i) Everly strongly $\nu g.c$ function is $c.\nu g.c.$ and $\nu g.c.$

(ii) Everly perfectly $\nu g.c$ function is $c.\nu g.c.$ and $\nu g.c.$

(iii) Everly strongly $\nu g.c$ function is perfectly $\nu g.c$.

8

Theorem 3.18: The following statements are equivalent for a function f: (1) f is $c.\nu g.c.$;

(2) $f^{-1}(F) \in \nu GO(X)$ for every $F \in C(Y)$;

(3) for each $x \in X$ and each $F \in C(Y, f(x)), \exists U \in \nu GO(X, x) \ni f(U) \subset F$; (4) for each $x \in X$ and $V \in \sigma(Y)$ non-containing $f(x), \exists K \in \nu GC(X)$ noncontaining $x \ni f^{-1}(V) \subset K$; (5) $f^{-1}((\overline{G})^o) \in \nu GC(X)$ for every open subset G of Y; (6) $f^{-1}(\overline{F^o}) \in \nu GO(X)$ for every closed subset F of Y.

Proof: (1) \Leftrightarrow (2): Let $F \in C(Y)$. Then $Y - F \in RO(Y)$. By (1), $f^{-1}(Y - F) = X - f^{-1}(F) \in \nu GC(X)$. We have $f^{-1}(F) \in \nu GO(X)$. Reverse can be obtained similarly.

(2) \Rightarrow (3): Let $F \in C(Y, f(x))$. By (2), $f^{-1}(F) \in \nu GO(X)$ and $x \in f^{-1}(F)$. Take $U = f^{-1}(F)$. Then $f(U) \subset F$.

 $(3)\Rightarrow(2)$: Let $F \in C(Y)$ and $x \in f^{-1}(F)$. From $(3), \exists U_x \in \nu GO(X, x) \ni U_x \subset f^{-1}(F)$. We have $f^{-1}(F) = \bigcup_{x \in f^{-1}(F)} U_x$. Thus $f^{-1}(F)$ is νg -open.

 $(3) \Leftrightarrow (4)$: Let $V \in \sigma(Y)$ not containing $f(\mathbf{x})$. Then, $Y - V \in C(Y, f(x))$. By (3), $\exists U \in \nu GO(X, x) \ni f(U) \subset Y - V$. Hence, $U \subset f^{-1}(Y - V) \subset X - f^{-1}(V)$ and then $f^{-1}(V) \subset X - U$. Take H = X - U, then $H \in \nu GC(X)$ noncontaining x. The converse can be shown easily.

(1) \Leftrightarrow (5): Let $G \in \sigma(Y)$. Since $(\overline{G})^o \in \sigma(Y)$, by (1), $f^{-1}((\overline{G})^o) \in \nu GC(X)$. The converse can be shown easily.

 $(2) \Leftrightarrow (6)$: It can be obtained smilar as $(1) \Leftrightarrow (5)$.

Example 15: Let $X = \{a, b, c\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{b\}, \{c\}, \{b, c\}, X\}$. Then the identity function $f: X \to X$ is $c.\nu g.c.$ But it is not regular set-connected.

Theorem 3.19: If f is $c.\nu g.c.$ and $A \in RO(X)[resp: RC(X)]$, then $f_{|A}: A \to Y$ is $c.\nu g.c.$ **Proof:** Let $V \in \sigma(Y) \Rightarrow f_{/A}^{-1}(V) = f^{-1}(V) \cap A \in \nu GC(A)$. Hence $f_{/A}$ is $c.\nu g.c.$

Remark 5: Every restriction of an $c.\nu g.c.$ function is not necessarily $c.\nu g.c.$

Theorem 3.20: Let f be a function and $\Sigma = \{U_{\alpha} : \alpha \in I\}$ be a νg -cover of X. If for each $\alpha \in I$, $f_{|U_{\alpha}}$ is c. $\nu g.c.$, then f is an c. $\nu g.c.$ function.

Proof: Let $F \in C(Y)$. $f_{|U_{\alpha}}$ is c. $\nu g.c.$ for each $\alpha \in I$, $f_{|U_{\alpha}}^{-1}(F) \in \nu gO_{|U_{\alpha}}$. Since $U_{\alpha} \in \nu GO(X)$, $f_{|U_{\alpha}}^{-1}(F) \in \nu GO(X)$ for each $\alpha \in I$. Then $f^{-1}(F) = \bigcup_{\alpha \in I} f_{|U_{\alpha}}^{-1}(F) \in \nu GO(X)$. This gives f is an c. $\nu g.c.$

Theorem 3.21: If f and g are functions. Then, the following properties hold:

(1) If f is c. $\nu g.c.$ and g is regular set-connected, then $g \circ f$ is c. $\nu g.c.$ and $\nu g.c.$ (2) If f is c. $\nu g.c.$ and g is perfectly continuous, then $g \circ f$ is $\nu g.c.$ and c. $\nu g.c.$ **Proof:** (1) Let $V \in \eta(Z)$. Since g is regular set-connected, $g^{-1}(V)$ is clopen. Since f is c. $\nu g.c.$, $f^{-1}(g^{-1}(V)) = (g \circ f)^{-1}(V)$ is νg -open and νg -closed. Therefore, $g \circ f$ is c. $\nu g.c.$ and $\nu g.c.$

(2) can be obtained similarly.

Theorem 3.22: If f is a surjective $M \cdot \nu g - open[resp: M \cdot \nu g - closed]$ and g is a function such that $g \circ f$ is $c \cdot \nu g \cdot c$, then g is $\nu g \cdot c$.

Theorem 3.23: If f is c.vg.c., then for each point $x \in X$ and each filter base Λ in $X \nu g$ -converging to x, the filter base $f(\Lambda)$ is rc-convergent to f(x).

Theorem 3.24: Let f be a function and $x \in X$. If there exists $U \in \nu GO(X, x)$ and $f_{|U}$ is c. $\nu g.c.$ at x, then f is c. $\nu g.c.$ at x. **Proof:** If $F \in C(Y, f(x))$. Since $f_{|U}$ is c. $\nu g.c.$ at x, there exists $V \in \nu GO(U, x) \ni f(V) = (f_{|U})(V) \subset F$. Since $U \in \nu GO(X, x)$, $V \in \nu GO(X, x)$. Hence f is c. $\nu g.c.$ at x.

Lemma 3.1:

(i) If V is an open set, then $sCl_{\theta}(V) = sCl(V)$. (ii) If V is an regular-open set, then sCl(V) = Int(Cl(V)).

Lemma 3.2: For $V \subset Y, \sigma$), the following properties hold: (1) $\alpha \overline{V} = \overline{V}$ for every $V \in \beta O(Y)$, (2) $\nu \overline{V} = \overline{V}$ for every $V \in SO(Y)$, (3) $s \overline{V} = (\overline{V})^o$ for every $V \in RO(Y)$.

Theorem 3.25: For a function f, the following properties are equivalent: (1) f is $(\nu g, s)$ -continuous; (2) f is $c.\nu g.c.$; (3) $f^{-1}(V)$ is νg -open in X for each θ -semi-open set V of Y; (4) $f^{-1}(F)$ is νg -closed in X for each θ -semi-closed set F of Y. **Proof:** (1) \Rightarrow (2): Let $F \in RC(Y)$ and $x \in f^{-1}(F)$. Then $f(x) \in F$ and F is semi-open. Since f is $(\nu g, s)$ -continuous, $\exists U \in \nu GO(X, x) \ni f(U) \subset \overline{F} = F$. Hence $x \in U \subset f^{-1}(F)$ which implies that $x \in \nu g(f^{-1}(F))^0$. Therefore, $f^{-1}(F) \subset \nu g(f^{-1}(F))^0$ and hence $f^{-1}(F) = \nu g(f^{-1}(F))^0$. This shows that $f^{-1}(F) \in \nu GO(X)$. It follows that f is c. νg .c.

 $(2) \Rightarrow (3)$: Follows from the fact that every θ -semi-open set is the union of regular closed sets.

 $(3) \Leftrightarrow (4)$: This is obvious.

(4) \Rightarrow (1): Let $x \in X$ and $V \in SO(Y, f(x))$. Since \overline{V} is closed, it is θ -semiopen. Now, put $U = f^{-1}(\overline{V})$. Then $U \in \nu GO(X, x)$ and $f(U) \subset \overline{V}$. Hence f is $(\nu g, s)$ -continuous.

Theorem 3.26: For a function f, the following properties are equivalent: (1) f is $c.\nu g.c.$; (2) $f^{-1}(\overline{V})$ is νg -open in X for every $V \in \beta O(Y)$; (3) $f^{-1}(\overline{V})$ is νg -open in X for every $V \in SO(Y)$; (4) $f^{-1}((\overline{V})^o)$ is νg -closed in X for every $V \in RO(Y)$. **Proof:** (1) \Rightarrow (2): Let $V \in \beta O(Y)$. By Theorem 2.4 of [3] \overline{V} is closed and by Theorem 3.18 $f^{-1}(\overline{V}) \in \nu GO(X)$.

(2) \Rightarrow (3): This is obvious since $SO(Y) \subset \beta O(Y)$.

 $(3) \Rightarrow (4): \text{Let } V \in RO(Y) \Rightarrow Y - (\overline{V})^o \text{ is closed and hence it is semi-open.}$ Then $X - f^{-1}((\overline{V})^o) = f^{-1}(Y - (\overline{V})^o) = f^{-1}(\overline{(Y - (\overline{V}))}^o) \in \nu GO(X).$ Hence $f^{-1}((\overline{V})^o) \in \nu GC(X).$

(4)
$$\Rightarrow$$
 (1): Let $V \in RO(Y)$. Then $f^{-1}(V) = f^{-1}((\overline{V})^o) \in \nu GC(X)$.

Corollary 3.2: For a function f, the following properties are equivalent: (1) f is $c.\nu g.c.$; (2) $f^{-1}(\alpha \overline{V})$ is νg -open in X for every $V \in \beta O(Y)$; (3) $f^{-1}(\nu \overline{V})$ is νg -open in X for every $V \in SO(Y)$; (4) $f^{-1}(s\overline{V})$ is νg -closed in X for every $V \in RO(Y)$. **Proof:** This is an immediate consequence of Theorem 3.26 and Lemma 3.2.

The νg -frontier of $A \subset X$; is defined by $\nu g Fr(A) = \nu g(\overline{A}) - \nu g(\overline{X - A}) = \nu g(\overline{A}) - \nu g(A)^0$.

Theorem 3.27: $\{x \in X : f : X \to Y \text{ is not } c.\nu g.c.\}$ is identical with the union of the νg -frontier of the inverse images of closed sets of Y containing f(x).

Proof: If f is not $c.\nu g.c.$ at $x \in X$. By Theorem 3.18, \exists a closed set $F \in C(\underline{Y}, \underline{f}(x) \ni \underline{f}(U) \cap (\underline{Y} - F) \neq \phi$ for every $U \in \nu GO(X, x)$. Then $x \in \nu g(\overline{f^{-1}(Y - F)}) = \nu g(\overline{X} - f^{-1}(F))$. On the other hand, we get $x \in f^{-1}(F) \subset \nu g(\overline{f^{-1}(F)})$ and hence $x \in \nu gFr(f^{-1}(F))$. Conversely, If f is $c.\nu g.c.$ at x and let $F \in C(Y, \underline{f}(x))$. By Theorem 3.18, there exists $U \in \nu GO(X, x) \ni x \in U \subset f^{-1}(F)$. Therefore, $x \in \nu g(f^{-1}(F))^o$. This contradicts that $x \in \nu qFr(f^{-1}(F))$. Thus f is not $c.\nu g.c.$

§4 Contra νg -Irresolute Maps

Definition 4.1: A function f is said to be contra νg -irresolute if the inverse image of every νg -open set is νg -closed.

Example 16:

(i) Let $X = Y = \{a, b, c\}; \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\} = \sigma$. Let f be identity map. Then f is contra νg -irresolute, contra rg-irresolute, contra grirresolute, contra sg-irresolute, contra grirresolute, and contra r α -irresolute but not contra-irresolute, contra r-irresolute, contra pre-irresolute, contra α -irresolute and contra β -irresolute.

(ii) The identity map f in Example 7 is contra νg -irresolute, contra r-irresolute but not contra rg-irresolute, contra gr-irresolute, contra sg-irresolute, contra gg-irresolute, contra continuous, contra-irresolute, contra pre-irresolute, contra α -irresolute, contra β -irresolute, and contra r α -irresolute.

Example 17: Let $X = Y = \{a, b, c, d\}; \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\} = \sigma$. Let f be defined as f(a) = f(b) = f(c) = d, f(d) = a. Then f is contra νg -irresolute and νg -irresolute.

Theorem 4.1: (i) Let f be c.rg.c. and r-open, then f is contra νg -irresolute. (ii) f is contra νg -irresolute iff inverse image of every νg -closed set is νg -open.

Theorem 4.2: If f; g are contra νg -irresolute, then $g \circ f$ is νg -irresolute.

Remark 6: We have the following implication diagram for a function $f: X \to Y$

Example 18: The identity map f in Example 1 is contra νg -irresolute, contra-irresolute but not contra rg α -irresolute, contra rg-irresolute, contra gr-irresolute, contra gr-irresolute, contra gr-irresolute, contra r-irresolute, contra gr-irresolute, contr

Theorem 4.3: If f is contra νg -irresolute and (i) g is r-irresolute, then $g \circ f$ is contra νg -irresolute. (ii) g is contra r-irresolute, then $g \circ f$ is νg -irresolute.

Note 6: contra νg -irresolute and c. νg .c.; contra g α -irresolute; contra pg-irresolute; contra gp-irresolute maps are independent to each other

Theorem 4.4: (i) If $R\alpha C(X) = RC(X)$ and $R\alpha C(Y) = RC(Y)$, then f is contra $r\alpha$ -irresolute iff f is contra r-irresolute. (ii) If $R\alpha C(X) = \nu g C(X)$ and $R\alpha C(Y) = \nu g C(Y)$, then f is contra $r\alpha$ -irresolute iff f is contra νg -irresolute. (iii) If $\nu g C(X) = RC(X)$ and $\nu g C(Y) = RC(Y)$, then f is contra r-irresolute iff f is contra νg -irresolute. (iv) If $\nu g C(X) = \alpha C(X)$ and $\nu g C(Y) = \alpha C(Y)$, then f is contra α -irresolute iff f is contra νg -irresolute.

Theorem 4.5: Pasting Lemma Let X and Y be spaces such that $X = A \cup B$ and let $f_{/A} : A \to Y$ and $g_{/B} : B \to Y$ are contra νg -irresolute maps such that $f(x) = g(x) \ \forall x \in A \cap B$. Suppose A, B are r-open sets in X and $\nu gC(X)$ is closed under finite unions, then the combination $\alpha : X \to Y$ is contra νg -irresolute.

Theorem 4.6: (i) If f is contra νg -irresolute and g is $\nu g.c.[rg.c.]$, then $g \circ f$ is $c.\nu g.c.$

(ii) If f is contra νg -irresolute and g is c. νg .c.[c.rg.c.] then $g \circ f$ is νg .c.

Contra νg -Continuity

Theorem 4.7: If $\nu GO(Y, \sigma) = \sigma$ in Y, then f is contra νg -irresolute iff f is c. $\nu g.c.$

Theorem 4.8: If $\nu GO(X, \tau) = \tau$; $\nu GO(Y, \sigma) = \sigma$, then the following are equivalent: (i) f is c.q.c (ii) f is c. $\nu q.c.$ (iii) f is contra νq -irresolute.

Theorem 4.9: The set of all contra νg -irresolute mappings do not form a group under the operation usual composition of mappings.

Theorem 4.10: If f is contra νg -irresolute then for every subset A of $X, f(\nu g(\overline{A})) \subset \nu g(\overline{f(A)}).$

Proof: Let $A \subseteq X$ and consider $\nu g(\overline{f(A)})$ which is νg -closed in Y, then $f^{-1}(\nu g(\overline{f(A)}))$ is νg -open in X, by theorem 4.1(ii). Furthermore $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\nu g(\overline{f(A)}))$ and $\nu g(\overline{A}) \subseteq f^{-1}(\nu g(\overline{f(A)}))$, we have $f(\nu g(\overline{A})) \subseteq f(f^{-1}(\nu g(\overline{f(A)}))) = (\nu g(\overline{f(A)})) \cap f(Y)) \subseteq \nu g(\overline{f(A)})$. Hence $f(\nu g(\overline{A}) \subseteq \nu g(\overline{f(A)})$.

Theorem 4.11: If f is contra νg -irresolute then for every subset A of Y, $\nu g(\overline{f^{-1}(\nu g(\overline{A}))}) \subset f^{-1}(\nu g(\overline{A})).$

§5 The Preservation Theorems and Some Other Properties

Theorem 5.1: If f is c. $\nu g.c.$ [resp: c.r.c] surjection and X is νg -compact, then Y is closed compact.

Proof: Let $\{G_i : i \in I\}$ be any closed cover for Y. For G_i is closed in Y and f is c. $\nu g.c.$, $f^{-1}(G_i)$ is νg -open in X. Thus $\{f^{-1}(G_i)\}$ forms a νg -open cover for X and hence have a finite subcover, since X is νg -compact. Since f is surjection, $Y = f(X) = \bigcup_{i=1}^{n} G_i$. Therefore Y is closed compact.

Theorem 5.2: If f is a r-irresolute and continuous surjection and X is mildly compact (resp. mildly countably compact, mildly Lindelof), then Y is nearly compact (resp. nearly countably compact, nearly Lindelof) and S-closed (resp. countably S-closed, S-Lindelof).

Proof: Let $V \in C(Y)$. Since f is r-irresolute and continuous, $f^{-1}(V)$ is regular-open and closed in X and hence $f^{-1}(V)$ is clopen. Let $\{V_{\alpha} : \alpha \in I\}$ be any closed (respectively open) cover of Y. Then $\{f^{-1}(V_{\alpha} : \alpha \in I\}$ is a clopen cover of X and since X is mildly compact, \exists a finite subset I_0 of I such that $X = \bigcup \{f^{-1}(V_{\alpha} : \alpha \in I_0\}$. Since f is surjective, we get $Y = \bigcup \{V_{\alpha} : \alpha \in I_0\}$. Hence Y is S-closed (respectively nearly compact). The other proofs can be obtained similarly. **Theorem 5.3:** If f is $c.\nu g.c.[c.rg.c.]$, surjection. Then the following statements hold:

(i) If X is locally νg -compact, then Y is locally closed compact[locally nearly closed compact; locally mildly compact.]

(ii) If X is νg -Lindeloff[locally νg -lindeloff], then Y is closed Lindeloff[resp: locally closed Lindeloff; nearly closed Lindeloff; locally nearly closed Lindeloff; locally mildly lindeloff].

(iii) If X is νg -compact[countably νg -compact], then Y is S-closed[countably S-closed].

(iv) If X is νg -Lindelof, then Y is S-Lindelof/nearly Lindelof].

(v) If X is νg -closed[countably νg -closed], then Y is nearly compact[nearly countably compact].

(vi) X is νg -compact[νg -lindeloff], then Y is nearly closed compact; mildly closed compact/mildly closed lindeloff].

Theorem 5.4: If f is $c.\nu g.c.[contra \ \nu g-irreolute]$ surjection and X is $\nu g-connected$, then Y is connected[$\nu g-connected$] **Proof:** If Y is disconnected. Then $Y = V_1 \cup V_2$, where V_1 and V_2 are clopen

Proof: If Y is disconnected. Then $Y = V_1 \cup V_2$, where V_1 and V_2 are clopen in Y. Since f is c. $\nu g.c.$, $f^{-1}(V_1)$ and $f^{-1}(V_2)$ are disjoint νg -open sets in X and $X = f^{-1}(V_1) \cup f^{-1}(V_2)$, which is a contradiction for νg -connectedness of X. Hence, Y is connected.

Corollary 5.1: The inverse image of a disconnected $[\nu g - disconnected]$ space under a c. $\nu g.c.$, [contra νg -irreolute] surjection is νg -disconnected.

Theorem 5.5: If f is $c.\nu g.c.$, injection and (i) Y is UT_i , then X is $\nu g - T_i$ i = 0, 1, 2. (ii) Y is UR_i , then X is $\nu g - R_i$ i = 0, 1. (iii) Y is $UC_i[resp: UD_i]$ then X is $\nu g - T_i[resp: \nu g - D_i]$, i = 0, 1, 2. (iv) If f is closed and Y is UT_i , then X is $\nu g - T_i$, i = 3, 4.

Theorem 5.6: If f is $c.\nu g.c.[resp: c.rg.c]$ and Y is UT_2 , then the graph G(f) of f is $\nu g-closed$ in the product space $X \times Y$. **Proof:** Let $(x, y) \notin G(f) \Rightarrow y \neq f(x) \Rightarrow \exists$ disjoint clopen sets V and $W \Rightarrow f(x) \in V$ and $y \in W$. Since f is $c.\nu g.c.$, $\exists U \in \nu GO(X) \Rightarrow x \in U$ and $f(U) \subset W$. Therefore $(x, y) \in U \times V \subset X \times Y - G(f)$. Hence G(f) is $\nu g-closed$ in $X \times Y$.

Theorem 5.7: If f is $c.\nu g.c.[c.rg.c]$ and Y is UT_2 , then $A = \{(x_1, x_2) | f(x_1) = f(x_2)\}$ is νg -closed in the product space $X \times X$. **Proof:**If $(x_1, x_2) \in X \times X - A$, then $f(x_1) \neq f(x_2) \Rightarrow \exists$ disjoint $V_j \in CO(\sigma) \ni$ $f(x_j) \in V_j$, and since f is c. $\nu g.c.$, $f^{-1}(V_j) \in \nu GO(X, x_j)$ for each j = 1, 2. Thus $(x_1, x_2) \in f^{-1}(V_1) \times f^{-1}(V_2) \in \nu GO(X \times X)$ and $f^{-1}(V_1) \times f^{-1}(V_2) \subset X \times X - A$. Hence A is νg -closed.

Theorem 5.8: If f is c.r.c.{c.}; $g: X \to Y$ is c. $\nu g.c$; and Y is UT_2 , then $E = \{x \in X : f(x) = g(x)\}$ is νg -closed[and hence semi-closed and β -closed] in X.

Theorem 5.9: If f is c. $\nu g.c.$ injection and Y is weakly Hausdorff, then X is $\nu g - T_1$.

Proof: Suppose that Y is weakly Hausdorff. For any $x \neq y \in X, \exists V, W \in RC(Y) \ni f(x) \in V, f(y) \notin V, f(x) \notin W$ and $f(y) \in W$. Since f is c. $\nu g.c., f^{-1}(V)$ and $f^{-1}(W)$ are νg -open subsets of X such that $x \in f^{-1}(V), y \notin f^{-1}(V), x \notin f^{-1}(W)$ and $y \in f^{-1}(W)$. This shows that X is $\nu g - T_1$.

Theorem 5.10: If X is νg -ultra-connected and f is c. $\nu g.c.$, and surjective, then Y is hyperconnected.

Proof: If Y is not hyperconnected, $\exists V \in \sigma(Y) \ni V$ is not dense in Y. Then $Y = B_1 \cup B_2$; $B_1 \cap B_2 = \phi$. Since f is c. $\nu g.c.$ and onto, $A_1 = f^{-1}(B_1)$ and $A_2 = f^{-1}(B_2)$ are disjoint non-empty νg -closed subsets of X. By assumption, the νg -ultra-connectedness of X implies that A_1 and A_2 must intersect, which is a contradiction. Therefore Y is hyperconnected.

Theorem 5.11: If for each $x_1 \neq x_2$ in a space X there exists a function f of X into a Urysohn space Y such that $f(x_1) \neq f(x_2)$ and f is $c.\nu g.c.$, at x_1 and x_2 , then X is $\nu g - T_2$.

Proof: Let $x_1 \neq x_2$. By the hypothesis \exists a function f which satisfies the condition of this theorem. Since Y is Urysohn and $f(x_1) \neq f(x_2)$, there exist open sets V_1 and V_2 containing $f(x_1)$ and $f(x_2)$, respectively, such that $\overline{V_1} \cap \overline{V_2} = \phi$. Since f is c. νg .c., at x_i , $\exists U_i \in \nu GO(X, x_i) \ni f(U_i) \subset \overline{V_i}$ for i = 1, 2. Hence $U_1 \cap U_2 = \phi$. Therefore, X is $\nu g - T_2$.

Corollary 5.2: If f is an c. $\nu g.c.$ injection and Y is Urysohn, then X is $\nu g - T_2$.

§6 νg -Regular Graphs:

Recall that for a function f, the subset $\{(x, f(x)) : x \in X\} \subset X \times Y$ is called the graph of f and is denoted by G(f).

Definition 6.1: A graph G(f) of a function f is said to be νg -regular if for each $(x, y) \in (X \times Y) - G(f)$, $\exists U \in \nu GC(X, x)$ and $V \in RO(Y, y) \ni$

 $(U \times V) \cap G(f) = \phi.$

Lemma 6.1: The following properties are equivalent for a graph G(f) of a function:

(1) G(f) is νq -regular;

(2) for each point $(x,y) \in (X \times Y) - G(f)$, $\exists U \in \nu GC(X,x)$ and $V \in RO(Y,y) \ni f(U) \cap V = \phi$.

Proof: It is an immediate consequence of definition of νg -regular graph and the fact that for any subsets $A \subset X$ and $B \subset Y, (A \times B) \cap G(f) = \phi$ iff $f(A) \cap B = \phi$.

Theorem 6.2: If f is c. $\nu g.c.$, and Y is T_2 , then G(f) is νg -regular graph in $X \times Y$.

Proof: Assume Y is T_2 . Let $(x, y) \in (X \times Y) - G(f)$. It follows that $f(x) \neq y$. Since Y is T_2 , there exist disjoint open sets V and W containing f(x) and y, respectively. We have $((\overline{V})^o) \cap ((\overline{W})^o) = \phi$. Since f is c. $\nu g.c.$, $f^{-1}((\overline{V})^o)$ is νg -closed in X containing x. Take $U = f^{-1}((\overline{V})^o)$. Then $f(U) \subset ((\overline{V})^o)$. Therefore, $f(U) \cap ((\overline{W})^o) = \phi$ and G(f) is νg -regular in $X \times Y$.

Theorem 6.3: Let f have a νg -regular graph G(f). If f is injective, then X is $\nu g - T_1$. **Proof:** Let $m \in X$. Then, we have $(m, f(\alpha)) \in (X \times Y) - C(f)$. By definition

Proof: Let $x \neq y \in X$. Then, we have $(x, f(y)) \in (X \times Y) - G(f)$. By definition 6.1, $\exists U \in \nu GC(X)$ and $V \in RO(Y) \ni (x, f(y)) \in U \times V$ and $f(U) \cap V = \phi$; hence $U \cap f^{-1}(V) = \phi$. Therefore, we have $y \notin U$. Thus, $y \in X - U$ and $x \notin X - U$. We obtain that $X - U \in \nu GO(X)$. This implies that X is $\nu g - T_1$.

Theorem 6.4: Let f have a νg -regular graph G(f). If f is surjective, then Y is weakly T_2 .

Proof: Let $y_1 \neq y_2 \in Y$. Since f is surjective $f(x) = y_1$ for some $x \in X$ and $(x, y_2) \in (X \times Y) - G(f)$. By definition 6.1, $\exists U \in \nu GC(X)$ and $F \in RO(Y) \ni (x, y_2) \in U \times F$ and $f(U) \cap F = \phi$; hence $y_1 \notin F$. Then $y_2 \notin Y - F \in RC(Y)$ and $y_1 \in Y - F$. This implies that Y is weakly T_2 .

Example 19: Let $X = \{a, b, c\}, \tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, X\}$. Then, the identity function f is contra- νg -continuous but it is not weakly continuous.

Corollary 6.1:

(i) If f is M-vg-open and c.vg.c., then f is al.vg.c.
(ii) If f is c.vg.c. and Y is almost regular, then f is al.vg.c.

Contra νg -Continuity

Definition 6.2: A function f is said to be faintly νg -continuous if for each $x \in X$ and each θ -open set V of Y containing $f(\mathbf{x})$, there exists $U \in \nu GO(X, x) \ni f(U) \subset V.$

Theorem 6.5: Let Y be E.D. Then, f is c. $\nu g.c.$ iff it is $\nu g.c.$ **Proof: Necessity.** Let $x \in X$ and $V \in \sigma(Y, f(x))$. Since Y is E.D., V is clopen and hence V is closed. By Theorem 3.18, $\exists U \in \nu GO(X, x) \ni f(U) \subset V$. Therefore f is νg -continuous.

Sufficiency. Let F be any closed set in Y. Since Y is E.D., F is also open and $f^{-1}(F) \in \nu GO(X)$. Hence f is c. $\nu g.c.$

§7 Contra- νg -Closed Graphs

Definition 7.1: A function f is said to have a contra- νg -closed graph if for each $(x, y) \in (X \times Y) - G(f)$ there exists $U \in \nu GO(X, x)$ and a closed set V of Y containing y such that $(U \times V) \cap G(f) = \phi$.

Lemma 7.1: f has a contra- νg -closed graph iff for each $(x, y) \in (X \times Y) - G(f) \exists U \in \nu GO(X, x)$ and $V \in C(Y, y) \ni f(U) \cap V = \phi$.

Theorem 7.1: If f is $c.\nu g.c.$, and Y is C_2 , then G(f) is contra- $\nu g-closed$. **Proof:** Suppose that $(x, y) \in (X \times Y) - G(f)$. Then $y \neq f(x)$. Since Y is C_2 , there exist open sets V and W in Y containing y and f(x), respectively, such that $\overline{V} \cap \overline{W} = \phi$. Since f is $c.\nu g.c.$, there exists $U \in \nu GO(X, x) \ni f(U) \subset \overline{W}$. This shows that $f(U) \cap \overline{V} = \phi$ and hence G(f) is ontra- νg -closed.

Corollary 7.1: If f is c. $\nu g.c.$ and Y is C_2 , then G(f) is contra- $\nu g-closed$.

Theorem 7.2: If f is an injective c. $\nu g.c.$ function with the contra- νg -closed graph, then X is $\nu g - T_2$.

Proof: Let $x \neq y \in X$. Since f is injective, $f(x) \neq f(y)$ and $(x, f(y)) \in (X \times Y) - G(f)$. Since G(f) is contra- νg -closed, by Lemma 7.1 $\exists U \in \nu GO(X, x)$ and $V \in RC(Y, f(y)) \ni f(U) \cap V = \phi$. Since f is c. νg .c., by Theorem 3.18 $\exists G \in \nu GO(X, y) \ni f(G) \subset V$. Therefore, we have $f(U) \cap f(G) = \phi$; hence $U \cap G = \phi$. Hence X is $\nu g - T_2$.

References

[1] Ahmad Al-Omari and Mohd.Salmi Md.Noorani, Some properties of contra-b-continuous and almost contra-b-continuous functions, *Euro. J. P. A. M.*, 2(2) (2009), 213-230.

- [2] S. Balasubramanian and P.A.S. Vyjayanthi, contra ν-continuity, Bull. Kerala. Math. Association, 8(2)(2011)211 - 228.
- [3] M. Caldas and S. Jafari, Some properties of contra-β-continuous functions, Mem. Fac. Sci., Kochi Univ. (Math.), 22(2001), 19-28.
- [4] J. Dontchev, Contra-continuous functions and strongly S-closed space, I.J.M.&.M.S.,19(2) (1996), 303-310.
- [5] J. Dontchev and T. Noiri, Contra-semicontinuous functions, Math. Pannonica, 10(2) (1999), 159-168.
- [6] J. Dontchev, Another form of contra-continuity, *Kochi.J.M.*,1(2006), 21-29.
- [7] S. Jafari and T. Noiri, Contra- α -continuous functions between topological spaces, *Iranian International Journal of Science*, 2(2) (2001), 153-167.
- [8] S. Jafari and T. Noiri, On contra-precontinuous functions, B.M.M.S.S., 25(2) (2002), 115-128.
- [9] Jamal M. Mustafa, Contra semi-I-continuous functions, *Hacettepe Journal* of Mathematics and Statistics, 39(2)(2010), 191-196.
- [10] A.A. Nasef, Some properties of contra-γ-continuous functions, Chaos Solitons Fractals, 24(2) (2005), 471-477.
- [11] T. Noiri and V.Popa, A unified theory of contra-continuity, Ann. Univ. Sci. Budapest, 44(2002), 115-137.
- [12] M.K.R.S. Veera Kumar, Contra-pre-semi-continuous functions, B.M.M.S.S., 28(1) (2005), 67-71.