Gen. Math. Notes, Vol. 10, No. 1, May 2012, pp.1-18
ISSN 2219-7184; Copyright ©ICSRS Publication, 2012
www.i-csrs.org
Available free online at http://www.geman.in

Contra νg-Continuity

S. Balasubramanian
Department of Mathematics, Government Arts College (Autonomous), Karur-639 005(T.N.)
E-mail: mani55682@rediffmail.com

(Received: 28-11-11/Accepted: 6-6-12)

Abstract

The object of the present paper is to study the basic properties of Contra νg-continuous functions.

Keywords: νg-open sets, νg-continuity, $\nu g-i r r e s o l u t e, ~ \nu g-o p e n ~ m a p$, $\nu g-$ closed map, νg-homeomorphisms and Contra νg-continuity.

2010 MSC No: 54C10,54C08,54C05.

§1 Introduction

In 1996, Dontchev introduced contra-continuous functions. J. Dontchev and T. Noiri introduced Contra-semicontinuous functions in 1999. S. Jafari and T. Noiri defined Contra-super-continuous functions in 1999; Contra-$\alpha-$ continuous functions in 2001 and contra-precontinuous functions in 2002. M. Caldas and S. Jafari studied Some Properties of Contra- β-Continuous Functions in 2001. T. Noiri and V. Popa studied unified theory of contracontinuity in 2002. A.A. Nasef studied some properties of contra- $\gamma-$ continuous functions in 2005. M.K.R.S.V.Kumar introduced Contra-Pre-Semi-Continuous Functions in 2005. Ekici E., introduced and studied another form of contracontinuity in 2006. Jamal M. Mustafa introduced Contra Semi-I-Continuous functions in 2010. Recently S. Balasubramanian and P.A.S.Vyjayanthui defined and studied contra ν-continuity in 2011. Inspired with these developments, I introduce a new class of functions called contra νg-continuous function. Moreover, we obtain basic properties, preservation theorem and relationship with other types of functions.

§2 Preliminaries

Definition 2.1. $A \subset X$ is called
(i) closed if its complement is open.
(ii) regular open[pre-open; semi-open; α-open; β-open] if $A=(\bar{A})^{0}\left[A \subseteq(\bar{A})^{o}\right.$; $\left.A \subseteq \overline{\left(A^{o}\right)} ; A \subseteq\left(\overline{\left(A^{o}\right)}\right)^{o} ; A \subseteq \overline{\left.(\overline{(A)})^{o}\right)}\right]$ and regular closed[pre-closed; semi-closed; α-closed; β-closed] if $A=\overline{A^{0}}\left[\overline{\left(A^{o}\right)} \subseteq A ;(\bar{A})^{o} \subseteq A ; \overline{\left((\bar{A})^{o}\right)} \subseteq A ;\left(\overline{\left(A^{o}\right)}\right)^{o} \subseteq A\right]$ (iii) ν-open $[\mathrm{r} \alpha-$ open $]$ if there exists a regular open set O such that $O \subset A \subset$ $\bar{O}[O \subset A \subset \alpha \overline{(O)}]$
(iv) $\operatorname{semi}-\theta$-open if it is the union of semi-regular sets and its complement is semi- θ-closed.
(v) g-closed[resp: rg-closed] if $\bar{A} \subseteq U$ whenever $A \subseteq U$ and U is open[resp: r-open] in X.
(vi) sg-closed[resp: gs-closed] if $s(\bar{A}) \subseteq U$ whenever $A \subseteq U$ and U is semiopen[resp: open] in X.
(vii) pg-closed[resp: gp-closed; gpr-closed] if $p(\bar{A}) \subseteq U$ whenever $A \subseteq U$ and U is pre-open[resp: open; regular-open] in X .
(viii) α g-closed[resp: $\mathrm{g} \alpha$-closed; $\operatorname{rg} \alpha$-closed] if $\alpha(\bar{A}) \subseteq U$ whenever $A \subseteq U$ and U is open[resp: α-open; $\mathrm{r} \alpha$-open] in X.
(ix) ν g-closed if $\nu(\bar{A}) \subseteq U$ whenever $A \subseteq U$ and U is ν-open in X .

Note 1: From definition 2.1 we have the following interrelations among the closed sets.

Definition 2.2: A function $f: X \rightarrow Y$ is called
(i) contra-[resp: contra-semi-; contra-pre-;contra-r-;contra-r $\alpha-$; contra- $\alpha-$; contra- $\beta-$; contra- $\omega-$; contra-pre-semi-; contra $\nu-]$ continuuos if inverse image of every open set in Y is closed[resp: semi-closed; pre-closed; regular-closed; r α-closed; α-closed; β-closed; ω-closed; pre-semi-closed; ν-closed] in X.

$\S 3$ Contra νg-continuous maps:

Definition 3.1: A function $f: X \rightarrow Y$ is said to be contra νg-continuous if the inverse image of every open set is νg-closed.

Note 2: Here after we call contra νg-continuous function as c. $\nu g . \mathrm{c}$ function shortly.

Example 1: $X=Y=\{a, b, c\} ; \tau=\{\phi,\{a\},\{b\},\{a, b\}, X\}$ and $\sigma=\{\phi,\{a\},\{b, c\}, Y\}$. Let f be identity function, then f is c. $\nu g . c$.

Example 2: $X=Y=\{a, b, c, d\} ; \tau=\{\phi,\{a\},\{b\},\{d\},\{a, b\},\{a, d\},\{b, d\},\{a, b, c\}$, $\{a, b, d\}, X\}=\sigma$. Let f be identity function, then f is not c. $\nu g . c$.

Example 3: $X=Y=\{a, b, c, d\}: \tau=\{\phi,\{a\},\{b\},\{a, b\}, X\}$ and $\sigma=$ $\{\phi,\{a\},\{b\},\{a, b\},\{a, b, c\}, Y\}$. Let f be identity function, then f is c. $\nu g . c$; c.gpr.c; but not c.gr.c; c.rg.c; c.gs.c; c.sg.c; c.g.c; c.pg.c; c.gp.c; c.rpg.c.

Theorem 3.1:

(i) f is c. ν g.c. iff $f^{-1}(A) \in \nu G O(X)$ whenever A is closed in Y.
(ii)Let f be c.rg.c. and r-open, and $A \in \nu G O(X)$ then $f(A) \in \nu G C(Y)$.

Remark 1: Above theorem is false if r-open is removed from the statement as shown by:

Example 4: Let $X=Y=\Re$ and f be defined as $f(x)=1$ for all $x \in X$ then X is νg-open in X but $f(X)$ is not νg-closed in Y .

Remark 2: We have the following implication diagram for a function $f:(X, \tau) \rightarrow(Y, \sigma)$

Example 5: If f in Example 4 is defined as $f(\mathrm{a})=\mathrm{b} ; f(\mathrm{~b})=\mathrm{c} ; f(\mathrm{c})=\mathrm{a}$, then f is c. $\nu g . c$. but not c.g.c; c.rg.c; c.gr.c; c.rg $\alpha . c$. and c. $\nu . c$.

Example 6: Let $X=Y=\{a, b, c\} ; \tau=\{\phi,\{a\},\{b\},\{a, b\}, X\}$ and $\sigma=$ $\{\phi,\{b\},\{a, b\},\{b, c\}, Y\}$. Let f be defined as $f(\mathrm{a})=\mathrm{b} ; f(\mathrm{~b})=\mathrm{c} ; f(\mathrm{c})=\mathrm{a}$, then
f is c. νg.c. but not c.sg.c.
Example 7: Let $X=Y=\{a, b, c\} ; \tau=\{\phi,\{a\},\{b\},\{a, b\}, X\}$ and $\sigma=$ $\{\phi,\{a\},\{a, b\}, Y\}$. Let f be defined as $f(\mathrm{a})=\mathrm{c} ; f(\mathrm{~b})=\mathrm{a} ; f(\mathrm{c})=\mathrm{b}$. Then f is c.rg.c; c. $\nu g . . c$. but not c.c; c.r.c; and c. $\nu . . c$.
under usual topology on \Re both c.g.c and c.rg.c. are same.
under usual topology on \Re both c.sg.c. and c. $\nu g . c$. are same.
Theorem 3.2: (i) If f is νg-open and c. $\nu g . c$., then $f^{-1}(A) \in \nu G C(X)$ whenever $A \in \nu G O(Y)$.
(ii) If f is an r-open and c.rg.c. mapping, then $f^{-1}(A) \in \nu G C(X)$ whenever $A \in \nu G O(Y)$.

Theorem 3.3: Let $f_{i}: X_{i} \rightarrow Y_{i}$ be c. $\mathrm{\nu g.c}$. for $i=1$, 2. Let $f:$ $X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}$ be defined as follows: $f\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)$. Then $f: X_{1} \times X_{2} \rightarrow Y_{1} \times Y_{2}$ is c. $\nu g . c$.
Proof: Let $U_{1} \times U_{2} \subset Y_{1} \times Y_{2}$ where U_{i} be regular open in Y_{i} for $\mathrm{i}=1,2$. Then $f^{-1}\left(U_{1} \times U_{2}\right)=f_{1}^{-1}\left(U_{1}\right) \times f_{2}^{-1}\left(U_{2}\right)$. But $f_{1}^{-1}\left(U_{1}\right)$ and $f_{2}^{-1}\left(U_{2}\right)$ are νg-closed in X_{1} and X_{2} respectively and thus $f_{1}^{-1}\left(U_{1}\right) \times f_{2}^{-1}\left(U_{2}\right)$ is $\nu g-$ closed in $X_{1} \times X_{2}$. Now if U is any regular open set in $Y_{1} \times Y_{2}$, then $f^{-1}(U)=f^{-1}\left(\cup U_{i}\right)$ where $U_{i}=U_{1}^{i} \times U_{2}^{i}$. Then $f^{-1}(U)=\cup f^{-1}\left(U_{i}\right)$ which is νg-closed, since $f^{-1}\left(U_{i}\right)$ is $\nu g-$ closed by the above argument.

Theorem 3.4: Let $h: X \rightarrow X_{1} \times X_{2}$ be c. $\nu g . c$. , where $h(x)=\left(h_{1}(x), h_{2}(x)\right)$. Then $h_{i}: X \rightarrow X_{i}$ is c.pg.c. for $i=1$, 2 .
Proof: Let U_{1} is regular open in X_{1}. Then Let $U_{1} \times X_{2}$ is regular open in $X_{1} \times X_{2}$, and $h^{-1}\left(U_{1} \times X_{2}\right)$ is νg-closed in X. But $h_{1}^{-1}\left(U_{1}\right)=h^{-1}\left(U_{1} \times X_{2}\right)$, therefore $h_{1}: X \rightarrow X_{1}$ is c. $\nu g . c$. Similar argument gives $h_{2}: X \rightarrow X_{2}$ is c. $\nu g . c$. and thus $h_{i}: X \rightarrow X_{i}$ is c. $\nu g . c$. for $\mathrm{i}=1,2$.

In general we have the following extenstion of theorems 3.3 and 3.4:

Theorem 3.5: (i) If $f: X \rightarrow \Pi Y_{\lambda}$ is c. c g.c, then $P_{\lambda} \circ f: X \rightarrow Y_{\lambda}$ is c. $\nu \mathrm{g} . \mathrm{c}$ for each $\lambda \in \Lambda$, where P_{λ} is the projection of ΠY_{λ} onto Y_{λ}.
(ii) $f: \Pi X_{\lambda} \rightarrow \Pi Y_{\lambda}$ is c. $\nu g . c$, iff $f_{\lambda}: X_{\lambda} \rightarrow Y_{\lambda}$ is c. $\nu g . c$ for each $\lambda \in \Lambda$.

Note 3: Converse of Theorem 3.5 is not true in general, as shown by the following example.

Example 8: Let $X=X_{1}=X_{2}=[0,1]$. Let $f_{1}: X \rightarrow X_{1}$ be defined as follows: $f_{1}(x)=1$ if $0 \leq x \leq \frac{1}{2}$ and $f_{1}(x)=0$ if $\frac{1}{2}<x \leq 1$.
Let $f_{2}: X \rightarrow X_{2}$ be defined as follows: $f_{2}(x)=1$ if $0 \leq x<\frac{1}{2}$ and
$f_{2}(x)=0$ if $\frac{1}{2}<x<1$. Then $f_{i}: X \rightarrow X_{i}$ is clearly c. νg.c. for $\mathrm{i}=1$, 2., but $h(x)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right): X \rightarrow X_{1} \times X_{2}$ is not c. νg.c., for $S_{\frac{1}{2}}(1,0)$ is regular open in $X_{1} \times X_{2}$, but $h^{-1}\left(S_{\frac{1}{2}}(1,0)\right)=\left\{\frac{1}{2}\right\}$ which is not $\nu g-$ closed in X.

Remark 3:In general,
(i) The algebraic sum and product of two c. $\nu g . \mathrm{c}$. functions is not c. $\nu g . \mathrm{c}$. However the scalar multiple of a c. $\nu g . c$. function is c. $\nu g . c$.
(ii)The pointwise limit of a sequence of c. νg.c. functions is not c. νg.c. as shown by the following example.

Example 9: Let $X=X_{1}=X_{2}=[0,1]$. Let $f_{1}: X \rightarrow X_{1}$ and $f_{2}: X \rightarrow X_{2}$ are defined as follows: $f_{1}(x)=x$ if $0<x<\frac{1}{2}$ and $f_{1}(x)=0$ if $\frac{1}{2}<x<$ $1 ; f_{2}(x)=0$ if $0<x<\frac{1}{2}$ and $f_{2}(x)=1$ if $\frac{1}{2}<x<1$. Then their product is not c. $\nu g . \mathrm{c}$.

Example 10: Let $\mathrm{X}=\mathrm{Y}=[0,1]$. Let f_{n} is defined as follows: $f_{n}(x)=x_{n}$ for $n \geq 1$ then f is the limit of the sequence where $f(x)=0$ if $0 \leq x<1$ and $f(x)=1$ if $x=1$. Therefore f is not c. νg.c. For $\left(\frac{1}{2}, 1\right]$ is open in $\mathrm{Y}, f^{-1}\left(\left(\frac{1}{2}, 1\right]\right)$ $=(1)$ is not $\nu g-$ closed in X.

However we can prove the following theorem.
Theorem 3.6: Let $f_{n}:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$, be c.עg.c., for $n=1,2 \ldots$ and let $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ be the uniform limit of $\left\{f_{n}\right\}$, then $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is c. $\mathrm{\nu g} . \mathrm{c}$.

Problem: (i) Are $\sup \{f, g\}$ and $\inf \{f, g\}$ are c. νg.c. if f, g are c. νg.c. (ii) Is $C_{c . \nu g . c}(X, R)$, the set of all c. $\nu g . c$. functions, (1) a Group. (2) a Ring. (3) a Vector space. (4) a Lattice.
(iii) Suppose $f_{i}: X \rightarrow X_{i}(i=1,2)$ are c. νg.c. If $f: X \rightarrow X_{1} \times X_{2}$ defined by $f(x)=\left(f_{1}(x), f_{2}(x)\right)$, then f is c. $\nu g . c$.
Solution: No.

Note 4: In general c.gpr.c; c.gp.c; c.pg.c and c.g $\alpha . c$. are independent of c. $\nu g . c$. maps

Example 11: f as in Example 1 is c. $\nu g . c$, but not c.gpr.c.
Example 12: f as in Example 2 is c.gpr.c. but not c. $\nu g . c$.
Theorem 3.7: If f is νg-irresolute and g is c. $\nu g . c .[$ c.g.c; c.rg.c], then $g \circ f$ is c. $\boldsymbol{\nu g}$.c.

Theorem 3.8: If f is νg-irresolute, νg-open and $\nu G O(X)=\tau$ and g be any function, then $g \circ f$ is c. $\nu g . \mathrm{c}$ iff g is c. νg.c.
Proof:If part: Theorem 3.7
Only if part: Let A be closed in Z. Then $(g \circ f)^{-1}(A)$ is νg-open and hence open in X [by assumption]. Since f is νg-open $f(g \circ f)^{-1}(A)=g^{-1}(A)$ is νg-open in Y. Thus g is c. $\mathrm{\nu g}$.c.

Corollary 3.1: If f is νg-irresolute, νg-open and bijective, g is a function. Then g is c. νg.c. iff $g \circ f$ is c. $\nu g . c$.

Theorem 3.9: If $g: X \rightarrow X \times Y$, defined by $g(x)=(x, f(x)) \forall x \in X$ be the graph function of $f: X \rightarrow Y$. Then g is c. νg.c iff f is c. $\nu g . c$.
Proof: Let $V \in C(Y)$, then $X \times V \in C(X \times Y)$. Since g is c. νg.c., then $f^{-1}(V)=g^{-1}(X \times V) \in \nu G O(X)$. Thus, f is c. $\nu g . c$.
Conversely, let $x \in X$ and F be closed in $X \times Y$ containing $g(\mathrm{x})$. Then $F \cap(\{x\} \times Y)$ is closed in $\{x\} \times Y$ containing $g(\mathrm{x})$. Also $\{x\} \times Y$ is homeomorphic to Y. Hence $\{y \in Y:(x, y) \in F\}$ is closed in Y. Since f is c. $\nu g . c$. $\bigcup\left\{f^{-1}(y):(x, y) \in F\right\}$ is $\nu g-$ open in X. Further $x \in \bigcup\left\{f^{-1}(y):(x, y) \in F\right\} \subseteq$ $g^{-1}(F)$. Hence $g^{-1}(F)$ is νg-open. Thus g is c. νg.c.

Theorem 3.10: (i) If f is c.עg.c. and g is continuous then $g \circ f$ is c. $\mathrm{\nu g} . \mathrm{c}$. (ii) If f is c. $\nu g . c$. and g is nearly-continuous then $g \circ f$ is c. $\mathrm{\nu g}$.c.
(iii)If f and g are c.rg.c. then $g \circ f$ is $\nu g . c$
(iv) If f is c.vg.c. and g is c.rg.c., then gof is semi-continuous and β-continuous.

Remark 4:In general, composition of two c. $\nu g . c$. functions is not c. νg.c. However we have the following example:

Example 13: Let $\mathrm{X}=\mathrm{Y}=\mathrm{Z}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ and $\tau=\wp(X) ; \sigma=\{\phi,\{a\},\{b, c\}, Y\}$, and $\eta=\{\phi,\{a\},\{b\},\{a, b\}, Z\}$. Let f and g be identity maps which are c. $\nu g . c$., then $g \circ f$ is c. $\nu g . c$.

Theorem 3.11: Let X, Y, Z be spaces and every νg-closed set be open $[r$ open] in Y, then the composition of two c. ν g.c. maps is c. ν g.c.

Theorem 3.12: (i) If f is c.עg.c.[c.rg.c.] g is g-continuous[rg-continuous] and Y is $T_{\frac{1}{2}}\left[r T_{\frac{1}{2}}\right]$ space, then $g \circ f$ is c. $\mathrm{\nu g.c}$.
(ii) If f is c. $\nu . c .[c . r . c],$.$g is continuous[r-continuous], then g \circ f$ is c.vg.c.
(iii)If f is c. $\nu . c .[c . r . c],$.$g is g$-continuous $\{r g-c o n t i n u o u s\}$ and Y is $T_{\frac{1}{2}}\left\{r T_{\frac{1}{2}}\right\}$, then $g \circ f$ is c. $\nu g . c$.

Theorem 3.13: (i) If $R \alpha C(X)=R C(X)$ then f is c.ra.c. iff f is c.rg.c. (ii) If $R \alpha C(X)=\nu g C(X)$ then f is c.ra.c. iff f is c. $\mathrm{\nu g}$.c.
(iii)If $\nu g C(X)=R C(X)$ then f is c.ra.c. iff f is c. $\nu g . c$.
(iv) If $\nu g C(X)=\alpha C(X)$ then f is c. $\alpha . c$. iff f is c. $\nu g . c$.
(v) If $\nu g C(X)=S C(X)$ then f is c.sg.c. iff f is c. $\nu g . c$.
(vi) If $\nu g C(X)=\beta C(X)$ then f is c. β g.c. iff f is c. $\nu g . c$.

Example 14: $X=Y=\{a, b, c\} ; \tau=\{\phi,\{a\},\{b\},\{a, b\}, X\}$ and $\sigma=$ $\{\phi,\{a\},\{b, c\}, Y\}$. Let f be identity function, then f is c. $\nu g . c$; c.sg.c. but not c.rg.c

Note 5: Pasting Lemma is not true with respect to c. νg.c. functions. However we have the following weaker versions.

Theorem 3.14: Let X and Y be such that $X=A \cup B$. Let $f_{/ A}: A \rightarrow Y$ and $g_{/ B}: B \rightarrow Y$ are c.rg.c. such that $f(x)=g(x) \forall x \in A \cap B$. Suppose A and B are r-closed sets in X and $R C(X)$ is closed under finite unions, then the combination $\alpha: X \rightarrow Y$ is c. $\mathrm{\nu g}$.c.

Theorem 3.15: Pasting Lemma Let X and Y be such that $X=A \cup B$. Let $f_{/ A}: A \rightarrow Y$ and $g_{/ B}: B \rightarrow Y$ are c.vg.c. such that $f(x)=g(x) \forall x \in A \cap B$. Suppose A, B are r-closed sets in X and $\nu g C(X)$ is closed under finite unions, then the combination $\alpha: X \rightarrow Y$ is c. $\mathrm{\nu g.c}$.
Proof: Let F be open set in Y, then $\alpha^{-1}(F)=f^{-1}(F) \cup g^{-1}(F)$ where $f^{-1}(F)$ is νg-closed in A and $g^{-1}(F)$ is νg-closed in $\mathrm{B} \Rightarrow f^{-1}(F)$ and $g^{-1}(F)$ are νg-closed in $\mathrm{X} \Rightarrow f^{-1}(F) \cup g^{-1}(F)$ is νg-closed in $\mathrm{X}[$ by assumption $] \Rightarrow \alpha^{-1}(F)$ is νg-closed in X . Hence α is c. νg.c.

Theorem 3.16: The following are equivalent:
(i) f is c. ν g.c.
(ii) $\forall x \in X$ and each $V \in C(Y, f(x)), \exists U \in \nu G O(X, x)$ and $f(U) \subset V$.
(iii) $f^{-1}(V)$ is νg-open in X whenever V is closed in Y.

Definition 3.2: A function f is said to be
(i) strongly νg-continuous if the inverse image of every set is νg-clopen.
(ii) perfectly νg-continuous if the inverse image of every open set is νg-clopen.
(iii) $\mathrm{M}-\nu g$-open if the image of each νg-open set of X is νg-open in Y .

Theorem 3.17:

(i) Everly strongly $\nu g . c$ function is c. $\nu g . c$. and $\nu g . c$.
(ii) Everly perfectly $\nu g . c$ function is c. $\nu g . c$. and $\nu g . c$.
(iii) Everly strongly $\nu g . c$ function is perfectly $\nu g . c$.

Theorem 3.18: The following statements are equivalent for a function f :
(1) f is c. $\nu g . c$. ;
(2) $f^{-1}(F) \in \nu G O(X)$ for every $F \in C(Y)$;
(3) for each $x \in X$ and each $F \in C(Y, f(x)), \exists U \in \nu G O(X, x) \ni f(U) \subset F$;
(4) for each $x \in X$ and $V \in \sigma(Y)$ non-containing $f(x), \exists K \in \nu G C(X)$ noncontaining $x \ni f^{-1}(V) \subset K$;
(5) $f^{-1}\left((\bar{G})^{o}\right) \in \nu G C(X)$ for every open subset G of Y;
(6) $f^{-1}\left(\overline{F^{o}}\right) \in \nu G O(X)$ for every closed subset F of Y.

Proof: $(1) \Leftrightarrow(2)$: Let $F \in C(Y)$. Then $Y-F \in R O(Y)$. By (1), $f^{-1}(Y-F)=$ $X-f^{-1}(F) \in \nu G C(X)$. We have $f^{-1}(F) \in \nu G O(X)$. Reverse can be obtained similarly.
$(2) \Rightarrow(3)$: Let $F \in C(Y, f(x))$. By $(2), f^{-1}(F) \in \nu G O(X)$ and $x \in f^{-1}(F)$. Take $U=f^{-1}(F)$. Then $f(U) \subset F$.
$(3) \Rightarrow(2):$ Let $F \in C(Y)$ and $x \in f^{-1}(F)$. From (3), $\exists U_{x} \in \nu G O(X, x) \ni$ $U_{x} \subset f^{-1}(F)$. We have $f^{-1}(F)=\bigcup_{x \in f^{-1}(F)} U_{x}$. Thus $f^{-1}(F)$ is νg-open.
(3) $\Leftrightarrow(4)$: Let $V \in \sigma(Y)$ not containing $f(\mathrm{x})$. Then, $Y-V \in C(Y, f(x))$. By (3), $\exists U \in \nu G O(X, x) \ni f(U) \subset Y-V$. Hence, $U \subset f^{-1}(Y-V) \subset X-f^{-1}(V)$ and then $f^{-1}(V) \subset X-U$. Take $H=X-U$, then $H \in \nu G C(X)$ noncontaining x . The converse can be shown easily.
$(1) \Leftrightarrow(5):$ Let $G \in \sigma(Y)$. Since $(\bar{G})^{o} \in \sigma(Y)$, by $(1), f^{-1}\left((\bar{G})^{o}\right) \in \nu G C(X)$. The converse can be shown easily.
$(2) \Leftrightarrow(6)$: It can be obtained smilar as $(1) \Leftrightarrow(5)$.
Example 15: Let $X=\{a, b, c\}, \tau=\{\phi,\{a\},\{b\},\{a, b\},\{a, c\}, X\}$ and $\sigma=$ $\{\phi,\{b\},\{c\},\{b, c\}, X\}$. Then the identity function $f: X \rightarrow X$ is c. $\nu g . c$. But it is not regular set-connected.

Theorem 3.19: If f is c.vg.c. and $A \in R O(X)[$ resp: $R C(X)]$, then $f_{\mid A}: A \rightarrow Y$ is c. ν g.c.
Proof: Let $V \in \sigma(Y) \Rightarrow f_{/ A}^{-1}(V)=f^{-1}(V) \cap A \in \nu G C(A)$. Hence $f_{/ A}$ is c. $\nu g . c$.
Remark 5: Every restriction of an c. νg.c. function is not necessarily c. $. \nu \mathrm{g} . \mathrm{c}$.

Theorem 3.20: Let f be a function and $\Sigma=\left\{U_{\alpha}: \alpha \in I\right\}$ be a νg-cover of X. If for each $\alpha \in I, f_{\mid U_{\alpha}}$ is c.vg.c., then f is an c.vg.c. function.

Proof: Let $F \in C(Y)$. $f_{\mid U_{\alpha}}$ is c. νg.c. for each $\alpha \in I, f_{\mid U_{\alpha}}^{-1}(F) \in \nu g O_{\mid U_{\alpha}}$. Since $U_{\alpha} \in \nu G O(X), f_{\mid U_{\alpha}}^{-1}(F) \in \nu G O(X)$ for each $\alpha \in I$. Then $f^{-1}(F)=$ $\bigcup_{\alpha \in I} f_{\mid U_{\alpha}}^{-1}(F) \in \nu G O(X)$. This gives f is an c. νg.c.

Theorem 3.21: If f and g are functions. Then, the following properties hold:
(1) If f is c. $\nu g . c$. and g is regular set-connected, then $g \circ f$ is c. $\nu g . c$. and $\nu g . c$.
(2) If f is c. $\nu g . c$. and g is perfectly continuous, then $g \circ f$ is $\nu g . c$. and c. $\nu g . c$.

Proof: (1) Let $V \in \eta(Z)$. Since g is regular set-connected, $g^{-1}(V)$ is clopen. Since f is c. $\nu g . c ., f^{-1}\left(g^{-1}(V)\right)=(g \circ f)^{-1}(V)$ is νg-open and νg-closed. Therefore, $g \circ f$ is c. νg.c. and νg.c.
(2) can be obtained similarly.

Theorem 3.22: If f is a surjective $M-\nu g$-open[resp: $M-\nu g$-closed] and g is a function such that $g \circ f$ is c. νg.c., then g is $\nu g . c$.

Theorem 3.23: If f is c. $\nu g . c$., then for each point $x \in X$ and each filter base Λ in $X \nu g$-converging to x, the filter base $f(\Lambda)$ is rc-convergent to $f(x)$.

Theorem 3.24: Let f be a function and $x \in X$. If there exists $U \in$ $\nu G O(X, x)$ and $f_{\mid U}$ is c. ν g.c. at x, then f is c. $\nu g . c$. at x.
Proof: If $F \in C(Y, f(x))$. Since $f_{\mid U}$ is c. $\nu g . c$. at x, there exists $V \in \nu G O(U, x) \ni$ $f(V)=\left(f_{\mid U}\right)(V) \subset F$. Since $U \in \nu G O(X, x), V \in \nu G O(X, x)$. Hencef is c. $\nu g . c$. at x .

Lemma 3.1:

(i) If V is an open set, then $s C l_{\theta}(V)=s C l(V)$.
(ii)If V is an regular-open set, then $\operatorname{sCl}(V)=\operatorname{Int}(C l(V)$.

Lemma 3.2: For $V \subset Y, \sigma)$, the following properties hold:
(1) $\alpha \bar{V}=\bar{V}$ for every $V \in \beta O(Y)$,
(2) $\nu \bar{V}=\bar{V}$ for every $V \in S O(Y)$,
(3) $s \bar{V}=(\bar{V})^{o}$ for every $V \in R O(Y)$.

Theorem 3.25: For a function f, the following properties are equivalent: (1) f is ($\nu g, s$)-continuous;
(2) f is c.vg.c.;
(3) $f^{-1}(V)$ is νg-open in X for each θ-semi-open set V of Y;
(4) $f^{-1}(F)$ is νg-closed in X for each θ-semi-closed set F of Y.

Proof: $(1) \Rightarrow(2)$: Let $F \in R C(Y)$ and $x \in f^{-1}(F)$. Then $f(x) \in F$ and F is semi-open. Since f is $(\nu g$, s)-continuous, $\exists U \in \nu G O(X, x) \ni f(U) \subset \bar{F}=F$.

Hence $x \in U \subset f^{-1}(F)$ which implies that $x \in \nu g\left(f^{-1}(F)\right)^{0}$. Therefore, $f^{-1}(F) \subset \nu g\left(f^{-1}(F)\right)^{0}$ and hence $f^{-1}(F)=\nu g\left(f^{-1}(F)\right)^{0}$. This shows that $f^{-1}(F) \in \nu G O(X)$. It follows that f is c. νg.c.
$(2) \Rightarrow(3)$: Follows from the fact that every θ-semi-open set is the union of regular closed sets.
$(3) \Leftrightarrow(4)$: This is obvious.
(4) \Rightarrow (1): Let $x \in X$ and $V \in S O(Y, f(x))$. Since \bar{V} is closed, it is θ-semiopen. Now, put $U=f^{-1}(\bar{V})$. Then $U \in \nu G O(X, x)$ and $f(U) \subset \bar{V}$. Hence f is ($\nu g, \mathrm{~s}$)-continuous.

Theorem 3.26: For a function f, the following properties are equivalent: (1) f is c. ν g.c.;
(2) $f^{-1}(\bar{V})$ is νg-open in X for every $V \in \beta O(Y)$;
(3) $f^{-1}(\bar{V})$ is νg-open in X for every $V \in S O(Y)$;
(4) $f^{-1}\left((\bar{V})^{o}\right)$ is νg-closed in X for every $V \in R O(Y)$.

Proof: $(1) \Rightarrow(2)$: Let $V \in \beta \mathrm{O}(\mathrm{Y})$. By Theorem 2.4 of [3] \bar{V} is closed and by Theorem $3.18 f^{-1}(\bar{V}) \in \nu G O(X)$.
$(2) \Rightarrow(3)$: This is obvious since $S O(Y) \subset \beta O(Y)$.
(3) \Rightarrow (4): Let $V \in R O(Y) \Rightarrow Y-(\bar{V})^{o}$ is closed and hence it is semi-open. Then $\left.X-f^{-1}\left((\bar{V})^{o}\right)=f^{-1}\left(Y-(\bar{V})^{o}\right)=f^{-1}(\overline{(Y-(\bar{V})})^{o}\right) \in \nu G O(X)$. Hence $f^{-1}\left((\bar{V})^{o}\right) \in \nu G C(X)$.

$$
(4) \Rightarrow(1) \text { : Let } V \in R O(Y) \text {. Then } f^{-1}(V)=f^{-1}\left((\bar{V})^{o}\right) \in \nu G C(X) \text {. }
$$

Corollary 3.2: For a function f, the following properties are equivalent:
(1) f is c. ν g.c.;
(2) $f^{-1}(\alpha \bar{V})$ is $\nu g-$ open in X for every $V \in \beta O(Y)$;
(3) $f^{-1}(\nu \bar{V})$ is νg-open in X for every $V \in S O(Y)$;
(4) $f^{-1}(s \bar{V})$ is νg-closed in X for every $V \in R O(Y)$.

Proof: This is an immediate consequence of Theorem 3.26 and Lemma 3.2.
$\quad \begin{aligned} & \text { The } \nu g \text {-frontier of } A \subset X \text {; is defined by } \nu g F r(A)=\nu g \overline{(A)}-\nu g \overline{(X-A)}= \\ & \nu g(A)-\nu g(A)^{0} .\end{aligned}$
Theorem 3.27: $\{x \in X: f: X \rightarrow Y$ is not c. $\mathrm{\nu g} . \mathrm{c}$.$\} is identical with the$ union of the νg-frontier of the inverse images of closed sets of Y containing $f(x)$.

Proof: If f is not c. ν g.c. at $x \in X$. By Theorem 3.18, \exists a closed set $F \in C(Y, f(x) \ni f(U) \cap(Y-F) \neq \phi$ for every $U \in \nu G O(X, x)$. Then $x \in \nu g\left(f^{-1}(Y-F)\right)=\nu g\left(X-f^{-1}(F)\right)$. On the other hand, we get $x \in$ $f^{-1}(F) \subset \nu g \overline{\left(f^{-1}(F)\right)}$ and hence $x \in \nu g F r\left(f^{-1}(F)\right)$.
Conversely, If f is c. $\nu g . \mathrm{c}$. at x and let $F \in C(Y, f(x))$. By Theorem 3.18, there exists $U \in \nu G O(X, x) \ni x \in U \subset f^{-1}(F)$. Therefore, $x \in \nu g\left(f^{-1}(F)\right)^{o}$. This contradicts that $x \in \nu g F r\left(f^{-1}(F)\right)$. Thus f is not c. νg.c.

$\S 4$ Contra νg-Irresolute Maps

Definition 4.1: A function f is said to be contra νg-irresolute if the inverse image of every νg-open set is νg-closed.

Example 16:

(i) Let $X=Y=\{a, b, c\} ; \tau=\{\phi,\{a\},\{b\},\{a, b\}, X\}=\sigma$. Let f be identity map. Then f is contra νg-irresolute, contra rg-irresolute, contra grirresolute, contra sg-irresolute, contra gs-irresolute, contra g-irresolute, and contra r α-irresolute but not contra-irresolute, contra r-irresolute, contra preirresolute, contra α-irresolute and contra β-irresolute.
(ii) The identity map f in Example 7 is contra νg-irresolute, contra r-irresolute but not contra rg-irresolute, contra gr-irresolute, contra sg-irresolute, contra gs-irresolute, contra g-irresolute, contra continuous, contra-irresolute, contra pre-irresolute, contra α-irresolute, contra β-irresolute, and contra α-irresolute.

Example 17: Let $X=Y=\{a, b, c, d\} ; \tau=\{\phi,\{a\},\{b\},\{a, b\},\{a, b, c\}, X\}=$ σ. Let f be defined as $f(\mathrm{a})=f(\mathrm{~b})=f(\mathrm{c})=\mathrm{d}, f(\mathrm{~d})=\mathrm{a}$. Then f is contra νg-irresolute and νg-irresolute.

Theorem 4.1: (i) Let f be c.rg.c. and r-open, then fis contra νg-irresolute. (ii) f is contra νg-irresolute iff inverse image of every νg-closed set is νg-open.

Theorem 4.2: If f; g are contra νg-irresolute, then $g \circ f$ is νg-irresolute.

Remark 6: We have the following implication diagram for a function $f: X \rightarrow Y$

Example 18: The identity map f in Example 1 is contra νg-irresolute, contra-irresolute but not contra rg α-irresolute, contra rg-irresolute, contra grirresolute, contra sg-irresolute, contra gs-irresolute, contra g-irresolute, contra r-irresolute.

Theorem 4.3: If f is contra νg-irresolute and
(i) g is r-irresolute, then $g \circ f$ is contra νg-irresolute.
(ii)g is contra r-irresolute, then $g \circ f$ is νg-irresolute.

Note 6: contra νg-irresolute and c. $\nu g . c$. ; contra g α-irresolute; contra pgirresolute; contra gp-irresolute maps are independent to each other

Theorem 4.4: (i) If $R \alpha C(X)=R C(X)$ and $R \alpha C(Y)=R C(Y)$, then f is contra r α-irresolute iff f is contra r-irresolute.
(ii) If $R \alpha C(X)=\nu g C(X)$ and $R \alpha C(Y)=\nu g C(Y)$, then f is contra $r \alpha$-irresolute iff f is contra νg-irresolute.
(iii) If $\nu g C(X)=R C(X)$ and $\nu g C(Y)=R C(Y)$, then f is contra r-irresolute iff f is contra νg-irresolute.
(iv) If $\nu g C(X)=\alpha C(X)$ and $\nu g C(Y)=\alpha C(Y)$, then f is contra α-irresolute iff f is contra νg-irresolute.

Theorem 4.5: Pasting Lemma Let X and Y be spaces such that $X=$ $A \cup B$ and let $f_{/ A}: A \rightarrow Y$ and $g_{/ B}: B \rightarrow Y$ are contra νg-irresolute maps such that $f(x)=g(x) \forall x \in A \cap B$. Suppose A, B are r-open sets in X and $\nu g C(X)$ is closed under finite unions, then the combination $\alpha: X \rightarrow Y$ is contra νg-irresolute.

Theorem 4.6: (i) If f is contra νg-irresolute and g is $\nu g . c .[r g . c],. ~ t h e n ~$ $g \circ f$ is c. $\mathrm{\nu g} . c$.
(ii)If f is contra νg-irresolute and g is c. $\nu g . c .[c . r g . c] ~ t h e n ~. g \circ f$ is $\nu g . c$.

Theorem 4.7: If $\nu G O(Y, \sigma)=\sigma$ in Y, then f is contra νg-irresolute iff f is c. $\mathrm{\nu g}$.c.

Theorem 4.8: If $\nu G O(X, \tau)=\tau ; \nu G O(Y, \sigma)=\sigma$, then the following are equivalent:
(i) f is c.g.c (ii) fis c. $\mathrm{\nu g} . \mathrm{c}$. (iii)f is contra νg-irresolute.

Theorem 4.9: The set of all contra νg-irresolute mappings do not form a group under the operation usual composition of mappings.

Theorem 4.10: If f is contra νg-irresolute then for every subset A of $X, f(\nu g \overline{(A)}) \subset \nu g \overline{(f(A))}$.
Proof: Let $A \subseteq X$ and consider $\nu g \overline{(f(A))}$ which is νg-closed in Y, then $f^{-1}\left(\nu g(\overline{f(A))})\right.$ is νg-open in X, by theorem 4.1(ii). Furthermore $A \subseteq f^{-1}(f(A)) \subseteq$ $f^{-1}(\nu g \overline{(f(A))})$ and $\nu g \overline{(A)} \subseteq f^{-1}(\nu g \overline{(f(A))})$, we have $f(\nu g \overline{(A)}) \subseteq f\left(f^{-1}(\nu g \overline{(f(A))})\right)$ $=(\nu g(f(A))) \cap f(Y)) \subseteq \nu g \overline{(f(A))})$. Hence $f(\nu g \overline{(A)} \subseteq \nu g \overline{(f(A)}$.

Theorem 4.11: If f is contra νg-irresolute then for every subset A of $Y, \nu g\left(\overline{f^{-1}(\nu g \overline{(A)})}\right) \subset f^{-1}(\nu g \overline{(A)})$.

$\S 5$ The Preservation Theorems and Some Other Properties

Theorem 5.1: If fis c. ν g.c.[resp: c.r.c] surjection and X is νg-compact, then Y is closed compact.
Proof: Let $\left\{G_{i}: i \in I\right\}$ be any closed cover for Y. For G_{i} is closed in Y and f is c. νg. c., $f^{-1}\left(G_{i}\right)$ is νg-open in X . Thus $\left\{f^{-1}\left(G_{i}\right)\right\}$ forms a νg-open cover for X and hence have a finite subcover, since X is νg-compact. Since f is surjection, $Y=f(X)=\bigcup_{i=1}^{n} G_{i}$. Therefore Y is closed compact.

Theorem 5.2: If f is a r-irresolute and continuous surjection and X is mildly compact (resp. mildly countably compact, mildly Lindelof), then Y is nearly compact (resp. nearly countably compact, nearly Lindelof) and S-closed (resp. countably S-closed, S-Lindelof).
Proof: Let $V \in C(Y)$. Since f is r-irresolute and continuous, $f^{-1}(V)$ is regular-open and closed in X and hence $f^{-1}(V)$ is clopen. Let $\left\{V_{\alpha}: \alpha \in I\right\}$ be any closed (respectively open) cover of Y. Then $\left\{f^{-1}\left(V_{\alpha}: \alpha \in I\right\}\right.$ is a clopen cover of X and since X is mildly compact, \exists a finite subset I_{0} of I such that $X=\bigcup\left\{f^{-1}\left(V_{\alpha}: \alpha \in I_{0}\right\}\right.$. Since f is surjective, we get $Y=\bigcup\left\{V_{\alpha}: \alpha \in I_{0}\right\}$. Hence Y is S -closed (respectively nearly compact). The other proofs can be obtained similarly.

Theorem 5.3:If f is c. $\nu g . c .[c . r g . c],. ~ s u r j e c t i o n . ~ T h e n ~ t h e ~ f o l l o w i n g ~ s t a t e-~$ ments hold:
(i) If X is locally νg-compact, then Y is locally closed compact[locally nearly closed compact; locally mildly compact.]
(ii) If X is νg-Lindeloff[locally νg-lindeloff], then Y is closed Lindeloff[resp: locally closed Lindeloff; nearly closed Lindeloff; locally nearly closed Lindeloff; locally mildly lindeloff].
(iii)If X is ν-compact[countably νg-compact], then Y is S-closed[countably S-closed].
(iv) If X is νg-Lindelof, then Y is S-Lindelof[nearly Lindelof].
(v) If X is νg-closed[countably νg-closed], then Y is nearly compact[nearly countably compact].
(vi) X is νg-compact[νg-lindeloff], then Y is nearly closed compact; mildly closed compact[mildly closed lindeloff].

Theorem 5.4: If f is c.עg.c.[contra νg-irreolute] surjection and X is νg-connected, then Y is connected[νg-connected]
Proof: If Y is disconnected. Then $\mathrm{Y}=V_{1} \cup V_{2}$, where V_{1} and V_{2} are clopen in Y. Since f is c. νg.c., $f^{-1}\left(V_{1}\right)$ and $f^{-1}\left(V_{2}\right)$ are disjoint νg-open sets in X and $X=f^{-1}\left(V_{1}\right) \cup f^{-1}\left(V_{2}\right)$, which is a contradiction for νg-connectedness of X. Hence, Y is connected.

Corollary 5.1: The inverse image of a disconnected[ν g-disconnected] space under a c. $\nu g . c .,[c o n t r a \nu g$-irreolute] surjection is νg-disconnected.

Theorem 5.5:If f is c. ν g.c., injection and
(i) Y is $U T_{i}$, then X is $\nu g-T_{i} i=0,1,2$.
(ii) Y is $U R_{i}$, then X is $\nu g-R_{i} i=0$, 1 .
(iii) Y is $U C_{i}\left[\right.$ resp : $\left.U D_{i}\right]$ then X is $\nu g-T_{i}\left[\right.$ resp: $\left.\nu g-D_{i}\right], i=0$, 1, 2 .
(iv)If f is closed and Y is $U T_{i}$, then X is $\nu g-T_{i}, i=3,4$.

Theorem 5.6: If f is c.vg.c.[resp: c.rg.c] and Y is $U T_{2}$, then the graph $G(f)$ of f is νg-closed in the product space $X \times Y$.
Proof: Let $(x, y) \notin G(f) \Rightarrow y \neq f(x) \Rightarrow \exists$ disjoint clopen sets V and W $\ni f(x) \in V$ and $\mathrm{y} \in W$. Since f is c. $\nu g . c ., \exists U \in \nu G O(X) \ni x \in U$ and $f(U) \subset W$. Therefore $(x, y) \in U \times V \subset X \times Y-G(f)$. Hence $G(f)$ is νg-closed in $X \times Y$.

Theorem 5.7: If fis c. $\nu g . c .[c . r g . c]$ and Y is $U T_{2}$, then $A=\left\{\left(x_{1}, x_{2}\right) \mid f\left(x_{1}\right)=\right.$ $\left.f\left(x_{2}\right)\right\}$ is νg-closed in the product space $X \times X$.
Proof:If $\left(x_{1}, x_{2}\right) \in X \times X-A$, then $f\left(x_{1}\right) \neq f\left(x_{2}\right) \Rightarrow \exists$ disjoint $V_{j} \in C O(\sigma) \ni$
$f\left(x_{j}\right) \in V_{j}$, and since f is c. $\nu g . c ., f^{-1}\left(V_{j}\right) \in \nu G O\left(X, x_{j}\right)$ for each $\mathrm{j}=1,2$. Thus $\left(x_{1}, x_{2}\right) \in f^{-1}\left(V_{1}\right) \times f^{-1}\left(V_{2}\right) \in \nu G O(X \times X)$ and $f^{-1}\left(V_{1}\right) \times f^{-1}\left(V_{2}\right) \subset X \times X-A$. Hence A is νg-closed.

Theorem 5.8: If fis c.r.c. $\{$ c.c. $\} ; g: X \rightarrow Y$ is c. $\boldsymbol{\nu g . c}$; and Y is $U T_{2}$, then $E=\{x \in X: f(x)=g(x)\}$ is $\nu g-$ closed[and hence semi-closed and β-closed] in X.

Theorem 5.9: If f is c. $\nu g . c$. injection and Y is weakly Hausdorff, then X is $\nu g-T_{1}$.
Proof: Suppose that Y is weakly Hausdorff. For any $x \neq y \in X, \exists V, W \in$ $R C(Y) \ni f(x) \in V, f(y) \notin V, f(x) \notin W$ and $f(y) \in W$. Since f is c. $\nu g . c ., f^{-1}(V)$ and $f^{-1}(W)$ are νg-open subsets of X such that $x \in f^{-1}(V), y \notin f^{-1}(V), x \notin$ $f^{-1}(W)$ and $y \in f^{-1}(W)$. This shows that X is $\nu g-T_{1}$.

Theorem 5.10: If X is νg-ultra-connected and f is c. $\nu g . c$., and surjective, then Y is hyperconnected.
Proof: If Y is not hyperconnected, $\exists V \in \sigma(Y) \ni \mathrm{V}$ is not dense in Y . Then $Y=B_{1} \cup B_{2} ; B_{1} \cap B_{2}=\phi$. Since f is c. $\nu g . c$. and onto, $A_{1}=f^{-1}\left(B_{1}\right)$ and $A_{2}=f^{-1}\left(B_{2}\right)$ are disjoint non-empty νg-closed subsets of X. By assumption, the νg-ultra-connectedness of X implies that A_{1} and A_{2} must intersect, which is a contradiction. Therefore Y is hyperconnected.

Theorem 5.11: If for each $x_{1} \neq x_{2}$ in a space X there exists a function f of X into a Urysohn space Y such that $f\left(x_{1}\right) \neq f\left(x_{2}\right)$ and f is c. ν g.c., at x_{1} and x_{2}, then X is $\nu g-T_{2}$.
Proof: Let $x_{1} \neq x_{2}$. By the hypothesis \exists a function f which satisfies the condition of this theorem. Since Y is Urysohn and $f\left(x_{1}\right) \neq f\left(x_{2}\right)$, there exist open sets V_{1} and V_{2} containing $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$, respectively, such that $\overline{V_{1}} \cap \overline{V_{2}}=\phi$. Since f is c. $\nu g . \mathrm{c}$., at $x_{i}, \exists U_{i} \in \nu G O\left(X, x_{i}\right) \ni f\left(U_{i}\right) \subset \overline{V_{i}}$ for $\mathrm{i}=1,2$. Hence $U_{1} \cap U_{2}=\phi$. Therefore, X is $\nu g-T_{2}$.

Corollary 5.2: If f is an c.vg.c. injection and Y is Urysohn, then X is $\nu g-T_{2}$.

$\S 6 \nu g$-Regular Graphs:

Recall that for a function f, the subset $\{(x, f(x)): x \in X\} \subset X \times Y$ is called the graph of f and is denoted by $G(f)$.

Definition 6.1: A graph $G(f)$ of a function f is said to be νg-regular if for each $(x, y) \in(X \times Y)-G(f), \exists U \in \nu G C(X, x)$ and $V \in R O(Y, y) \ni$
$(U \times V) \cap G(f)=\phi$.

Lemma 6.1: The following properties are equivalent for a graph $G(f)$ of a function:
(1) $G(f)$ is νg-regular;
(2) for each point $(x, y) \in(X \times Y)-G(f), \exists U \in \nu G C(X, x)$ and $V \in$ $R O(Y, y) \ni f(U) \cap V=\phi$.
Proof: It is an immediate consequence of definition of νg-regular graph and the fact that for any subsets $A \subset X$ and $B \subset Y,(A \times B) \cap G(f)=\phi$ iff $f(A) \cap B=\phi$.

Theorem 6.2: If f is $c . \nu g . c .$, and Y is T_{2}, then $G(f)$ is νg-regular graph in $X \times Y$.
Proof: Assume Y is T_{2}. Let $(x, y) \in(X \times Y)-G(f)$. It follows that $f(x) \neq y$. Since Y is T_{2}, there exist disjoint open sets V and W containing $f(\mathrm{x})$ and y, respectively. We have $\left((\bar{V})^{o}\right) \cap\left((\bar{W})^{o}\right)=\phi$. Since f is c. $\nu g . c ., f^{-1}\left((\bar{V})^{o}\right)$ is νg-closed in X containing x. Take $U=f^{-1}\left((\bar{V})^{o}\right)$. Then $f(U) \subset\left((\bar{V})^{o}\right)$. Therefore, $f(U) \cap\left((W)^{o}\right)=\phi$ and $G(f)$ is $\nu g-$ regular in $X \times Y$.

Theorem 6.3: Let f have a νg-regular graph $G(f)$. If f is injective, then X is $\nu g-T_{1}$.
Proof: Let $x \neq y \in X$. Then, we have $(x, f(y)) \in(X \times Y)-G(f)$. By definition 6.1, $\exists U \in \nu G C(X)$ and $V \in R O(Y) \ni(x, f(y)) \in U \times V$ and $f(U) \cap V=\phi$; hence $U \cap f^{-1}(V)=\phi$. Therefore, we have $y \notin U$. Thus, $y \in X-U$ and $x \notin X-U$. We obtain that $X-U \in \nu G O(X)$. This implies that X is $\nu g-T_{1}$.

Theorem 6.4: Let f have a νg-regular graph $G(f)$. If f is surjective, then Y is weakly T_{2}.
Proof: Let $y_{1} \neq y_{2} \in Y$. Since f is surjective $f(x)=y_{1}$ for some $x \in X$ and $\left(x, y_{2}\right) \in(X \times Y)-G(f)$. By definition 6.1, $\exists U \in \nu G C(X)$ and $F \in R O(Y) \ni$ $\left(x, y_{2}\right) \in U \times F$ and $f(U) \cap F=\phi$; hence $y_{1} \notin F$. Then $y_{2} \notin Y-F \in R C(Y)$ and $y_{1} \in Y-F$. This implies that Y is weakly T_{2}.

Example 19: Let $X=\{a, b, c\}, \tau=\{\phi,\{a, b\}, X\}$ and $\sigma=\{\phi,\{a\},\{b, c\}, X\}$. Then, the identity function f is contra- νg-continuous but it is not weakly continuous.

Corollary 6.1:

(i) If f is $M-\nu g$-open and c. $\mathrm{\nu g} . c$., then f is al. $\mathrm{\nu g.c}$.
(ii)If f is c. $\nu g . c$. and Y is almost regular, then f is al. $\nu g . c$.

Definition 6.2:. A function f is said to be faintly νg-continuous if for each $x \in X$ and each θ-open set V of Y containing $f(\mathrm{x})$, there exists $U \in \nu G O(X, x) \ni f(U) \subset V$.

Theorem 6.5: Let Y be E.D. Then, fis c. $\mathrm{\nu g}$.c. iff it is $\nu g . c$.
Proof: Necessity. Let $x \in X$ and $V \in \sigma(Y, f(x))$. Since Y is E.D., V is clopen and hence V is closed. By Theorem 3.18, $\exists U \in \nu G O(X, x) \ni f(U) \subset V$. Therefore f is νg-continuous.
Sufficiency. Let F be any closed set in Y. Since Y is E.D., F is also open and $f^{-1}(F) \in \nu G O(X)$. Hence f is c. $\nu g . c$.

$\S 7$ Contra- $\nu g-$ Closed Graphs

Definition 7.1: A function f is said to have a contra- νg-closed graph if for each $(x, y) \in(X \times Y)-G(f)$ there exists $U \in \nu G O(X, x)$ and a closed set V of Y containing y such that $(U \times V) \cap G(f)=\phi$.

Lemma 7.1: f has a contra- ν - closed graph iff for each $(x, y) \in(X \times$ $Y)-G(f) \exists U \in \nu G O(X, x)$ and $V \in C(Y, y) \ni f(U) \cap V=\phi$.

Theorem 7.1: If fis c. ν g.c., and Y is C_{2}, then $G(f)$ is contra- νg-closed. Proof: Suppose that $(x, y) \in(X \times Y)-G(f)$. Then $y \neq f(x)$. Since Y is C_{2}, there exist open sets V and W in Y containing y and $f(\mathrm{x})$, respectively, such that $\bar{V} \cap \bar{W}=\phi$. Since f is c. $\nu g . c$., there exists $U \in \nu G O(X, x) \ni f(U) \subset \bar{W}$. This shows that $f(U) \cap \bar{V}=\phi$ and hence $G(f)$ is ontra- νg-closed.

Corollary 7.1: If f is c. ν.c. and Y is C_{2}, then $G(f)$ is contra- $\nu g-$ closed.
Theorem 7.2: If f is an injective c.pg.c. function with the contraνg-closed graph, then X is $\nu g-T_{2}$.
Proof: Let $x \neq y \in X$. Since f is injective, $f(x) \neq f(y)$ and $(x, f(y)) \in(X \times$ $Y)-G(f)$. Since $G(f)$ is contra- νg-closed, by Lemma 7.1 $\exists U \in \nu G O(X, x)$ and $V \in R C(Y, f(y)) \ni f(U) \cap V=\phi$. Since f is c. $\nu g . c$., by Theorem 3.18 $\exists G \in \nu G O(X, y) \ni f(G) \subset V$. Therefore, we have $f(U) \cap f(G)=\phi$; hence $U \cap G=\phi$. Hence X is $\nu g-T_{2}$.

References

[1] Ahmad Al-Omari and Mohd.Salmi of contra-b-continuous and almost Euro.J.P.A.M., 2(2) (2009), 213-230.
Md.Noorani, Some properties contra-b-continuous functions,
[2] S. Balasubramanian and P.A.S. Vyjayanthi, contra ν-continuity, Bull. Kerala. Math. Association, 8(2)(2011)211-228.
[3] M. Caldas and S. Jafari, Some properties of contra- β-continuous functions, Mem. Fac. Sci., Kochi Univ. (Math.), 22(2001), 19-28.
[4] J. Dontchev, Contra-continuous functions and strongly S-closed space, I.J.M.G.M.S., 19(2) (1996), 303-310.
[5] J. Dontchev and T. Noiri, Contra-semicontinuous functions, Math.Pannonica, 10(2) (1999), 159-168.
[6] J. Dontchev, Another form of contra-continuity, Kochi.J.M.,1(2006), 2129.
[7] S. Jafari and T. Noiri, Contra- α-continuous functions between topological spaces, Iranian International Journal of Science, 2(2) (2001), 153-167.
[8] S. Jafari and T. Noiri, On contra-precontinuous functions, B.M.M.S.S., 25(2) (2002), 115-128.
[9] Jamal M. Mustafa, Contra semi-I-continuous functions, Hacettepe Journal of Mathematics and Statistics, 39(2)(2010), 191-196.
[10] A.A. Nasef, Some properties of contra- $\gamma-$ continuous functions, Chaos Solitons Fractals, 24(2) (2005), 471-477.
[11] T. Noiri and V.Popa, A unified theory of contra-continuity, Ann.Univ.Sci.Budapest, 44(2002), 115-137.
[12] M.K.R.S. Veera Kumar, Contra-pre-semi-continuous functions, B.M.M.S.S., 28(1) (2005), 67-71.

