

Gen. Math. Notes, Vol. 2, No. 1, January 2011, pp. 165-174 ISSN 2219-7184; Copyright ©ICSRS Publication, 2011 www.i-csrs.org Available free online at http://www.geman.in

$(1,2)^*$ -Pre- Λ -Sets and $(1,2)^*$ -Pre-V-Sets

M. Lellis Thivagar and Nirmala Mariappan

Department of Mathematics, Arul Anandar College, Karumathur-625514 Madurai District, Tamilnadu, India. E-mail:mlthivagar@yahoo.co.in Department of Mathematics, Lady Doak College, Madurai-625002 Tamil Nadu, India. E-mail:nirmala_mariappan@yahoo.com

(Received 20.10.2010, Accepted 15.11.2010)

Abstract

In this paper, we introduce the notions of $(1, 2)^*$ -pre- Λ -sets and $(1, 2)^*$ -pre-V-sets in a bitopological space and study their fundamental properties. We also introduce two new spaces called $(1, 2)^*$ -pre- T_1 and $(1, 2)^*$ -pre- R_0 -spaces. Characterization of these spaces are done using $(1, 2)^*$ -pre- Λ -sets and $(1, 2)^*$ -pre-V-sets.

Keywords and phrases : $(1,2)^*$ -pre- Λ -sets, $(1,2)^*$ -pre-V-sets. 2000 Mathematics subject classification: 54E55, 54D10

1 Introduction

In 1986, Maki continued the work of Levine and Dunham on generalized closed sets by introducing the notion of a generalized Λ set in a topological space. Caldas and Dontchev built on Maki's work, by introducing and studying the so called Λ_s -sets and V_s -sets and also other forms called $g.\Lambda_s$ -sets and $g.V_s$ -sets. In this paper, we introduce the notions of $(1, 2)^*$ -pre- Λ -sets and $(1, 2)^*$ -pre-V-sets in a bitopological space and study their fundamental properties. We also introduce two new spaces called $(1, 2)^*$ -pre- T_1 and $(1, 2)^*$ -pre- R_0 -spaces. Characterization of these spaces are done using $(1, 2)^*$ -pre- Λ -sets and $(1, 2)^*$ pre-V-sets.

2 Preliminaries

Throughout this paper (X, τ_1, τ_2) and (Y, σ_1, σ_2) (briefly X and Y) represent bitopological spaces on which no separation axioms are assumed unless otherwise mentioned.

Definition 2.1 [11] A subset S of a bitopological space (X, τ_1, τ_2) is said to be $\tau_{1,2}$ -open if $S = A \cup B$ where $A \in \tau_1$, and $B \in \tau_2$. A subset S of X is said to be $\tau_{1,2}$ -closed if the complement of S is $\tau_{1,2}$ -open.

Definition 2.2 [11] Let S be a subset of X. Then

- (i) The $\tau_{1,2}$ -interior of S, denoted by $\tau_{1,2}$ -int(S), is defined by $\cup \{G/G \subseteq S \text{ and } G \text{ is } \tau_{1,2}$ -open $\}$.
- (ii) The $\tau_{1,2}$ -closure of S, denoted by $\tau_{1,2}$ -cl(S), is defined by $\cap \{F/S \subseteq F \text{ and } F \text{ is } \tau_{1,2}\text{-closed } \}$.

Remark 2.3 $\tau_{1,2}$ -open sets need not form a topology.

We recall the following definitions which are useful in the sequel.

Definition 2.4 [11] A subset A of a bitopological space (X, τ_1, τ_2) is called

- (i) $(1,2)^*$ -semi-open if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A))
- (ii) $(1,2)^*$ -preopen if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A))
- (iii)(1,2)*- α -open if $A \subseteq \tau_{1,2}$ -int($\tau_{1,2}$ -cl($\tau_{1,2}$ -int(A)))

The complements of the sets mentioned above from (i) to (iii) are called their respective closed sets.

3 $(1,2)^*$ -pre- Λ -Sets and $(1,2)^*$ -pre-V-Sets

First let us introduce the concepts $(1, 2)^* - \Lambda_p$ and $(1, 2)^* - V_p$.

Definition 3.1 Let S be a subset of a bitopological space (X, τ_1, τ_2) . We define the subsets $(1,2)^*-\Lambda_p(S)$ and $(1,2)^*-V_p(S)$ as follows: $(1,2)^*-\Lambda_p(S) = \cap \{G : G \supseteq S \text{ and } G \text{ is } (1,2)^*\text{-preopen} \}$ and $(1,2)^*-V_p(S) = \cup \{F : F \subseteq S \text{ and } F^c \text{ is } (1,2)^*\text{-preopen} \}.$

First we summarise the fundamental properties of the sets $(1,2)^*-\Lambda_p(S)$ and $(1,2)^*-V_p(S)$. **Lemma 3.2** For subsets A, B and $A_i, i \in I$ of a bitopological space (X, τ_1, τ_2) the following properties hold:

- (1) $A \subseteq (1,2)^* \Lambda_p(A)$.
- (2) $A \subseteq B$ implies that $(1,2)^* \cdot \Lambda_p(A) \subseteq (1,2)^* \cdot \Lambda_p(B)$.
- (3) $(1,2)^* \Lambda_p((1,2)^* \Lambda_p(A)) = (1,2)^* \Lambda_p(A).$
- (4) If A is $(1,2)^*$ -preopen then $A = (1,2)^* \Lambda_p(A)$.
- (5) $(1,2)^* \Lambda_p(\cup \{A_i : i \in I\}) = \cup \{(1,2)^* \Lambda_p(A_i) : i \in I\}.$
- (6) $(1,2)^* \Lambda_p(\cap \{A_i : i \in I\}) \subseteq \cap \{(1,2)^* \Lambda_p(A_i) : i \in I\}.$
- (7) $(1,2)^* \Lambda_p(X-A) = X (1,2)^* \Lambda_p(A).$

Proof (1),(2),(4),(6) and (7) are immediate consequences of Definition 3.1. To prove (3): It follows from (1) and (2) that $(1,2)^*-\Lambda_p(A) \subseteq (1,2)^*-\Lambda_p((1,2)^*-\Lambda_p(A))$. If $x \notin (1,2)^*-\Lambda_p(A)$, then there exists a $(1,2)^*$ -preopen set G such that $A \subseteq G$ and $x \notin G$. Hence $(1,2)^*-\Lambda_p(A) \subseteq G$ and so $x \notin (1,2)^*-\Lambda_p((1,2)^*-\Lambda_p(A))$. Thus $(1,2)^*-\Lambda_p((1,2)^*-\Lambda_p(A)) \subseteq (1,2)^*-\Lambda_p(A)$. To prove (5): Let $A = \cup\{A_i : i \in I\}$. By (2) we have that $\cup\{(1,2)^*-\Lambda_p(A_i) : i \in I\} \subseteq (1,2)^*-\Lambda_p(A)$. If $x \notin \cup\{(1,2)^*-\Lambda_p(A_i) : i \in I\}$, then for each $i \in I$, there exists a $(1,2)^*$ -preopen set G_i such that $A_i \subseteq G_i$ and $x \notin G_i$. If $G = \cup\{G_i : i \in I\}$ then G is $(1,2)^*$ -preopen with $A \subseteq G$ and $x \notin G$. Hence $x \notin (1,2)^*-\Lambda_p(A)$ and so (5) holds.

Lemma 3.3 For subsets A, B and $A_i, i \in I$ of a bitopological space (X, τ_1, τ_2) the following properties hold:

- (1) $(1,2)^* V_p(A) \subseteq A..$
- (2) $A \subseteq B$ implies that $(1,2)^* V_p(A) \subseteq (1,2)^* V_p(B)$.
- (3) $(1,2)^* V_p((1,2)^* V_p(A)) = (1,2)^* V_p(A).$
- (4) If A is $(1,2)^*$ -preclosed then $A = (1,2)^* V_p(A)$.
- (5) $(1,2)^* V_p(\cap \{A_i : i \in I\}) = \cap \{(1,2)^* V_p(A_i) : i \in I\}.$
- (6) $\cup \{(1,2)^* V_p(A_i) : i \in I\} \subseteq (1,2)^* V_p(\cup \{A_i : i \in I\}).$

Proof (1),(2),(4) and (6) follow from Definitions 3.1. To prove (3): By (1) and (2) we have $(1,2)^*-V_p((1,2)^*-V_p(A)) \subseteq (1,2)^*-V_p(A)$. If $x \in (1,2)^*-V_p(A)$ then for some $(1,2)^*$ -preclosed set $F \subseteq A$, $x \in F$. Then $F \subseteq (1,2)^*-V_p(A)$ by Definition 3.1. Since F is $(1,2)^*$ -preclosed, again by Definition 3.1, $x \in$ $F \subseteq (1,2)^*-V_p((1,2)^*-V_p(A))$. To prove (5): Let $A = \cap \{A_i : i \in I\}$. By (2) we have that $(1,2)^*-V_p(A) \subseteq \cap \{(1,2)^*-V_p(A_i) : i \in I\}$. If $x \in \cap \{(1,2)^*-V_p(A_i) : i \in I\}$, then for each $i \in I$, there exists a $(1,2)^*$ -preclosed set F_i such that $F_i \subseteq A_i$ and $x \in F_i$. If $F = \cap \{F_i : i \in I\}$ then F is $(1,2)^*$ -preclosed with $F \subseteq A$ and $x \in F$. Hence $x \in (1,2)^*-V_p(A)$ and so (5) holds. Note that in general $(1,2)^*-\Lambda_p(A \cap B) \neq (1,2)^*-\Lambda_p(A) \cap (1,2)^*-\Lambda_p(B)$ as the following example shows.

Example 3.4 Let $X = \{a, b, c\}$ $\tau_1 = \{\phi, \{a, b\}, X\}; \quad \tau_2 = \{\phi, \{a, c\}, X\};$ $\tau_{1,2}$ -open sets = $\{\phi, \{a, b\}, \{a, c\}, X\}; \tau_{1,2}$ -closed sets = $\{\phi, \{c\}, \{b\}, X\};$ Let $A = \{b\}$ and $B = \{c\}$. Then $(1, 2)^* - \Lambda_p(A \cap B) = \phi$ but $(1, 2)^* - \Lambda_p(A) \cap (1, 2)^* - \Lambda_p(B) = \{b, c\}.$

Definition 3.5 A subset S of a bitopological space (X, τ_1, τ_2) is called a

- (i) $(1,2)^*$ -pre- Λ -set or a $(1,2)^*$ - Λ_p -set (resp. $(1,2)^*$ -pre-V-set or a $(1,2)^*$ - V_p -set) if $(1,2)^*$ - $\Lambda_p(S)$ (resp. $(1,2)^*$ - $V_p(S)$) = S.
- (ii) $(1,2)^*-\Lambda$ -set (resp. $(1,2)^*-V$ -set) if $(1,2)^*-S^{\Lambda}$ (resp. $(1,2)^*-S^{V}$) = S, where $(1,2)^*-S^{\Lambda} = \cap \{O : S \subseteq O, O \text{ is } \tau_{1,2}\text{-open} \}$ and $(1,2)^*-S^{V} = \cup \{F : F \subseteq S, F \text{ is } \tau_{1,2}\text{-closed} \}.$

Clearly a subset S is a $(1,2)^*$ -pre- Λ -set (resp. $(1,2)^*$ -pre-V-set) if and only if it is an intersection (resp. union) of $(1,2)^*$ -preopen (resp. $(1,2)^*$ -preclosed) sets. A subset S is a $(1,2)^*$ - Λ -set (resp. $(1,2)^*$ -V-set) if and only if it is an intersection (resp. union) of $\tau_{1,2}$ -open (resp. $\tau_{1,2}$ -closed) sets. Hence $(1,2)^*$ - Λ sets and $(1,2)^*$ -preopen sets are $(1,2)^*$ -pre- Λ -sets ; $(1,2)^*$ -V-sets and $(1,2)^*$ preclosed sets are $(1,2)^*$ -pre-V-sets.

Remark 3.6 Since $(1,2)^* - \Lambda_p(S) = ((1,2)^* - V_p(X-S))^c$, a subset S of a bitopological space X is a $(1,2)^*$ -pre- Λ -set if and only if X-S is a $(1,2)^*$ -pre-V-set.

Proposition 3.7 For a bitopological space (X, τ_1, τ_2) the following properties hold:

- (1) ϕ and X are $(1,2)^*$ -pre- Λ -sets and $(1,2)^*$ -pre-V-sets.
- (2) Arbitrary union of (1,2)*-pre-Λ-sets (resp. (1,2)*-pre-V-sets) is a (1,2)*-pre-Λ-set (resp. (1,2)*-pre-V-set).
- (3) Arbitrary intersection of $(1,2)^*$ -pre- Λ -sets (resp. $(1,2)^*$ -pre-V-sets) is a $(1,2)^*$ -pre- Λ -set (resp. $(1,2)^*$ -pre-V-set).

168

Proof We shall consider the case of $(1,2)^*$ -pre- Λ -sets. (1) is obvious. To prove (2) Let $\{A_i : i \in I\}$ be a family of $(1,2)^*$ -pre- Λ -sets in the bitopological space (X, τ_1, τ_2) . If $A = \bigcup \{A_i : i \in I\}$, then by Lemma 3.2, $(1,2)^*$ - $\Lambda_p(A) = \bigcup \{(1,2)^*-\Lambda_p(A_i) : i \in I\} = \bigcup \{A_i : i \in I\} = A$. Hence A is a $(1,2)^*$ -pre- Λ set. To prove (3): Let $\{B_i : i \in I\}$ be a family of $(1,2)^*$ -pre- Λ -sets in the bitopological space (X, τ_1, τ_2) . If $B = \cap \{B_i : i \in I\}$, then by Lemma 3.2, $(1,2)^*-\Lambda_p(B) \subseteq \cap \{(1,2)^*-\Lambda_p(B_i) : i \in I\} = \cap \{B_i : i \in I\} = B$. The other inclusion follows from the definition of $(1,2)^*-\Lambda_p(B)$. Hence B is a $(1,2)^*$ -pre- Λ -set.

Remark 3.8 It follows from Proposition 3.7 that the family of all $(1,2)^*$ -pre- Λ -sets (resp. $(1,2)^*$ -pre-V-sets) is a topology on X containing all $(1,2)^*$ -preopen (resp. $(1,2)^*$ -preclosed) sets. Let $\tau_{1,2}^{\Lambda_p}$ (resp. $\tau_{1,2}^{V_p}$) denote the family of all $(1,2)^*$ -pre- Λ -sets (resp. $(1,2)^*$ -pre-V-sets). Clearly $(X, \tau_{1,2}^{\Lambda_p})$ and $(X, \tau_{1,2}^{V_p})$ are Alexandroff spaces, i.e. arbitrary intersection of open sets is open.

Definition 3.9 A bitopological space (X, τ_1, τ_2) is called $(1, 2)^*$ -pre- T_1 if to each pair of distinct points x, y of (X, τ_1, τ_2) there exist a $(1, 2)^*$ -preopen set A containing x but not y and a $(1, 2)^*$ -preopen set B containing y but not x.

Lemma 3.10 A bitopological space is $(1, 2)^*$ -pre- T_1 if and only if every singleton set $\{x\}$ in X is $(1, 2)^*$ -pre-closed.

Proof Let (X, τ_1, τ_2) be $(1, 2)^*$ -pre- T_1 . Suppose for some $x \in X$, $\{x\}$ is not $(1, 2)^*$ -preclosed. Then there exists a point $y \in (1, 2)^*$ -pcl($\{x\}$) such that $y \neq x$. Since X is $(1, 2)^*$ -pre- T_1 , there exists a $(1, 2)^*$ -preopen set G containing y but not x. Since $y \in (1, 2)^*$ -pcl($\{x\}$) and G is a $(1, 2)^*$ -preopen set containing $y, \{x\} \cap G \neq \phi$. This implies $x \in G$, a contradiction. Conversely let every singleton set $\{x\}$ in X be $(1, 2)^*$ -preopen set containing y but not x and $\{y\}^c$, a $(1, 2)^*$ -preopen set containing x but not y. Hence (X, τ_1, τ_2) is $(1, 2)^*$ -pre- T_1 .

Lemma 3.11 Every singleton subset of a bitopological space (X, τ_1, τ_2) is $\tau_{1,2}$ open or $(1,2)^*$ -preclosed.

Proof Let $x \in X$. If $\{x\}$ is not $\tau_{1,2}$ -open then $\tau_{1,2}$ -cl $(X - \{x\}) = X$. Therefore $X - \{x\}$ is $(1,2)^*$ -preopen or $\{x\}$ is $(1,2)^*$ -preclosed.

Corollary 3.12 Every singleton subset of a bitopological space (X, τ_1, τ_2) is $(1,2)^*$ -preopen or $(1,2)^*$ -preclosed.

Proof Obvious.

We now see additional characterisations of $(1, 2)^*$ -pre- T_1 spaces.

Theorem 3.13 For a bitopological space (X, τ_1, τ_2) the following are equivalent:

- (1) (X, τ_1, τ_2) is $(1, 2)^*$ -pre- T_1 .
- (2) Every subset of X is a $(1,2)^*$ -pre- Λ -set.
- (3) Every subset of X is a $(1,2)^*$ -pre-V-set.
- (4) Every $\tau_{1,2}$ open subset of X is a $(1,2)^*$ -pre-V-set.

Proof (2) \Leftrightarrow (3) Follows from Remark 3.6. (1) \Rightarrow (3) X is $(1, 2)^*$ -pre- T_1 implies that every singleton subset $\{x\}$ in X is $(1, 2)^*$ -preclosed. Therefore every subset of X is a union of $(1, 2)^*$ -preclosed sets and hence a $(1, 2)^*$ -pre-V-set. (3) \Rightarrow (4) This is obvious. (4) \Rightarrow (1). Let $x \in X$. By Lemma 3.11, $\{x\}$ is $\tau_{1,2}$ -open or $(1, 2)^*$ -preclosed. If $\{x\}$ is $\tau_{1,2}$ -open then by assumption, $\{x\}$ is a $(1, 2)^*$ -pre-V-set and so $(1, 2)^*$ -preclosed. Hence each singleton subset of X is $(1, 2)^*$ -preclosed and X is $(1, 2)^*$ -pre- T_1 .

We now define $(1, 2)^*$ -generalized pre- Λ -sets and $(1, 2)^*$ -generalized pre-V-sets in a bitopological space in the following way.

Definition 3.14 A subset S of a bitopological space (X, τ_1, τ_2) is called a

- (1) $(1,2)^*$ -generalized pre- Λ -set (briefly $(1,2)^*$ -g- Λ_p -set) if $(1,2)^*$ - $\Lambda_p(S) \subseteq F$ whenever $S \subseteq F$ and F is $(1,2)^*$ -preclosed.
- (2) $(1,2)^*$ -generalized pre-V-set(briefly $(1,2)^*$ -g-V_p-set) if $(1,2)^*$ -V_p(S) $\supseteq G$ whenever $G \subseteq S$ and G is $(1,2)^*$ -preopen.

We shall see that we obtain nothing new.

Proposition 3.15 Let S be a subset of the bitopological space (X, τ_1, τ_2) . Then

- (1) S is a $(1,2)^*$ -generalized pre- Λ -set if and only if S is a $(1,2)^*$ -pre- Λ -set.
- (2) S is a $(1,2)^*$ -generalized pre-V-set if and only if S is a $(1,2)^*$ -pre-V-set.

Proof (1) Clearly every $(1, 2)^*$ -pre- Λ -set is a $(1, 2)^*$ -generalized pre- Λ -set. Now let S be a $(1, 2)^*$ -generalized pre- Λ -set. Suppose there exists $x \in (1, 2)^*$ - $\Lambda_p(S) - S$. Then $S \subseteq X - \{x\}$. We know that $\{x\}$ is $\tau_{1,2}$ -open or $(1, 2)^*$ preclosed. If $\{x\}$ is $\tau_{1,2}$ -open, then $X - \{x\}$) is $\tau_{1,2}$ -closed and hence $(1, 2)^*$ preclosed. Since S is a $(1, 2)^*$ -g- Λ_p -set, $(1, 2)^*$ - $\Lambda_p(S) \subseteq X - \{x\}$, a contradiction. If $\{x\}$ is $(1, 2)^*$ -preclosed, then $X - \{x\}$ is $(1, 2)^*$ -preopen and so by Definition 3.1, $(1, 2)^*$ - $\Lambda_p(S) \subseteq X - \{x\}$, a contradiction. Hence S is a $(1, 2)^*$ -pre- Λ -set. (2) This is proved in a similar manner.

4 Properties of $(1, 2)^*$ -pre- Λ -sets and $(1, 2)^*$ -pre-V-sets

Proposition 4.1 Let (X, τ_1, τ_2) be a bitopological space. Then

- (1) $(X, \tau_{1,2}^{\Lambda_p})$ and $(X, \tau_{1,2}^{V_p})$ are always $T_{1/2}$ spaces.
- (2) If (X, τ_1, τ_2) is $(1, 2)^*$ -pre- T_1 , then both $(X, \tau_{1,2}^{\Lambda_p})$ and $(X, \tau_{1,2}^{V_p})$ are discrete spaces.
- (3) The identity function $id: (X, \tau_{1,2}^{\Lambda_p}) \to (X, \tau_i)$ is continuous for i = 1, 2.
- (4) The identity function $id: (X, \tau_{1,2}^{V_p}) \to (X, \tau_i)$ is contra-continuous for i = 1, 2.

Proof (1) Let $x \in X$. Then $\{x\}$ is $\tau_{1,2}$ -open or $(1,2)^*$ -preclosed in X. If $\{x\}$ is $\tau_{1,2}$ -open, then it is $(1,2)^*$ -preopen. Therefore $\{x\} \in \tau_{1,2}^{\Lambda_p}$. If $\{x\}$ is $(1,2)^*$ -preclosed then $X - \{x\}$ is $(1,2)^*$ -preopen and so $X - \{x\} \in \tau_{1,2}^{\Lambda_p}$, i.e., $\{x\}$ is $\tau_{1,2}^{\Lambda_p}$ -closed. Hence $(X, \tau_{1,2}^{\Lambda_p})$ is $T_{1/2}$. It can be proved in a similar manner that $(X, \tau_{1,2}^{V_p})$ is $T_{1/2}$. (2) This follows from Theorem 3.13. (3) If A is τ_i -open for i = 1 or 2, then A is $\tau_{1,2}$ -open and therefore $(1,2)^*$ -preopen. Hence $A \in \tau_{1,2}^{\Lambda_p}$. (4) If A is τ_i -open for i = 1 or 2, then A is $\tau_{1,2}$ -open and therefore $(1,2)^*$ -preopen. This implies that X - A is $(1,2)^*$ -preclosed and hence X - A is $\tau_{1,2}^{V_p}$ -open or A is $\tau_{1,2}^{V_p}$ -closed.

Definition 4.2 A subset A of a bitopological space (X, τ_1, τ_2) is said to be $(1,2)^*$ -dense if $\tau_{1,2}$ -cl(A) = X.

Definition 4.3 A bitopological space (X, τ_1, τ_2) is said to be $(1, 2)^*$ -resolvable if X is the union of two disjoint $(1, 2)^*$ -dense subsets.

Proposition 4.4 If a bitopological space (X, τ_1, τ_2) is $(1, 2)^*$ -resolvable, then $(X, \tau_{1,2}^{\Lambda_p})$ and $(X, \tau_{1,2}^{V_p})$ are discrete spaces.

Proof By Proposition 4.1, it is enough to show that (X, τ_1, τ_2) is $(1, 2)^*$ -pre- T_1 . Let A and B be disjoint $(1, 2)^*$ -dense subsets of (X, τ_1, τ_2) such that $X = A \cup B$. Let $x \in X$. Without loss of generality let us assume that $x \in A$. Then $X - \{x\} = (A - \{x\}) \cup B$ is $(1, 2)^*$ -dense, hence $(1, 2)^*$ -preopen and $\{x\}$ is $(1, 2)^*$ -preclosed.

Proposition 4.5 If $(X, \tau_{1,2}^{\Lambda_p})$ is connected then (X, τ_1, τ_2) is $(1, 2)^*$ -preconnected, *i.e.* X cannot be represented as a disjoint union of nonempty $(1, 2)^*$ -preopen subsets of (X, τ_1, τ_2) .

Proof Suppose that (X, τ_1, τ_2) is not $(1, 2)^*$ -preconnected. Then there exist nonempty disjoint $(1, 2)^*$ -preopen subsets A and B of X such that $X = A \cup B$. Since A and B are open in $(X, \tau_{1,2}^{\Lambda_p})$, we have a contradiction.

Remark 4.6 The topological space $(X, \tau_{1,2}^{\Lambda_p})$ is connected if and only if $(X, \tau_{1,2}^{V_p})$ is connected.

5 Applications

Definition 5.1 A bitopological space (X, τ_1, τ_2) is called a

- (1) $(1,2)^*$ - R_0 -space if for each $\tau_{1,2}$ -open set U of (X,τ_1,τ_2) and each $x \in U$, $\tau_{1,2}$ - $cl(\{x\}) \subseteq U$.
- (2) $(1,2)^*$ -pre- R_0 space if for each $(1,2)^*$ -preopen set U of (X,τ_1,τ_2) and each $x \in U, (1,2)^*$ -pcl $(\{x\}) \subseteq U$.

Definition 5.2 A bitopological space (X, τ_1, τ_2) is called a $(1, 2)^*$ - T^{V_P} -space if $\tau_{1,2}^{\Lambda_p} = \tau_{1,2}^{V_p}$.

Lemma 5.3 A bitopological space (X, τ_1, τ_2) is $(1, 2)^*$ -pre- R_0 if and only if it is $(1, 2)^*$ -pre- T_1 .

Proof Necessity. Let $x \in X$. By Lemma 3.11, $\{x\}$ is $\tau_{1,2}$ -open or $(1,2)^*$ -preclosed in X. If $\{x\}$ is $\tau_{1,2}$ -open, then it is $(1,2)^*$ -preopen. Since X is $(1,2)^*$ -pre- R_0 , $(1,2)^*$ -pcl($\{x\}) \subseteq \{x\}$ which implies $\{x\}$ is $(1,2)^*$ -preclosed. Hence X is pre- T_1 . Sufficiency. If (X, τ_1, τ_2) is $(1,2)^*$ -pre- T_1 then every singleton subset of X is $(1,2)^*$ -preclosed. Therefore every $(1,2)^*$ -preopen set contains the $(1,2)^*$ -preclosure of its singleton subsets and X is $(1,2)^*$ -pre- R_0

Theorem 5.4 For a bitopological space (X, τ_1, τ_2) the following are equivalent:

- (1) (X, τ_1, τ_2) is $(1, 2)^*$ -pre- R_0 .
- (2) $(X, \tau_{1,2}^{\Lambda_p})$ is discrete.
- (3) $(X, \tau_{1,2}^{V_p})$ is discrete.
- (4) For each $x \in X$, $\{x\}$ is a $(1,2)^*-\Lambda_p$ -set of (X, τ_1, τ_2) .
- (5) For each $(1,2)^*$ -preopen set P of X, $P = (1,2)^* V_p(P)$.
- (6) (X, τ_1, τ_2) is a $(1, 2)^*$ - T^{V_P} -space.
- (7) $(X, \tau_{1,2}^{\Lambda_p})$ is an R_0 -space.

Proof (1) \Rightarrow (2) Follows from Lemma 5.3 and Proposition 4.1. (2) \Leftrightarrow (3) Follows from Remark 3.6. (3) \Rightarrow (4) For each $x \in X$, $\{x\}$ is $\tau_{1,2}^{\Lambda_p}$ -open and $\{x\}$ is a $(1,2)^*-\Lambda_p$ -set of (X,τ_1,τ_2) . (4) \Rightarrow (5) Let P be a $(1,2)^*$ -propen set. Let $x \in P^c$. By assumption $\{x\} = (1,2)^*-\Lambda_p(\{x\})$ and therefore $(1,2)^*-\Lambda_p(\{x\}) \subseteq$ P^c . Hence $P^c \supseteq \cup \{(1,2)^*-\Lambda_p(\{x\}) : x \in P^c\} = (1,2)^*-\Lambda_p(\cup \{x : x \in P^c\})$ [by Lemma 3.2] = $(1,2)^*-\Lambda_p(P^c)$. This shows that $P^c = (1,2)^*-\Lambda_p(P^c)$ and by Remark 3.6, $P = (1,2)^*-V_p(P)$. (5) \Rightarrow (6) By (5) $(1,2)^*-\text{PO}(X,\tau_1,\tau_2) \subseteq \tau_{1,2}^{V_p}$. First we show that $\tau_{1,2}^{\Lambda_p} \subseteq \tau_{1,2}^{V_p}$. Let A be any $(1,2)^*-\Lambda_p$ -set $((1,2)^*-\text{PO}(X,\tau_1,\tau_2)]$. Since $(1,2)^*-\text{PO}(X,\tau_1,\tau_2) \subseteq \tau_{1,2}^{V_p}$, by Proposition 3.7 we have $A \in \tau_{1,2}^{V_p}$ and $\tau_{1,2}^{\Lambda_p} \subseteq \tau_{1,2}^{\Lambda_p}$. Hence (X,τ_1,τ_2) is a $(1,2)^*-T^{V_p}$ -space. (6) \Rightarrow (7) Let $V \in \tau_{1,2}^{\Lambda_p}$ and $\tau_{1,2}^{V_p} \subseteq \tau_{1,2}^{\Lambda_p}$. Hence (X,τ_1,τ_2) is a $(1,2)^*-T^{V_p}$ -space. $V \in \tau_{1,2}^{V_p}$ and $V^c \in \tau_{1,2}^{\Lambda_p}$. Since $\{x\} \cap V^c = \phi, \tau_{1,2}^{\Lambda_p} - cl(\{x\}) \cap V^c = \phi$ and $\tau_{1,2}^{\Lambda_p} - cl(\{x\}) \subseteq V$. Hence $(X,\tau_{1,2}^{\Lambda_p})$ is R_0 . (7) \Rightarrow (1) Let $V \in (1,2)^*-\text{PO}(X,\tau_1,\tau_2)$ and $x \in V$. Since $(1,2)^*$ -PO $(X,\tau_1,\tau_2) \subseteq \tau_{1,2}^{\Lambda_p}$, by (7), $\tau_{1,2}^{\Lambda_p} - cl(\{x\}) \subseteq V$. Since $\tau_{1,2}^{\Lambda_p} - cl(\{x\}) \in \tau_{1,2}^{\Lambda_p} - cl(\{x\}) \in \tau_{1,2}^{\Lambda_p} - cl(\{x\}) \in \tau_{1,2}^{\Lambda_p} - cl(\{x\})$ and $F \in (1,2)^*-\text{PC}(X,\tau_1,\tau_2)$ and $x \in \tau_{1,2}^{\Lambda_p} - cl(\{x\}) \subseteq V$. This shows that (X,τ_1,τ_2) is $(1,2)^*-\text{pre-}R_0$.

Corollary 5.5 (X, τ_1, τ_2) is a $(1, 2)^*$ -pre- R_0 bitopological space if and only if $(X, \tau_{1,2}^{\Lambda_p})$ is an R_0 -space.

Definition 5.6 A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is said to be

- (1) $(1,2)^*-\Lambda_p$ -continuous if $f^{-1}(V)$ is a $(1,2)^*$ -pre- Λ -set $((1,2)^*-\Lambda_p$ -set) in (X,τ_1,τ_2) for every $\sigma_{1,2}$ -open set V of (Y,σ_1,σ_2) .
- (2) $(1,2)^*$ -pre- Λ_p -continuous if $f^{-1}(V)$ is a $(1,2)^*$ - Λ_p -set in (X,τ_1,τ_2) for every $(1,2)^*$ -preopen set V of (Y,σ_1,σ_2) .
- (3) $(1,2)^* \Lambda_p$ -irresolute if $f^{-1}(B)$ is a $(1,2)^* \Lambda_p$ -set in (X,τ_1,τ_2) for every $(1,2)^* \Lambda_p$ -set B of (Y,σ_1,σ_2) .
- (4) $(1,2)^*$ -pre- Λ_p -open if f(A) is a $(1,2)^*$ - Λ_p -set in (Y,σ_1,σ_2) for every $(1,2)^*$ - Λ_p -set A in (X,τ_1,τ_2) .

Definition 5.7 A function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is called a $(1, 2)^* - \Lambda_p$ homeomorphism if f is a $(1, 2)^* - \Lambda_p$ -irresolute, $(1, 2)^*$ -pre- Λ_p -open and bijective.

Theorem 5.8 Let f be a function from (X, τ_1, τ_2) to (Y, σ_1, σ_2) .

(1) If f is a $(1,2)^*-\Lambda_p$ -irresolute injection and (Y,σ_1,σ_2) is a $(1,2)^*-T^{V_P}$ -space, then (X,τ_1,τ_2) is a $(1,2)^*-T^{V_P}$ -space.

- (2) If f is a $(1,2)^*$ -pre- Λ_p -open surjection and (X,τ_1,τ_2) is a $(1,2)^*$ - T^{V_P} -space then (Y,σ_1,σ_2) is a $(1,2)^*$ - T^{V_P} -space.
- (3) If f is a $(1,2)^*-\Lambda_p$ -homeomorphism then (X,τ_1,τ_2) is a $(1,2)^*-T^{V_P}$ -space if and only if (Y,σ_1,σ_2) is a $(1,2)^*-T^{V_P}$ -space.

Proof (1) Since (Y, σ_1, σ_2) is a $(1, 2)^* \cdot T^{V_P}$ -space, $(Y, \sigma_{1,2}^{\Lambda_P})$ is discrete by Theorem 5.4. Then $\{f(x)\} \in \sigma_{1,2}^{\Lambda_P}$ for every $x \in X$. Since f is $(1, 2)^* \cdot \Lambda_P$ -irresolute, $f^{-1}(\{f(x)\}) \in \tau_{1,2}^{\Lambda_P}$ for every $x \in X$. This implies $\{x\} \in \tau_{1,2}^{\Lambda_P}$ for every $x \in X$, since f is injective. Therefore $(X, \tau_{1,2}^{\Lambda_P})$ is discrete and by Theorem 5.4, (X, τ_1, τ_2) is a $(1, 2)^* \cdot T^{V_P}$ -space. (2) let $y \in Y$. $\{f^{-1}(y)\} \neq \phi$ since f is surjective. Since $(X, \tau_{1,2}^{\Lambda_P})$ is discrete , $\{f^{-1}(y)\} \in \tau_{1,2}^{\Lambda_P}$ for every $y \in Y$. Since f is $(1, 2)^* \cdot \Lambda_P$ -preopen, $f(\{f^{-1}(y)\}) \in \sigma_{1,2}^{\Lambda_P}$ for every $y \in Y$. This implies $\{y\} \in \sigma_{1,2}^{\Lambda_P}$ for every $y \in Y$ or $(Y, \sigma_{1,2}^{\Lambda_P})$ is discrete. Hence (Y, σ_1, σ_2) is a $(1, 2)^* \cdot T^{V_P}$ -space. (3) Follows from (1) and (2).

References

- [1] M.Caldas, S.Jafari and T.Noiri, Characterization of pre- R_0 and pre- R_1 -topological spaces, *Topology Proceedindgs*, 25(2000), 17-30.
- [2] M.Caldas and J.Dontchev, $G.\Lambda_s$ -sets and $G.V_s$ -sets, Mem.Fac.Sci.Kochi.Univ.(Math), 21(2000), 21-30.
- [3] W.Dunham, $T_{1/2}$ -spaces, Kyungpook Math. Journal, 17(1977),161-169.
- [4] N.El-deeb, I.A. Hassanein, A.S.Mashhour and T.Noiri, On P-regular spaces, *Bull.Math. Soc.Sci. Math. R.S.Roumanie*, 27(1983), 311-315.
- [5] M.Ganster, Preopen sets and resolvable spaces, *Kyungpook Math.J.*, 27(1987),135-143.
- [6] N.Levine, Semi-open sets and semi-continuity in topological spaces, *Amer.Math. Monthly*, 70(1963), 36-41.
- [7] N.Levine, Generalized closed sets in topology, *Rend. Circ. Mat. Palerno*, 19(1970),89-96.
- [8] H.Maki, Generalised Λ-sets and the associated closure operator, The special issue in commemoration of Prof. Kazuada, IKEDA's retirement,(1986), 139-146.
- [9] A.Kar and P.Bhattacharyya, Some weak separation axioms, *Bull. Calcutta Math. Soc.*, 82(1990), 415-422.

- [10] A.S.Mashhour, M.E.Abd El.Monsef and S.N.El Deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47-53.
- [11] O.Ravi and M.Lellis Thivagar, On Stronger forms of (1,2)*-quotient mappings in bitopological spaces, *Internat. J. Math. Game Theory and Algebra*,14(2004),no.6,481-492