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Abstract 

     In this paper, we study a boundary-value problem for a class of composite 
equation of a mixed–type problem in the space.  The existence and uniqueness of 
the generalized solution is proved, the proof is based on an energy inequality and 
the density of the range of the operator generated by the problem. 
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1      Introduction 
 
In the rectangle   (0,1) (0, )TΩ = Χ we consider the boundary-value problem. 
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The initial conditions: 
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and the boundary conditions: 
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Wheres= ∂Ω , r is the exterior point. 
 
Analogous to the problem (1 – 1), we consider its dual problem. We denote by ∗l
the formal dual of the operator l which is defined with respect to the inner product  
in the space )(2 QL  using 
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The dual equations: 
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With the final conditions: 
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and the boundary conditions: 

                                                       
3

3
0

v v

r r

∂ ∂= =
∂ ∂

                     on s                                                                   

 
2 Functional Spaces 
  
The domain  ( )D l   of the operator l  is 3,4

0( ) ( )D l H= Ω , the subspace of the 

Sobolev space 3,4( )H Ω ,which consists of all the functions 3,4( )u H∈ Ω  satisfying 

the conditions of (1-1).  The domain of *l is  * 3,4( ) ( )D l H= Ω
□

 which consists of 

all the functions 3,4( )v H∈ Ω  satisfying the conditions of (1-3). 

Let  3, 4( )H − − Ω   be the dual space of the space 3,4( )H Ω . 

 
Definition The solution of (1-1) is called the generalized solution of the 
operational equation 
                                                        )(, lDuflu ∈=                                      (2-1) 
and the solution of the problem (1 – 3) is called the generalized solution of the 
operational equation 
                                                           )(, ∗∗ ∈= lDvgvl                                 (2-2) 
  
 Where  l , *l    are extension of the operators  *,L L   
Then we obtain: 
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3  A Priori Estimates 
 
Theorem For problems (1 – 1) and (1 – 3) we have the following a priori 
estimates:  
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Where the constants 0>c  and 0>∗c  are independent of u  and v . 
 
Proof. Firstly we prove the inequality (3 –1) for the function   )(lDu ∈ . 
For  )(lDu ∈    we define the operator:                                                                                             
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Problem (1-1) can be written in the form: 
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Then we have: 
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Integrating by parts and using the conditions we obtain: 
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Integrating  1J   by parts and using the conditions (1-1), then we have:   
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Also we have: 
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Integrating the last integral by parts and using conditions (1-1) we have: 
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Finally we but: 
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Integrating the last integral by parts and using conditions (1-1) we find that: 
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Then we have: 
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We use the following Poincare estimates:          
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Now apply −ε inequality to the left hand side of (3 – 3) and using inequalities (3 
–4) we obtain (3 – 1) for  )(LDu∈  . 
 

4 Solvability of the Problem (Existence of Solution) 
 
The uniqueness of the solution follows immediately from inequality (3-1). This 
inequality also ensures the closure of the range set )(LR  of the operator L. 
We prove the existence of solution or we prove that for all functions    

2, 3( )f H − −∈ Ω   there is a unique solution of the problem (1-1).  

 
To prove that )(LR  equals the space 2 , 3 ( )H − − Ω , we obtain the inclusion

)()( LRLR ⊆ , and 2, 3( ) ( )R L H− −= Ω . 

     
Let { } Nkkf ∈  be a Cauchy sequence in the space2, 3( )H − − Ω , which consists 

of element of set )(LR . Then it corresponds to a sequence { } ( )n n N
u D L

∈
⊆  such 

that: 
 

,n nLu f n N= ∈  

 
From the energy inequality (3 – 1) we have  
 

( )n m n m n m n mu u c L u u c Lu Lu c f f ε− ≤ − − − = − ≤  

 
Then { }n n N

u
∈

 is also a Cauchy sequence in the space2 , 3( )H − − Ω , and converges to 

an element u  in 2 ,3 ( )H Ω . 
 
Then we have: , lim limn n n nLu f Lu f= =   then   Lu f= and  )(LRf ∈     

this means that )(LRf ∈  and )()( LRLR ⊆  then we have that:  
 
  ( ) ( )R L R L=   and )(LR  is closed. 
 
It remains to obtain the density of the set ( )R L   in the space   2, 3( )H − − Ω   when 

)(LDu∈ . 
Therefore we establish an equivalent result which amounts to proving that  

{ }0R⊥ = . 

Let  2, 3( )v H − −∈ Ω  be such that( , ) 0, ( )L u v u D L= ∀ ∈ , that is  

 
 *( , ) 0 , ( )L v u u D L= ∀ ∈ . By the equality *( , ) ( , ) , ( )L v u v Lu u D L= ∀ ∈
we have 2, 3( , ) 0 , ( ), ( )v Lu u D L v H− −= ∀ ∈ ∈ Ω  . 
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From *( , ) 0L v u =  we have that * 0L v =  and by virtue of the inequality (3-2) we 

conclude that 0v =  in the space 2, 3( )H − − Ω  when ( )u D L∈ .Then   ( )R L    is dense 

in 2, 3( )H − − Ω . 

The inequality (3-2) can be proved in a similar way by using the operator: 
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