Gen. Math. Notes, Vol. 27, No. 2, April 2015, pp.123-132
ISSN 2219-7184; Copyright © ICSRS Publication, 2015
www.i-csrs.org
Available free online at http://www.geman.in

Two New Fixed Point Theorems

B.E. Rhoades
Department of Mathematics, Indiana University
Bloomington, IN 47405-7106
E-mail: rhoades@indiana.edu

(Received: 27-8-14 / Accepted: 18-1-15)

Abstract

The purpose of this paper is to prove two theorems which generalize the corresponding results of Khojesteh et al [1].

Keywords: Common Fixed Points, Multivalued Maps.

1 Introduction

Let T be a selfmap of a complete metric space. Of the thousands of papers containing fixed point theorems for such a map, the authors of [1] have categorized such theorems into four broad classes: (1) those for which T has a unique fixed point, and for which $\left\{T^{n} x\right\}$ converges to the fixed point beginning with any $x \in X$; (2) T has a unique fixed point, but $\left\{T^{n} x\right\}$ need not converge for every $x \in X$; (3) T has more than one fixed point, but $\left\{T^{n} x\right\}$ converges for every $x \in X$; and (4) T may have more than one fixed point and $\left\{T^{n} x\right\}$ does not necessarily converge to a fixed point.

The authors of [1] have proved a new fixed point theorem for a single-valued map in category (3). Specifically, Theorem 1 of [1] reads as follows.

Theorem 1.1 Let (X, d) be a complete metric space and let T be a selfmap of X satisfying

$$
\begin{equation*}
d(T x, T y) \leq\left(\frac{d(x, T y)+d(y, T x)}{d(x, T x)+d(y, T y)+1}\right) d(x, y) \tag{1}
\end{equation*}
$$

for all $x, y \in X$. Then
(a) T has at least one fixed point $p \in X$;
(b) $\left\{T^{n} x\right\}$ converges to a fixed point for each $x \in X$;
(c) if p and q are two distinct fixed points of T, then $d(p, q) \geq 1 / 2$.

The second theorem of [1] deals with a multivalued map in category (3), and it will be quoted in the next section.

2 Main Results

The first theorem of this paper extends Theorem 1 to two maps and to a much wider class of maps, while using essentially the same proof technique.

For any map T, the symbol $F(T)$ denotes the set of fixed points of T.
Theorem 2.1 Let (X, d) be a complete metric space, S, T selfmaps of X satisfying

$$
\begin{equation*}
d(S x, T y) \leq N(x, y) m(x, y) \quad \text { for all } \quad x, y \in X \tag{2}
\end{equation*}
$$

where

$$
\begin{gather*}
N(x, y):=[\max \{d(x, y), d(x, S x)+d(y, T y), d(x, T y)+d(y, T x)\}] \div \tag{3}\\
{[d(x, S x)+d(y, T y)+1]}
\end{gather*}
$$

and

$$
\begin{equation*}
m(x, y):=\max \{d(x, y), d(x, S x), d(y, T y),[d(x, T y)+d(y, S x)] / 2\} \tag{4}
\end{equation*}
$$

Then
(a) S and T have at least one common fixed point $p \in X$.
(b) For n even, $\left\{(S T)^{n / 2} x\right\}$ and $\left.T(S T)^{n / 2} x\right\}$ converge to a common fixed point for each $x \in X$.
(c) If p and q are distinct common fixed points of S and T, then $d(p, q) \geq$ $1 / 2$.

The following Lemma will shorten the proof of Theorem 2.
Lemma 2.2 Suppose that S and T satisfy the hypotheses of Theorem 2. Then each fixed point of S is a fixed point of T, and conversely.

Proof of Lemma 1: Let $u \in F(S)$ and suppose that $u \notin F(T)$. From (3),

$$
N(u, u)=\frac{\max \{0,0+d(u, T u), d(u, T u)+0\}}{0+d(u, T u)+1}<1
$$

and, from (4),

$$
m(u, u)=\max \{0,0, d(u, T u),[d(u, T u)+0] / 2\}=d(u, T u) .
$$

Substituting into (2) gives

$$
d(u, T u)<d(u, T u)
$$

a contradiction. Therefore $u \in F(T)$. Similarly, it can be shown that, if $v \in F(T)$, then $v \in F(S)$.

Proof of Theorem 2: Let $x_{0} \in X$ and define $\left\{x_{n}\right\}$ by

$$
\begin{equation*}
x_{2 n+1}=S x_{2 n}, x_{2 n+2}=T x_{2 n+1} \quad \text { for all } \quad n \geq 0 \tag{5}
\end{equation*}
$$

Suppose that there exists a value of n for which $x_{2 n+1}=x_{2 n+2}$. Then, from (5), $x_{2 n+1}=T x_{2 n+1}$ and $x_{2 n+1} \in F(T)$. By Lemma 1, $x_{2 n+1} \in F(S)$, and (a) is satisfied.

Similarly, if there exists a value of n for which $x_{2 n}=x_{2 n+1}$, then $x_{2 n} \in$ $F(S) \cap F(T)$, and again (a) is satisfied.

Therefore we shall assume that

$$
\begin{equation*}
x_{n} \neq x_{n+1} \quad \text { for all } \quad n \geq 0 . \tag{6}
\end{equation*}
$$

From (2),

$$
\begin{equation*}
d\left(x_{2 n+1}, x_{2 n+2}\right)=d\left(S x_{2 n}, T x_{2 n+1}\right) \leq N\left(x_{2 n}, x_{2 n+1}\right) m\left(x_{2 n}, x_{2 n+1}\right) \tag{7}
\end{equation*}
$$

Defining $d_{n}:=d\left(x_{n}, x_{n+1}\right)$, from (3),

$$
\begin{align*}
N\left(x_{2 n}, x_{2 n+1}\right) & =\frac{\max \left\{d_{2 n}, d_{2 n}+d_{2 n+1}, d\left(x_{2 n}, x_{2 n+2}\right)+0\right\}}{d_{2 n}+d_{2 n+1}+1} \\
& =\frac{d_{2 n}+d_{2 n+1}}{d_{2 n}+d_{2 n+1}+1}:=\beta_{2 n} . \tag{8}
\end{align*}
$$

From (4),

$$
\begin{equation*}
\left.m\left(x_{2 n}, x_{2 n+1}\right)=\max \left\{d_{2 n}, d_{2 n}, d_{2 n+1},\left[d\left(x_{2 n}, x_{2 n+2}\right)+0\right] / 2\right\}=\max \left\{d_{2 n}, d_{2 n+1}\right)\right\} \tag{9}
\end{equation*}
$$

Substituting (8) and (9) into (7) gives

$$
\begin{equation*}
d_{2 n+1} \leq \beta_{2 n} \max \left\{d_{2 n}, d_{2 n+1}\right\}=\beta_{2 n} d_{2 n} \tag{10}
\end{equation*}
$$

since $0<\beta_{2 n}<1$ and, from (6), $d_{2 n+1} \neq 0$.
Similarly, it can be shown that

$$
\begin{equation*}
d_{2 n} \leq \beta_{2 n-1} \max \left\{d_{2 n-1}, d_{2 n}\right\}=\beta_{2 n-1} d_{2 n-1} \tag{11}
\end{equation*}
$$

Therefore, from (10) and (11) it follows that

$$
\begin{equation*}
d_{n} \leq \beta_{n-1} \max \left\{d_{n-1}, d_{n}\right\}<d_{n-1} \quad \text { for all } \quad n>0 \tag{12}
\end{equation*}
$$

Lemma 2.3 For each $n>0, \beta_{n}<\beta_{n-1}$.
Proof of Lemma 2: From, (8), $\beta_{n}<\beta_{n-1}$ is equivalent to

$$
\frac{d_{n}+d_{n+1}}{d_{n}+d_{n+1}+1}<\frac{d_{n-1}+d_{n}}{d_{n-1}+d_{n}+1}
$$

Clearing of fractions and simplifying gives $d_{n+1}<d_{n-1}$, which follows from (12).

Returning to the proof of Theorem 2, (12) and Lemma 2 imply that

$$
\begin{equation*}
d_{n} \leq \beta_{1} d_{n-1} \leq \beta_{1}^{n} d_{0} \tag{13}
\end{equation*}
$$

For any positive integers m, n with $m>n$, it follows from (13) that

$$
\begin{aligned}
d\left(x_{n}, x_{m}\right) \leq & \sum_{i=n}^{m-1} d_{i} \leq \sum_{i=n}^{m-1} \beta_{1}^{i} d_{0} \\
& =\beta_{1}^{n} d_{0} \sum_{j=0}^{m-n-1} \beta_{1}^{j} \leq \frac{\beta_{1}^{n}}{1-\beta_{1}} d_{0} .
\end{aligned}
$$

Therefore $\left\{x_{n}\right\}$ is Cauchy. Since X is complete, there exists a point $p \in X$ such that $\lim _{n} x_{n}=p$.

Using (2) - (4), (8), and the fact that each $\beta_{n}<\beta_{1}$, gives

$$
\begin{gather*}
d\left(x_{2 n+1}, T p\right)=d\left(S x_{2 n}, T p\right)<\beta_{1} \max \left\{d\left(x_{2 n}, p\right), d\left(x_{2 n}, x_{2 n+1}\right)\right. \tag{14}\\
\left.d(p, T p),\left[d\left(x_{2 n}, T p\right)+d\left(p, x_{2 n+1}\right)\right] / 2\right\}
\end{gather*}
$$

Taking the limit of both sides of (14) as $n \rightarrow \infty$ one obtains

$$
d(p, T p) \leq \beta_{1} d(p, T p)
$$

which implies that $p=T p$. From Lemma $1, p \in F(S)$, and (a) is satisfied.
To prove (b), merely observe that, from (5) and the fact that x_{0} is arbitrary, we may write $x_{2 n+1}=(S T)^{n / 2} x$ and $x_{2 n+2}=T(S T)^{n / 2} x$.

To prove (c), suppose that $p, q \in F(S) \cap F(T)$ with $p \neq q$.
From (3) and (4), $N(p, q)=2 d(p, q)$ and $m(p, q)=d(p, q)$. Thus (2) becomes

$$
d(p, q) \leq 2 d^{2}(p, q)
$$

which implies (c).

Corollary 2.4 Let (x, d) be a complete metric space, T a selfmap of X satisfying (2) - (4) with $S=T$.

Then
(a) T has at least one fixed point.
(b) $\left\{T^{n} x\right\}$ converges to a fixed point of T.
(c) If p and q are distinct fixed points of T, then $d(p, q) \geq 1 / 2$.

Proof: Set $S=T$ in Theorem 2.

Note that Theorem 1 is a special case of Corollary 1, since (1) is a special case of (2) with $S=T$.

For the balance of this paper we shall need the following notations:
$C B(X)=\{\mathrm{A}: \mathrm{A}$ is a nonempty closed and bounded subset of $X\}$,
$D(A, B)=\inf \{d(a, b): a \in A, b \in B\}$,
$\delta(A, B)=\sup \{d(a, b): a \in A, b \in B\}$,
$\left.H(A, B)=\max \left\{\sup _{x \in B} D(x, A), \sup _{x \in A} D(x, B)\right)\right\}$.
For any multivalued mapping, the statement $p \in F(T)$ means that $p \in T p$. The following is the statement of Theorem 5 of [1].

Theorem 2.5 Let (X, d) be a complete metric space and let T be a multivalued mapping from X into $C B(X)$. Let T satisfy the following:

$$
H(T x, T y) \leq\left(\frac{D(x, T y)+D(y, T X)}{\delta(x, T x)+\delta(y, T y+1}\right) d(x, y)
$$

for all $x, y \in X$. Then T has a fixed point $\dot{x} \in X$.
The following result generalizes Theorem 3.
Theorem 2.6 Let (X, d) be a complete metric space, $T: X \rightarrow C L(X)$ satisfying, for all $x, y \in X$,

$$
\begin{equation*}
H(S x, T y) \leq N(x, y) m(x, y) \tag{15}
\end{equation*}
$$

where

$$
\begin{gather*}
N(x, y):=[\max \{d(x, y), D(x, S x)+D(y, T y), D(x, T y)+D(y, S x)] \div \tag{16}\\
{[\delta(x, S x)+\delta(y, T y)+1],}
\end{gather*}
$$

and

$$
\begin{equation*}
m(x, y)=\max \{d(x, y), D(x, S x), D(y, T y),[D(x, T y)+D(y, S x)] / 2\} \tag{17}
\end{equation*}
$$

Then
(a) S and T have at least one common fixed point $p \in X$.
(b) For n even, $\left\{(S T)^{n / 2} x\right\}$ and $\left.T(S T)^{n / 2} x\right\}$ converge to a common fixed point for each $x \in X$.
(c) If p and q are distinct common fixed points of S and T, then $d(p, q) \geq$ $1 / 2$.

We shall first prove the following Lemma.
Lemma 2.7 If S and T satisfy the hypotheses of Theorem 4, then every fixed point of S is a fixed point of T, and conversely.

Proof of Lemma 3: Suppose that p is a fixed point of S. Using (15) and the definition of H,

$$
D(p, T) \leq H(p, T p) \leq H(S p, T p) \leq N(p, p) m(p, p)
$$

Using (16),

$$
\begin{aligned}
N(p, p) & =\frac{\max \{d(p, p), D(p, S p)+D(p, T p), D(p, T p)+D(p, S p)\}}{\delta(p, S p)+\delta(p, T p)+1} \\
& \leq \frac{D(p, T p)}{D(p, T p)+1}:=\beta<1
\end{aligned}
$$

and, from (17),

$$
\begin{aligned}
m(p, p) & =\max \{d(p, p), D(p, S p)+D(p, T p),[d(p, T p)+d(p, S p)] / 2\} \\
& =D(p, T p)
\end{aligned}
$$

Therefore

$$
D(p, T p) \leq \beta D(p, T p)
$$

which implies that p is also a fixed point of T.
In a similar manner it can be shown that, if $p \in T p$, then $p \in S p$.
Returning to the proof of Theorem 4, part (a), let $x_{0} \in X, x_{1} \in T x_{0}$.
The following Lemma is an observation of Nadler [2].
Lemma 2.8 Let $A, B \in C B(X)$, and let $x \in A$. Then, for each $\alpha>0$, there exists a $y \in B$ such that

$$
d(x, y) \leq H(A, B)+\alpha
$$

Using Lemma 4 , for any $0<h_{1}<1$, choose $x_{2} \in T x_{1}$ so that

$$
\begin{aligned}
d\left(x_{1}, x_{2}\right) & \leq H\left(S x_{0}, T x_{1}\right)+\left(\frac{1}{h_{1}}-1\right) H\left(S x_{0}, T x_{1}\right) \\
& =\frac{1}{h_{1}} H\left(S x_{0}, T x_{1}\right)
\end{aligned}
$$

In a similar manner, for any $0<h_{2}<1$ choose $x_{3} \in S x_{2}$ so that

$$
d\left(x_{2}, x_{3}\right) \leq \frac{1}{h_{2}} H\left(S x_{2}, T x_{1}\right)
$$

and, in general, for any $0<h_{2 n}<1$, choose $x_{2 n+1} \in S x_{2 n}$ so that

$$
\begin{equation*}
d\left(x_{2 n}, x_{2 n+1}\right) \leq \frac{1}{h_{2 n}} H\left(S x_{2 n}, T x_{2 n-1}\right) \tag{18}
\end{equation*}
$$

and, for any $0<h_{2 n+1}<1$, choose $x_{2 n+1} \in T x_{2 n+1}$ so that

$$
\begin{equation*}
d\left(x_{2 n+1}, x_{2 n+2}\right) \leq \frac{1}{h_{2 n+1}} H\left(S x_{2 n}, T x_{2 n+1}\right) . \tag{19}
\end{equation*}
$$

Without loss of generality we may assume that $H\left(S x_{2 n}, T x_{2 n-1}\right) \neq 0$ and $H\left(S x_{2 n}, T x_{2 n+1}\right) \neq 0$ for each n. For, if there exist an n such that $\left(S x_{2 n}, T x_{2 n-1}\right)=0$, then $S x_{2 n}=T x_{2 n-1}$, which implies that $x_{2 n} \in S x_{2 n}$, since $x_{2 n} \in T x_{2 n-1}$, and $x_{2 n}$ is a fixed point of S, hence of T by Lemma 3 . Similar remarks apply if there exists an n for which $H\left(S x_{2 n}, T x_{2 n+1}\right)=0$. We may also assume that $x_{n} \neq x_{n+1}$ for each n. For, if there exists an n for which $x_{2 n}=x_{2 n+1}$, then, since $x_{2 n+1} \in S x_{2 n}, x_{2 n+1} \in F(S)$, and by Lemma 3, $x_{2 n} \in F(T)$. Similarly, $x_{2 n+1}=x_{2 n+2}$ for any n implies that $x_{2 n+1} \in F(T) \cap F(S)$.

The h_{n} are defined by $h_{n}=\sqrt{\beta_{n}}$, where

$$
\begin{equation*}
\beta_{n}:=\frac{d_{n-1}+d_{n}}{d_{n-1}+d_{n}+1} . \tag{20}
\end{equation*}
$$

From (16) and (20),

$$
\begin{align*}
N\left(x_{2 n}, x_{2 n-1}\right) & =\frac{\max \left\{d_{2 n-1}, D\left(x_{2 n}, S x_{2 n}\right)+D\left(x_{2 n-1}, T x_{2 n_{1}}\right), D\left(x_{2 n}, T x_{2 n-1}\right)+D\left(x_{2 n-1}, S x_{2 n}\right)\right\}}{\delta\left(x_{2 n}, S x_{2 n}\right)+\delta\left(x_{2 n-1}, T x_{2 n-1}\right)+1} \\
& \leq \frac{\max \left\{d_{2 n-1}, d_{2 n}+d_{2 n-1}, 0+d\left(x_{2 n-1}, x_{2 n+1}\right)\right\}}{d_{2 n}+d_{2 n-1}+1} \\
& =\frac{d_{2 n-1}+d_{2 n}}{d_{2 n-1}+d_{2 n}+1}=\beta_{2 n} . \tag{21}
\end{align*}
$$

$$
\begin{aligned}
& m\left(x_{2 n}, x_{2 n-1}\right)= \max \left\{d_{2 n-1}, D\left(x_{2 n}, S x_{2 n}\right), D\left(x_{2 n-1}, T x_{2 n-1}\right)\right. \\
& {\left.\left[D\left(x_{2 n}, T x_{2 n-1}\right)+D\left(x_{2 n-1}, S x_{2 n}\right)\right] / 2\right\} } \\
& \leq \max \left\{d_{2 n-1}, d_{2 n}, d_{2 n-1},\left[0+d\left(x_{2 n-1}, x_{2 n+1}\right)\right] / 2\right\}
\end{aligned}
$$

Therefore

$$
\begin{equation*}
m\left(x_{2 n}, x_{2 n-1}\right) \leq \max \left\{d_{2 n-1}, d_{2 n}\right\} \tag{22}
\end{equation*}
$$

Using (16), (21), and (22) in (19) yields

$$
d_{2 n} \leq \frac{1}{h_{2 n}} H\left(S x_{2 n}, T x_{2 n-1}\right) \leq \sqrt{\beta_{2 n}} \max \left\{d_{2 n-1}, d_{2 n}\right\}
$$

Since each $x_{n} \neq x_{n+1}, d_{2 n}>0$, the above inequality implies that

$$
\begin{equation*}
d_{2 n} \leq \sqrt{\beta_{2 n}} d_{2 n_{1}} \tag{23}
\end{equation*}
$$

A similar computation verifies that

$$
\begin{equation*}
d_{2 n+1} \leq \sqrt{\beta_{2 n+1}} d_{2 n} \tag{24}
\end{equation*}
$$

From inequalities (23) and (24), for all $n>0$,

$$
\begin{equation*}
d_{n+1} \leq \sqrt{\beta_{n+1}} d_{n} \tag{25}
\end{equation*}
$$

Therefore $\left\{d_{n}\right\}$ is a monotone decreasing positive sequence, so it has a limit $\ell \geq 0$.

Taking the limit of both sides of (25) as $n \rightarrow \infty$, and using (20), it follows that $\ell=0$.

For any integers $m, n>0$, using (25) and the triangular inequality,

$$
d\left(x_{n}, x_{m}\right) \leq \sum_{k=n}^{m-1} d_{k} \leq \sum_{k=n}^{m-1}\left(\beta_{k-1} \cdots \beta_{0}\right) d_{0}=d_{0} \sum_{k=n}^{m-1} a_{k}
$$

where $a_{k}:=\beta_{k-1} \cdots \beta_{0}$. Since $\lim _{k} a_{k+1} / a_{k}=\lim _{k} \beta_{k}=0$, the series converges, which implies that $\left\{x_{n}\right\}$ is a Cauchy sequence, hence convergent to some point p, since X is complete.

$$
\begin{align*}
D(p, T p) & \leq d\left(p, x_{2 n+1}\right)+D\left(x_{2 n+1}, T p\right) \tag{26}\\
& \leq d\left(p, x_{2 n+1}\right)+H\left(S x_{2 n}, T p\right)
\end{align*}
$$

Using (16),

$$
\begin{align*}
N\left(x_{2 n}, p\right)= & \max \left\{d\left(x_{2 n}, p\right), D\left(x_{2 n}, S x_{2 n}\right)+D(p, T p),\right. \tag{27}\\
& \left.D\left(x_{2 n}, T p\right)+d\left(p, S x_{2 n}\right)\right\} \div \\
\leq & {\left[\delta\left(x_{2 n}, S x_{2 n}\right)+\delta(p, T p)+1\right] } \\
\leq & \max \left\{d x_{2 n}, p\right), d\left(x_{2 n}, x_{2 n+1}\right)+d(p, T p), \\
& \left.d\left(x_{2 n}, T p\right)+d\left(p, x_{2 n+1}\right)\right\} \div \\
& {\left[d\left(x_{2 n}, x_{2 n+1}\right)+d(p, T p)+1\right] }
\end{align*}
$$

From (16),

$$
\begin{gather*}
m\left(x_{2 n}, p\right)=\max \left\{d\left(x_{2 n}, p\right), D\left(x_{2 n}, S x_{2 n}\right), D(p, T p),\right. \tag{28}\\
\left.\left[D\left(x_{2 n}, T p\right)+D\left(p, S x_{2 n}\right)\right] / 2\right\} \\
\leq \max \left\{d\left(x_{2 n}, p\right), d_{2 n}, D(p, T p)\right. \\
\left.\left[d\left(x_{2 n}, T p\right)+d\left(p, x_{2 n+1}\right)\right] / 2\right\}
\end{gather*}
$$

Substituting (27) and (28) into (26), using (15), and taking the limit of both sides as $n \rightarrow \infty$, one obtains

$$
D(p, T p) \leq)+\frac{d(p, T p)}{d(p, T p)+1} D(p, T p)
$$

which implies that $D(p, T p)=0$, and hence that $p \in F(T)$. From Lemma 3, $p \in F(S)$.

The proof of part (b) uses the same argument as that of the proof of part (b) in Theorem 2.
(b). Suppose that p and q are distinct common fixed points of S and T. Then

$$
\begin{align*}
d(p, q)= & D(p, q) \leq D(p, S p)+D(S p, T q)+D(q, T q) \tag{29}\\
& \leq H(S p, T q)
\end{align*}
$$

Using (16),

$$
\begin{aligned}
N(p, q) & =\max \left\{\frac{d(p, q), 0, D(p, T q)+D(q, S p)}{\delta(p, S p)+\delta(q, T q)+1}\right\} \\
& \leq \max \left\{\frac{d(p, q), d(p, q)+d(q, p)}{d(p, S p)+d(q, T q)+1}\right\} \\
& =2 d(p, q)
\end{aligned}
$$

Using (17),

$$
\begin{aligned}
m(p, q) & =\max \{d(p, q), 0,0,[D(p, T q)+D(q, S p)] / 2\} \\
& =d(p, q)
\end{aligned}
$$

Using (15) and substituting it into (29) gives

$$
d(p, q) \leq 2 d^{2}(p, q)
$$

which yields the result.
Theorem 5 of [1] is a special case of Theorem 4 .
On page 3, formula (24) of [1] has an error. The expression

$$
\left(1-\frac{1}{h_{1}}\right)
$$

should read

$$
\left(\frac{1}{h_{1}}-1\right) .
$$

Also, formula (27) of [1] is incorrect, since $0<\beta_{n}<1$. However, the remaining argument remains valid with β_{n} replaced by $\sqrt{\beta_{n}}$.

References

[1] F. Khojasteh, M. Abbas and S. Costache, Two new types of fixed point theorems in complete metric spaces, Abstract and Applied Analysis, Article ID 3258040(2014), 5 pages.
[2] S.B. Nadler, Jr., Multi-valued contraction mappings, Pacific J Math., 30(1969), 475-488.

