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Abstract
The purpose of this paper is to prove two theorems which generalize the

corresponding results of Khojesteh et al [1].
Keywords: Common Fixed Points, Multivalued Maps.

1 Introduction

Let T be a selfmap of a complete metric space. Of the thousands of papers
containing fixed point theorems for such a map, the authors of [1] have cat-
egorized such theorems into four broad classes: (1) those for which T has a
unique fixed point, and for which {T nx}converges to the fixed point beginning
with any x ∈ X; (2) T has a unique fixed point, but {T nx} need not converge
for every x ∈ X; (3) T has more than one fixed point, but {T nx} converges
for every x ∈ X; and (4) T may have more than one fixed point and {T nx}
does not necessarily converge to a fixed point.

The authors of [1] have proved a new fixed point theorem for a single-valued
map in category (3). Specifically, Theorem 1 of [1] reads as follows.

Theorem 1.1 Let (X, d) be a complete metric space and let T be a selfmap
of X satisfying

d(Tx, Ty) ≤
( d(x, Ty) + d(y, Tx)

d(x, Tx) + d(y, Ty) + 1

)
d(x, y) (1)

for all x, y ∈ X. Then
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(a) T has at least one fixed point p ∈ X;
(b) {T nx} converges to a fixed point for each x ∈ X;
(c) if p and q are two distinct fixed points of T , then d(p, q) ≥ 1/2.

The second theorem of [1] deals with a multivalued map in category (3),
and it will be quoted in the next section.

2 Main Results

The first theorem of this paper extends Theorem 1 to two maps and to a much
wider class of maps, while using essentially the same proof technique.

For any map T , the symbol F (T ) denotes the set of fixed points of T .

Theorem 2.1 Let (X, d) be a complete metric space, S, T selfmaps of X
satisfying

d(Sx, Ty) ≤ N(x, y)m(x, y) for all x, y ∈ X, (2)

where

N(x, y) :=[max{d(x, y), d(x, Sx) + d(y, Ty), d(x, Ty) + d(y, Tx)}]÷ (3)

[d(x, Sx) + d(y, Ty) + 1]

and

m(x, y) := max{d(x, y), d(x, Sx), d(y, Ty), [d(x, Ty) + d(y, Sx)]/2}. (4)

Then

(a) S and T have at least one common fixed point p ∈ X.
(b) For n even, {(ST )n/2x} and T (ST )n/2x} converge to a common fixed

point for each x ∈ X.
(c) If p and q are distinct common fixed points of S and T , then d(p, q) ≥

1/2.

The following Lemma will shorten the proof of Theorem 2.

Lemma 2.2 Suppose that S and T satisfy the hypotheses of Theorem 2.
Then each fixed point of S is a fixed point of T , and conversely.

Proof of Lemma 1: Let u ∈ F (S) and suppose that u /∈ F (T ). From
(3),

N(u, u) =
max{0, 0 + d(u, Tu), d(u, Tu) + 0}

0 + d(u, Tu) + 1
< 1,
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and, from (4),

m(u, u) = max{0, 0, d(u, Tu), [d(u, Tu) + 0]/2} = d(u, Tu).

Substituting into (2) gives

d(u, Tu) < d(u, Tu),

a contradiction. Therefore u ∈ F (T ). Similarly, it can be shown that, if
v ∈ F (T ), then v ∈ F (S).

Proof of Theorem 2: Let x0 ∈ X and define {xn} by

x2n+1 = Sx2n, x2n+2 = Tx2n+1 for all n ≥ 0. (5)

Suppose that there exists a value of n for which x2n+1 = x2n+2. Then, from
(5), x2n+1 = Tx2n+1 and x2n+1 ∈ F (T ). By Lemma 1, x2n+1 ∈ F (S), and (a)
is satisfied.

Similarly, if there exists a value of n for which x2n = x2n+1, then x2n ∈
F (S) ∩ F (T ), and again (a) is satisfied.

Therefore we shall assume that

xn 6= xn+1 for all n ≥ 0. (6)

From (2),

d(x2n+1, x2n+2) = d(Sx2n, Tx2n+1) ≤ N(x2n, x2n+1)m(x2n, x2n+1). (7)

Defining dn := d(xn, xn+1), from (3),

N(x2n, x2n+1) =
max{d2n, d2n + d2n+1, d(x2n, x2n+2) + 0}

d2n + d2n+1 + 1

=
d2n + d2n+1

d2n + d2n+1 + 1
:= β2n. (8)

From (4),

m(x2n, x2n+1) = max{d2n, d2n, d2n+1, [d(x2n, x2n+2) + 0]/2} = max{d2n, d2n+1)}.
(9)

Substituting (8) and (9) into (7) gives

d2n+1 ≤ β2n max{d2n, d2n+1} = β2nd2n, (10)
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since 0 < β2n < 1 and, from (6), d2n+1 6= 0.
Similarly, it can be shown that

d2n ≤ β2n−1 max{d2n−1, d2n} = β2n−1d2n−1. (11)

Therefore, from (10) and (11) it follows that

dn ≤ βn−1 max{dn−1, dn} < dn−1 for all n > 0. (12)

Lemma 2.3 For each n > 0, βn < βn−1.

Proof of Lemma 2: From, (8), βn < βn−1 is equivalent to

dn + dn+1

dn + dn+1 + 1
<

dn−1 + dn
dn−1 + dn + 1

.

Clearing of fractions and simplifying gives dn+1 < dn−1, which follows from
(12).

Returning to the proof of Theorem 2, (12) and Lemma 2 imply that

dn ≤ β1dn−1 ≤ βn
1 d0. (13)

For any positive integers m,n with m > n, it follows from (13) that

d(xn, xm) ≤
m−1∑
i=n

di ≤
m−1∑
i=n

βi
1d0

= βn
1 d0

m−n−1∑
j=0

βj
1 ≤

βn
1

1− β1
d0.

Therefore {xn} is Cauchy. Since X is complete, there exists a point p ∈ X
such that limn xn = p.

Using (2) - (4), (8), and the fact that each βn < β1, gives

d(x2n+1, Tp) = d(Sx2n, Tp) < β1 max{d(x2n, p), d(x2n, x2n+1), (14)

d(p, Tp), [d(x2n, Tp) + d(p, x2n+1)]/2}.

Taking the limit of both sides of (14) as n→∞ one obtains

d(p, Tp) ≤ β1d(p, Tp),

which implies that p = Tp. From Lemma 1, p ∈ F (S), and (a) is satisfied.
To prove (b), merely observe that, from (5) and the fact that x0 is arbitrary,

we may write x2n+1 = (ST )n/2x and x2n+2 = T (ST )n/2x.
To prove (c), suppose that p, q ∈ F (S) ∩ F (T ) with p 6= q.
From (3) and (4), N(p, q) = 2d(p, q) and m(p, q) = d(p, q). Thus (2) be-

comes
d(p, q) ≤ 2d2(p, q),

which implies (c).
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Corollary 2.4 Let (x, d) be a complete metric space, T a selfmap of X
satisfying (2)− (4) with S = T .

Then
(a) T has at least one fixed point.
(b) {T nx} converges to a fixed point of T .
(c) If p and q are distinct fixed points of T , then d(p, q) ≥ 1/2.

Proof: Set S = T in Theorem 2.

Note that Theorem 1 is a special case of Corollary 1, since (1) is a special
case of (2) with S = T .

For the balance of this paper we shall need the following notations:

CB(X) = {A : A is a nonempty closed and bounded subset of X},
D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B},
δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B},
H(A,B) = max{supx∈BD(x,A), supx∈AD(x,B))}.
For any multivalued mapping, the statement p ∈ F (T ) means that p ∈ Tp.

The following is the statement of Theorem 5 of [1].

Theorem 2.5 Let (X, d) be a complete metric space and let T be a multi-
valued mapping from X into CB(X). Let T satisfy the following:

H(Tx, Ty) ≤
(D(x, Ty) +D(y, TX)

δ(x, Tx) + δ(y, Ty + 1

)
d(x, y)

for all x, y ∈ X. Then T has a fixed point ẋ ∈ X.

The following result generalizes Theorem 3.

Theorem 2.6 Let (X, d) be a complete metric space, T : X → CL(X)
satisfying, for all x, y ∈ X,

H(Sx, Ty) ≤ N(x, y)m(x, y), (15)

where

N(x, y) :=[max{d(x, y), D(x, Sx) +D(y, Ty), D(x, Ty) +D(y, Sx)]÷ (16)

[δ(x, Sx) + δ(y, Ty) + 1],

and

m(x, y) = max{d(x, y), D(x, Sx), D(y, Ty), [D(x, Ty) +D(y, Sx)]/2}, (17)
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Then
(a) S and T have at least one common fixed point p ∈ X.
(b) For n even, {(ST )n/2x} and T (ST )n/2x} converge to a common fixed

point for each x ∈ X.
(c) If p and q are distinct common fixed points of S and T , then d(p, q) ≥

1/2.

We shall first prove the following Lemma.

Lemma 2.7 If S and T satisfy the hypotheses of Theorem 4, then every
fixed point of S is a fixed point of T , and conversely.

Proof of Lemma 3: Suppose that p is a fixed point of S. Using (15) and the
definition of H,

D(p, T ) ≤ H(p, Tp) ≤ H(Sp, Tp) ≤ N(p, p)m(p, p).

Using (16),

N(p, p) =
max{d(p, p), D(p, Sp) +D(p, Tp), D(p, Tp) +D(p, Sp)}

δ(p, Sp) + δ(p, Tp) + 1

≤ D(p, Tp)

D(p, Tp) + 1
:= β < 1,

and, from (17),

m(p, p) = max{d(p, p), D(p, Sp) +D(p, Tp), [d(p, Tp) + d(p, Sp)]/2}
= D(p, Tp).

Therefore
D(p, Tp) ≤ βD(p, Tp),

which implies that p is also a fixed point of T .

In a similar manner it can be shown that, if p ∈ Tp, then p ∈ Sp.

Returning to the proof of Theorem 4, part (a), let x0 ∈ X, x1 ∈ Tx0.

The following Lemma is an observation of Nadler [2].

Lemma 2.8 Let A,B ∈ CB(X), and let x ∈ A. Then, for each α > 0,
there exists a y ∈ B such that

d(x, y) ≤ H(A,B) + α.
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Using Lemma 4, for any 0 < h1 < 1, choose x2 ∈ Tx1 so that

d(x1, x2) ≤ H(Sx0, Tx1) +
( 1

h1
− 1
)
H(Sx0, Tx1)

=
1

h1
H(Sx0, Tx1).

In a similar manner, for any 0 < h2 < 1 choose x3 ∈ Sx2 so that

d(x2, x3) ≤
1

h2
H(Sx2, Tx1),

and, in general, for any 0 < h2n < 1, choose x2n+1 ∈ Sx2n so that

d(x2n, x2n+1) ≤
1

h2n
H(Sx2n, Tx2n−1), (18)

and, for any 0 < h2n+1 < 1, choose x2n+1 ∈ Tx2n+1 so that

d(x2n+1, x2n+2) ≤
1

h2n+1

H(Sx2n, Tx2n+1). (19)

Without loss of generality we may assume that H(Sx2n, Tx2n−1) 6= 0
and H(Sx2n, Tx2n+1) 6= 0 for each n. For, if there exist an n such that
(Sx2n, Tx2n−1) = 0, then Sx2n = Tx2n−1, which implies that x2n ∈ Sx2n,
since x2n ∈ Tx2n−1, and x2n is a fixed point of S, hence of T by Lemma 3.
Similar remarks apply if there exists an n for which H(Sx2n, Tx2n+1) = 0.
We may also assume that xn 6= xn+1 for each n. For, if there exists an
n for which x2n = x2n+1, then, since x2n+1 ∈ Sx2n, x2n+1 ∈ F (S), and by
Lemma 3, x2n ∈ F (T ). Similarly, x2n+1 = x2n+2 for any n implies that
x2n+1 ∈ F (T ) ∩ F (S).

The hn are defined by hn =
√
βn, where

βn :=
dn−1 + dn

dn−1 + dn + 1
. (20)

From (16) and (20),

N(x2n, x2n−1) =
max{d2n−1, D(x2n, Sx2n) +D(x2n−1, Tx2n1), D(x2n, Tx2n−1) +D(x2n−1, Sx2n)}

δ(x2n, Sx2n) + δ(x2n−1, Tx2n−1) + 1

≤ max{d2n−1, d2n + d2n−1, 0 + d(x2n−1, x2n+1)}
d2n + d2n−1 + 1

=
d2n−1 + d2n

d2n−1 + d2n + 1
= β2n. (21)
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m(x2n, x2n−1) = max{d2n−1, D(x2n, Sx2n), D(x2n−1, Tx2n−1),

[D(x2n, Tx2n−1) +D(x2n−1, Sx2n)]/2}
≤ max{d2n−1, d2n, d2n−1, [0 + d(x2n−1, x2n+1)]/2}.

Therefore
m(x2n, x2n−1) ≤ max{d2n−1, d2n}. (22)

Using (16), (21), and (22) in (19) yields

d2n ≤
1

h2n
H(Sx2n, Tx2n−1) ≤

√
β2n max{d2n−1, d2n}.

Since each xn 6= xn+1, d2n > 0, the above inequality implies that

d2n ≤
√
β2nd2n1 . (23)

A similar computation verifies that

d2n+1 ≤
√
β2n+1d2n. (24)

From inequalities (23) and (24), for all n > 0,

dn+1 ≤
√
βn+1dn. (25)

Therefore {dn} is a monotone decreasing positive sequence, so it has a limit
` ≥ 0.

Taking the limit of both sides of (25) as n→∞, and using (20), it follows
that ` = 0.

For any integers m,n > 0, using (25) and the triangular inequality,

d(xn, xm) ≤
m−1∑
k=n

dk ≤
m−1∑
k=n

(βk−1 · · · β0)d0 = d0

m−1∑
k=n

ak,

where ak := βk−1 · · · β0. Since limk ak+1/ak = limk βk = 0, the series converges,
which implies that {xn} is a Cauchy sequence, hence convergent to some point
p, since X is complete.

D(p, Tp) ≤ d(p, x2n+1) +D(x2n+1, Tp) (26)

≤ d(p, x2n+1) +H(Sx2n, Tp).

Using (16),

N(x2n, p) = max{d(x2n, p), D(x2n, Sx2n) +D(p, Tp), (27)

D(x2n, Tp) + d(p, Sx2n)}÷
[δ(x2n, Sx2n) + δ(p, Tp) + 1]

≤ max{dx2n, p), d(x2n, x2n+1) + d(p, Tp),

d(x2n, Tp) + d(p, x2n+1)}÷
[d(x2n, x2n+1) + d(p, Tp) + 1]
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From (16),

m(x2n, p) = max{d(x2n, p), D(x2n, Sx2n), D(p, Tp), (28)

[D(x2n, Tp) +D(p, Sx2n)]/2}
≤ max{d(x2n, p), d2n, D(p, Tp),

[d(x2n, Tp) + d(p, x2n+1)]/2}.

Substituting (27) and (28) into (26), using (15), and taking the limit of
both sides as n→∞, one obtains

D(p, Tp) ≤) +
d(p, Tp)

d(p, Tp) + 1
D(p, Tp),

which implies that D(p, Tp) = 0, and hence that p ∈ F (T ). From Lemma 3,
p ∈ F (S).

The proof of part (b) uses the same argument as that of the proof of part
(b) in Theorem 2.

(b). Suppose that p and q are distinct common fixed points of S and T .
Then

d(p, q) =D(p, q) ≤ D(p, Sp) +D(Sp, Tq) +D(q, T q) (29)

≤ H(Sp, Tq).

Using (16),

N(p, q) = max
{d(p, q), 0, D(p, Tq) +D(q, Sp)

δ(p, Sp) + δ(q, T q) + 1

}
≤ max

{d(p, q), d(p, q) + d(q, p)

d(p, Sp) + d(q, T q) + 1

}
= 2d(p, q).

Using (17),

m(p, q) = max{d(p, q), 0, 0, [D(p, Tq) +D(q, Sp)]/2}
= d(p, q).

Using (15) and substituting it into (29) gives

d(p, q) ≤ 2d2(p, q),

which yields the result.
Theorem 5 of [1] is a special case of Theorem 4 .
On page 3, formula (24) of [1] has an error. The expression(

1− 1

h1

)
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should read ( 1

h1
− 1
)
.

Also, formula (27) of [1] is incorrect, since 0 < βn < 1. However, the
remaining argument remains valid with βn replaced by

√
βn.
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