

Gen. Math. Notes, Vol. 27, No. 2, April 2015, pp.123-132 ISSN 2219-7184; Copyright ©ICSRS Publication, 2015 www.i-csrs.org Available free online at http://www.geman.in

Two New Fixed Point Theorems

B.E. Rhoades

Department of Mathematics, Indiana University Bloomington, IN 47405-7106 E-mail: rhoades@indiana.edu

(Received: 27-8-14 / Accepted: 18-1-15)

Abstract

The purpose of this paper is to prove two theorems which generalize the corresponding results of Khojesteh et al [1].

Keywords: Common Fixed Points, Multivalued Maps.

1 Introduction

Let T be a selfmap of a complete metric space. Of the thousands of papers containing fixed point theorems for such a map, the authors of [1] have categorized such theorems into four broad classes: (1) those for which T has a unique fixed point, and for which $\{T^n x\}$ converges to the fixed point beginning with any $x \in X$; (2) T has a unique fixed point, but $\{T^n x\}$ need not converge for every $x \in X$; (3) T has more than one fixed point, but $\{T^n x\}$ converges for every $x \in X$; and (4) T may have more than one fixed point and $\{T^n x\}$ does not necessarily converge to a fixed point.

The authors of [1] have proved a new fixed point theorem for a single-valued map in category (3). Specifically, Theorem 1 of [1] reads as follows.

Theorem 1.1 Let (X, d) be a complete metric space and let T be a selfmap of X satisfying

$$d(Tx, Ty) \le \left(\frac{d(x, Ty) + d(y, Tx)}{d(x, Tx) + d(y, Ty) + 1}\right) d(x, y)$$
(1)

for all $x, y \in X$. Then

- (a) T has at least one fixed point $p \in X$;
- (b) $\{T^n x\}$ converges to a fixed point for each $x \in X$;
- (c) if p and q are two distinct fixed points of T, then $d(p,q) \ge 1/2$.

The second theorem of [1] deals with a multivalued map in category (3), and it will be quoted in the next section.

2 Main Results

The first theorem of this paper extends Theorem 1 to two maps and to a much wider class of maps, while using essentially the same proof technique.

For any map T, the symbol F(T) denotes the set of fixed points of T.

Theorem 2.1 Let (X, d) be a complete metric space, S, T selfmaps of X satisfying

$$d(Sx, Ty) \le N(x, y)m(x, y) \quad \text{for all} \quad x, y \in X, \tag{2}$$

where

$$N(x,y) := [max\{d(x,y), d(x,Sx) + d(y,Ty), d(x,Ty) + d(y,Tx)\}] \div (3)$$
$$[d(x,Sx) + d(y,Ty) + 1]$$

and

$$m(x,y) := \max\{d(x,y), d(x,Sx), d(y,Ty), [d(x,Ty) + d(y,Sx)]/2\}.$$
 (4)

Then

(a) S and T have at least one common fixed point $p \in X$.

(b) For *n* even, $\{(ST)^{n/2}x\}$ and $T(ST)^{n/2}x\}$ converge to a common fixed point for each $x \in X$.

(c) If p and q are distinct common fixed points of S and T, then $d(p,q) \ge 1/2$.

The following Lemma will shorten the proof of Theorem 2.

Lemma 2.2 Suppose that S and T satisfy the hypotheses of Theorem 2. Then each fixed point of S is a fixed point of T, and conversely.

Proof of Lemma 1: Let $u \in F(S)$ and suppose that $u \notin F(T)$. From (3),

$$N(u,u) = \frac{max\{0, 0 + d(u, Tu), d(u, Tu) + 0\}}{0 + d(u, Tu) + 1} < 1,$$

and, from (4),

 $m(u, u) = \max\{0, 0, d(u, Tu), [d(u, Tu) + 0]/2\} = d(u, Tu).$

Substituting into (2) gives

$$d(u, Tu) < d(u, Tu),$$

a contradiction. Therefore $u \in F(T)$. Similarly, it can be shown that, if $v \in F(T)$, then $v \in F(S)$.

Proof of Theorem 2: Let $x_0 \in X$ and define $\{x_n\}$ by

$$x_{2n+1} = Sx_{2n}, x_{2n+2} = Tx_{2n+1} \quad \text{for all} \quad n \ge 0.$$
(5)

Suppose that there exists a value of n for which $x_{2n+1} = x_{2n+2}$. Then, from (5), $x_{2n+1} = Tx_{2n+1}$ and $x_{2n+1} \in F(T)$. By Lemma 1, $x_{2n+1} \in F(S)$, and (a) is satisfied.

Similarly, if there exists a value of n for which $x_{2n} = x_{2n+1}$, then $x_{2n} \in F(S) \cap F(T)$, and again (a) is satisfied.

Therefore we shall assume that

$$x_n \neq x_{n+1}$$
 for all $n \ge 0.$ (6)

From (2),

$$d(x_{2n+1}, x_{2n+2}) = d(Sx_{2n}, Tx_{2n+1}) \le N(x_{2n}, x_{2n+1})m(x_{2n}, x_{2n+1}).$$
(7)

Defining $d_n := d(x_n, x_{n+1})$, from (3),

$$N(x_{2n}, x_{2n+1}) = \frac{\max\{d_{2n}, d_{2n} + d_{2n+1}, d(x_{2n}, x_{2n+2}) + 0\}}{d_{2n} + d_{2n+1} + 1}$$
$$= \frac{d_{2n} + d_{2n+1}}{d_{2n} + d_{2n+1} + 1} := \beta_{2n}.$$
(8)

From (4),

$$m(x_{2n}, x_{2n+1}) = \max\{d_{2n}, d_{2n}, d_{2n+1}, [d(x_{2n}, x_{2n+2}) + 0]/2\} = \max\{d_{2n}, d_{2n+1}\}$$
(9)

Substituting (8) and (9) into (7) gives

$$d_{2n+1} \le \beta_{2n} \max\{d_{2n}, d_{2n+1}\} = \beta_{2n} d_{2n}, \tag{10}$$

since $0 < \beta_{2n} < 1$ and, from (6), $d_{2n+1} \neq 0$.

Similarly, it can be shown that

$$d_{2n} \le \beta_{2n-1} \max\{d_{2n-1}, d_{2n}\} = \beta_{2n-1}d_{2n-1}.$$
(11)

Therefore, from (10) and (11) it follows that

$$d_n \le \beta_{n-1} \max\{d_{n-1}, d_n\} < d_{n-1} \quad \text{for all} \quad n > 0.$$
 (12)

Lemma 2.3 For each $n > 0, \beta_n < \beta_{n-1}$.

Proof of Lemma 2: From, (8), $\beta_n < \beta_{n-1}$ is equivalent to

$$\frac{d_n + d_{n+1}}{d_n + d_{n+1} + 1} < \frac{d_{n-1} + d_n}{d_{n-1} + d_n + 1}.$$

Clearing of fractions and simplifying gives $d_{n+1} < d_{n-1}$, which follows from (12).

Returning to the proof of Theorem 2, (12) and Lemma 2 imply that

$$d_n \le \beta_1 d_{n-1} \le \beta_1^n d_0. \tag{13}$$

For any positive integers m, n with m > n, it follows from (13) that

$$d(x_n, x_m) \le \sum_{i=n}^{m-1} d_i \le \sum_{i=n}^{m-1} \beta_1^i d_0$$

= $\beta_1^n d_0 \sum_{j=0}^{m-n-1} \beta_1^j \le \frac{\beta_1^n}{1-\beta_1} d_0.$

Therefore $\{x_n\}$ is Cauchy. Since X is complete, there exists a point $p \in X$ such that $\lim_n x_n = p$.

Using (2) - (4), (8), and the fact that each $\beta_n < \beta_1$, gives

$$d(x_{2n+1}, Tp) = d(Sx_{2n}, Tp) < \beta_1 \max\{d(x_{2n}, p), d(x_{2n}, x_{2n+1}), \qquad (14) \\ d(p, Tp), [d(x_{2n}, Tp) + d(p, x_{2n+1})]/2\}.$$

Taking the limit of both sides of (14) as $n \to \infty$ one obtains

$$d(p,Tp) \le \beta_1 d(p,Tp),$$

which implies that p = Tp. From Lemma 1, $p \in F(S)$, and (a) is satisfied.

To prove (b), merely observe that, from (5) and the fact that x_0 is arbitrary, we may write $x_{2n+1} = (ST)^{n/2}x$ and $x_{2n+2} = T(ST)^{n/2}x$.

To prove (c), suppose that $p, q \in F(S) \cap F(T)$ with $p \neq q$.

From (3) and (4), N(p,q) = 2d(p,q) and m(p,q) = d(p,q). Thus (2) becomes

$$d(p,q) \le 2d^2(p,q),$$

which implies (c).

Corollary 2.4 Let (x, d) be a complete metric space, T a selfmap of X satisfying (2) - (4) with S = T.

Then

(a) T has at least one fixed point.

(b) $\{T^n x\}$ converges to a fixed point of T.

(c) If p and q are distinct fixed points of T, then $d(p,q) \ge 1/2$.

Proof: Set S = T in Theorem 2.

Note that Theorem 1 is a special case of Corollary 1, since (1) is a special case of (2) with S = T.

For the balance of this paper we shall need the following notations:

 $CB(X) = \{A : A \text{ is a nonempty closed and bounded subset of } X\},$ $D(A, B) = \inf\{d(a, b) : a \in A, b \in B\},$ $\delta(A, B) = \sup\{d(a, b) : a \in A, b \in B\},$ $H(A, B) = \max\{\sup_{x \in B} D(x, A), \sup_{x \in A} D(x, B))\}.$

For any multivalued mapping, the statement $p \in F(T)$ means that $p \in Tp$. The following is the statement of Theorem 5 of [1].

Theorem 2.5 Let (X, d) be a complete metric space and let T be a multivalued mapping from X into CB(X). Let T satisfy the following:

$$H(Tx,Ty) \le \left(\frac{D(x,Ty) + D(y,TX)}{\delta(x,Tx) + \delta(y,Ty+1)}\right) d(x,y)$$

for all $x, y \in X$. Then T has a fixed point $\dot{x} \in X$.

The following result generalizes Theorem 3.

Theorem 2.6 Let (X,d) be a complete metric space, $T : X \to CL(X)$ satisfying, for all $x, y \in X$,

$$H(Sx, Ty) \le N(x, y)m(x, y), \tag{15}$$

where

$$N(x,y) := [\max\{d(x,y), D(x,Sx) + D(y,Ty), D(x,Ty) + D(y,Sx)] \div (16) \\ [\delta(x,Sx) + \delta(y,Ty) + 1],$$

and

$$m(x,y) = \max\{d(x,y), D(x,Sx), D(y,Ty), [D(x,Ty) + D(y,Sx)]/2\}, \quad (17)$$

Then

(a) S and T have at least one common fixed point $p \in X$.

(b) For *n* even, $\{(ST)^{n/2}x\}$ and $T(ST)^{n/2}x\}$ converge to a common fixed point for each $x \in X$.

(c) If p and q are distinct common fixed points of S and T, then $d(p,q) \ge 1/2$.

We shall first prove the following Lemma.

Lemma 2.7 If S and T satisfy the hypotheses of Theorem 4, then every fixed point of S is a fixed point of T, and conversely.

Proof of Lemma 3: Suppose that p is a fixed point of S. Using (15) and the definition of H,

$$D(p,T) \le H(p,Tp) \le H(Sp,Tp) \le N(p,p)m(p,p).$$

Using (16),

$$N(p,p) = \frac{\max\{d(p,p), D(p,Sp) + D(p,Tp), D(p,Tp) + D(p,Sp)\}}{\delta(p,Sp) + \delta(p,Tp) + 1} \le \frac{D(p,Tp)}{D(p,Tp) + 1} := \beta < 1,$$

and, from (17),

$$m(p,p) = \max\{d(p,p), D(p,Sp) + D(p,Tp), [d(p,Tp) + d(p,Sp)]/2\}$$

= D(p,Tp).

Therefore

$$D(p, Tp) \le \beta D(p, Tp),$$

which implies that p is also a fixed point of T.

In a similar manner it can be shown that, if $p \in Tp$, then $p \in Sp$.

Returning to the proof of Theorem 4, part (a), let $x_0 \in X, x_1 \in Tx_0$.

The following Lemma is an observation of Nadler [2].

Lemma 2.8 Let $A, B \in CB(X)$, and let $x \in A$. Then, for each $\alpha > 0$, there exists a $y \in B$ such that

$$d(x,y) \le H(A,B) + \alpha.$$

128

Using Lemma 4, for any $0 < h_1 < 1$, choose $x_2 \in Tx_1$ so that

$$d(x_1, x_2) \le H(Sx_0, Tx_1) + \left(\frac{1}{h_1} - 1\right) H(Sx_0, Tx_1)$$

= $\frac{1}{h_1} H(Sx_0, Tx_1).$

In a similar manner, for any $0 < h_2 < 1$ choose $x_3 \in Sx_2$ so that

$$d(x_2, x_3) \le \frac{1}{h_2} H(Sx_2, Tx_1),$$

and, in general, for any $0 < h_{2n} < 1$, choose $x_{2n+1} \in Sx_{2n}$ so that

$$d(x_{2n}, x_{2n+1}) \le \frac{1}{h_{2n}} H(Sx_{2n}, Tx_{2n-1}),$$
(18)

and, for any $0 < h_{2n+1} < 1$, choose $x_{2n+1} \in Tx_{2n+1}$ so that

$$d(x_{2n+1}, x_{2n+2}) \le \frac{1}{h_{2n+1}} H(Sx_{2n}, Tx_{2n+1}).$$
(19)

Without loss of generality we may assume that $H(Sx_{2n}, Tx_{2n-1}) \neq 0$ and $H(Sx_{2n}, Tx_{2n+1}) \neq 0$ for each n. For, if there exist an n such that $(Sx_{2n}, Tx_{2n-1}) = 0$, then $Sx_{2n} = Tx_{2n-1}$, which implies that $x_{2n} \in Sx_{2n}$, since $x_{2n} \in Tx_{2n-1}$, and x_{2n} is a fixed point of S, hence of T by Lemma 3. Similar remarks apply if there exists an n for which $H(Sx_{2n}, Tx_{2n+1}) = 0$. We may also assume that $x_n \neq x_{n+1}$ for each n. For, if there exists an n for which $x_{2n} = x_{2n+1}$, then, since $x_{2n+1} \in Sx_{2n}, x_{2n+1} \in F(S)$, and by Lemma 3, $x_{2n} \in F(T)$. Similarly, $x_{2n+1} = x_{2n+2}$ for any n implies that $x_{2n+1} \in F(T) \cap F(S)$.

The h_n are defined by $h_n = \sqrt{\beta_n}$, where

$$\beta_n := \frac{d_{n-1} + d_n}{d_{n-1} + d_n + 1}.$$
(20)

From (16) and (20),

$$N(x_{2n}, x_{2n-1}) = \frac{\max\{d_{2n-1}, D(x_{2n}, Sx_{2n}) + D(x_{2n-1}, Tx_{2n_1}), D(x_{2n}, Tx_{2n-1}) + D(x_{2n-1}, Sx_{2n})\}}{\delta(x_{2n}, Sx_{2n}) + \delta(x_{2n-1}, Tx_{2n-1}) + 1}$$

$$\leq \frac{\max\{d_{2n-1}, d_{2n} + d_{2n-1}, 0 + d(x_{2n-1}, x_{2n+1})\}}{d_{2n} + d_{2n-1} + 1}$$

$$= \frac{d_{2n-1} + d_{2n}}{d_{2n-1} + d_{2n} + 1} = \beta_{2n}.$$
(21)

B.E. Rhoades

$$m(x_{2n}, x_{2n-1}) = \max\{d_{2n-1}, D(x_{2n}, Sx_{2n}), D(x_{2n-1}, Tx_{2n-1}), \\ [D(x_{2n}, Tx_{2n-1}) + D(x_{2n-1}, Sx_{2n})]/2\} \\ \leq \max\{d_{2n-1}, d_{2n}, d_{2n-1}, [0 + d(x_{2n-1}, x_{2n+1})]/2\}.$$

Therefore

$$m(x_{2n}, x_{2n-1}) \le \max\{d_{2n-1}, d_{2n}\}.$$
 (22)

Using (16), (21), and (22) in (19) yields

$$d_{2n} \le \frac{1}{h_{2n}} H(Sx_{2n}, Tx_{2n-1}) \le \sqrt{\beta_{2n}} \max\{d_{2n-1}, d_{2n}\}$$

Since each $x_n \neq x_{n+1}, d_{2n} > 0$, the above inequality implies that

$$d_{2n} \le \sqrt{\beta_{2n}} d_{2n_1}. \tag{23}$$

A similar computation verifies that

$$d_{2n+1} \le \sqrt{\beta_{2n+1}} d_{2n}.$$
 (24)

From inequalities (23) and (24), for all n > 0,

$$d_{n+1} \le \sqrt{\beta_{n+1}} d_n. \tag{25}$$

Therefore $\{d_n\}$ is a monotone decreasing positive sequence, so it has a limit $\ell \ge 0$.

Taking the limit of both sides of (25) as $n \to \infty$, and using (20), it follows that $\ell = 0$.

For any integers m, n > 0, using (25) and the triangular inequality,

$$d(x_n, x_m) \le \sum_{k=n}^{m-1} d_k \le \sum_{k=n}^{m-1} (\beta_{k-1} \cdots \beta_0) d_0 = d_0 \sum_{k=n}^{m-1} a_k,$$

where $a_k := \beta_{k-1} \cdots \beta_0$. Since $\lim_k a_{k+1}/a_k = \lim_k \beta_k = 0$, the series converges, which implies that $\{x_n\}$ is a Cauchy sequence, hence convergent to some point p, since X is complete.

$$D(p, Tp) \le d(p, x_{2n+1}) + D(x_{2n+1}, Tp)$$

$$\le d(p, x_{2n+1}) + H(Sx_{2n}, Tp).$$
(26)

Using (16),

$$N(x_{2n}, p) = \max\{d(x_{2n}, p), D(x_{2n}, Sx_{2n}) + D(p, Tp),$$
(27)

$$D(x_{2n}, Tp) + d(p, Sx_{2n})\} \div$$

$$[\delta(x_{2n}, Sx_{2n}) + \delta(p, Tp) + 1]$$

$$\leq \max\{dx_{2n}, p), d(x_{2n}, x_{2n+1}) + d(p, Tp),$$

$$d(x_{2n}, Tp) + d(p, x_{2n+1})\} \div$$

$$[d(x_{2n}, x_{2n+1}) + d(p, Tp) + 1]$$

130

From (16),

$$m(x_{2n}, p) = \max\{d(x_{2n}, p), D(x_{2n}, Sx_{2n}), D(p, Tp),$$

$$[D(x_{2n}, Tp) + D(p, Sx_{2n})]/2\}$$

$$\leq \max\{d(x_{2n}, p), d_{2n}, D(p, Tp),$$

$$[d(x_{2n}, Tp) + d(p, x_{2n+1})]/2\}.$$
(28)

Substituting (27) and (28) into (26), using (15), and taking the limit of both sides as $n \to \infty$, one obtains

$$D(p,Tp) \le) + \frac{d(p,Tp)}{d(p,Tp) + 1} D(p,Tp),$$

which implies that D(p, Tp) = 0, and hence that $p \in F(T)$. From Lemma 3, $p \in F(S)$.

The proof of part (b) uses the same argument as that of the proof of part (b) in Theorem 2.

(b). Suppose that p and q are distinct common fixed points of S and T. Then

$$d(p,q) = D(p,q) \le D(p,Sp) + D(Sp,Tq) + D(q,Tq)$$

$$\le H(Sp,Tq).$$
(29)

Using (16),

$$N(p,q) = \max\left\{\frac{d(p,q), 0, D(p,Tq) + D(q,Sp)}{\delta(p,Sp) + \delta(q,Tq) + 1}\right\}$$

$$\leq \max\left\{\frac{d(p,q), d(p,q) + d(q,p)}{d(p,Sp) + d(q,Tq) + 1}\right\}$$

$$= 2d(p,q).$$

Using (17),

$$m(p,q) = \max\{d(p,q), 0, 0, [D(p,Tq) + D(q,Sp)]/2\}$$

= $d(p,q)$.

Using (15) and substituting it into (29) gives

$$d(p,q) \le 2d^2(p,q),$$

which yields the result.

Theorem 5 of [1] is a special case of Theorem 4.

On page 3, formula (24) of [1] has an error. The expression

$$\left(1 - \frac{1}{h_1}\right)$$

should read

$$\left(\frac{1}{h_1} - 1\right).$$

Also, formula (27) of [1] is incorrect, since $0 < \beta_n < 1$. However, the remaining argument remains valid with β_n replaced by $\sqrt{\beta_n}$.

References

- F. Khojasteh, M. Abbas and S. Costache, Two new types of fixed point theorems in complete metric spaces, *Abstract and Applied Analysis*, Article ID 3258040(2014), 5 pages.
- [2] S.B. Nadler, Jr., Multi-valued contraction mappings, *Pacific J Math.*, 30(1969), 475-488.