Gen. Math. Notes, Vol. 3, No. 2, April 2011, pp.108-122
ISSN 2219-7184; Copyright © ICSRS Publication, 2011
www.i-csrs.org
Available free online at http://www.geman.in

About Dirichlet's Transformation and Theoretic-Arithmetic Functions

N. Daili
Cité des 300 Lots, Yahiaoui. 51, rue Chikh Senoussi. 19000 Sétif - Algeria Current address: 7650, rue Querbes, \# 15, Montréal, Québec, H3N 2B6 Canada

E-mail: nourdaili_dz@yahoo.fr ijfnms@hotmail.fr
(Received: 17-11-10/ Accepted: 7-2-11)

Abstract

In this work, we are going to define a transformation from Dirichlet's series called discrete Dirichlet's transformation. We will obtain some classical results connected Riemann's zeta function and theoretic-arithmetic functions. Some probabilistic interpretations are maked explicit.

Keywords: Dirichlet's transformation, Zeta function, Möbius transformation.

1 Introduction

It is well-known (cf. [6]) that the Riemann zeta-function $\zeta(s)$ is holomorphic in the whole complex plane except for a simple pole at $s=1$ with residue 1 .

Riemann discovered the functional equation

$$
\begin{equation*}
\zeta(s) \Gamma\left(\frac{s}{2}\right) \pi^{-s / 2}=\zeta(1-s) \Gamma\left(\frac{1-s}{2}\right) \pi^{-(1-s) / 2} \tag{1}
\end{equation*}
$$

where $\Gamma(s)$ denotes Euler's Gamma-function.
This equation and the identity

$$
\begin{equation*}
\zeta(s)=\overline{\zeta(\bar{s})}, \quad s \neq 1 \tag{2}
\end{equation*}
$$

show some symmetries of $\zeta(s)$.

From (1) it follows that $\zeta(s)$ vanishes at the negative even integers, the so-called trivial zeros of $\zeta(s)$. It is also known that the other non-trivial zeros lie inside the so-called critical strip $0 \leq \Re e(s) \leq 1$, and they are non-real.

The famous, yet open Riemann hypothesis states that every non-trivial zero of $\zeta(s)$ satisfies $\Re e(s)=\frac{1}{2}$.

In this work, we are going from zeta function and a Dirichlet's series define one transformation called discrete Dirichlet's transformation. We obtain some classical results connected Riemann's zeta function and theoreticarithmetic functions. Some applications stemed from number theory and theoretic-arithmetic function are given and probabilistic interpretations are maked explicit.

2 Dirichlet's Transformation

Let $f: \mathbb{N}^{*} \longrightarrow \mathbb{C}$ be a theoretic-arithmetic function. Associate to this last a Dirichlet series

$$
\begin{equation*}
\sum_{n \geq 1} \frac{f(n)}{n^{s}}, s \in \mathbb{C} \tag{3}
\end{equation*}
$$

whose we will denote the abscissa of convergence $\lambda(f)$ and the abscissa of absolute convergence $\ell(f)$.

Introduce then \mathbb{A} a class of theoretic-arithmetic functions such that $\lambda(f)<$ $+\infty$. So for $f \in \mathbb{A}$, a Dirichlet series

$$
\begin{equation*}
\sum_{n \geq 1} \frac{f(n)}{n^{s}}, s \in \mathbb{C} \tag{4}
\end{equation*}
$$

is convergent for $\Re e(s)>\lambda(f)$ and divergent for $\Re e(s)<\lambda(f)$. It represents a holomorphic function of a complex variable s in a half plane $\Re e(s)>$ $\lambda(f)$ like that \mathbb{A} equiped with addition process, multiplication by a scalar and a convolution product $*,(\mathbb{A},+$, mult.by sca., $*)$ is an algebra of theoreticarithmetic functions and which is a sub-algebra of Dirichlet's algebra.

Next we introduce a class denoted \mathfrak{C} of functions of complex variable s, defined on a half-plane $\Re e(s)>a$ where $a \in[-\infty,+\infty[. \mathfrak{C}$ equiped with operation + , multiplication by a scalar, ordinary product $\bullet:(\mathfrak{C},+$, mult.by sca., •) is an algebra, called functions algebra.

Definition 2.1 We call discrete Dirichlet's transformation a mapping

 $\wedge: \mathbb{A} \longrightarrow \mathfrak{C}$ which to an element $f \in \mathbb{A}$, associates a function $\widehat{f} \in \mathfrak{C}$ defined by$$
\begin{equation*}
\widehat{f}(s):=\sum_{n \geq 1} \frac{f(n)}{n^{s}}, \Re e(s)>\lambda(f) \tag{5}
\end{equation*}
$$

A function $\widehat{f} \in \mathfrak{C}$ is said Dirichlet's transformation of f.
Proposition 2.2 A mapping \wedge is injective if and only if f and $g \in \mathbb{A}$ and $\widehat{f}=\widehat{g} \Longrightarrow f=g$.

Proof. It is a consequence of uniqueness theorem of a Dirichlet's series, see ([3], Theorem 3.3) and ([5]).

3 Dirichlet's Transformation as a Homomorphism of Algebra

Theorem 3.1 A Dirichlet's transformation of convolution product of two elements of \mathbb{A} is equal to ordinary product of a Dirichlet's transformation of these two elements. More precisely, let f and $g \in \mathbb{A}$. Put $h=f * g$. Then we have
a) $\ell(h) \leq \max \{\ell(f), \ell(g)\}<+\infty$, hence $h \in \mathbb{A}$;
b) $\widehat{h}(s)=\widehat{f}(s) \widehat{g}(s)$ for $\Re e(s)>\max \{\ell(f), \ell(g)\}$.

In shortcut

$$
\begin{equation*}
\widehat{f * g}=\widehat{f} \cdot \widehat{g} \tag{6}
\end{equation*}
$$

Proof. Formally, we have

$$
\begin{equation*}
\widehat{f}(s) \cdot \widehat{g}(s)=\left(\sum_{k \geq 1} \frac{f(k)}{k^{s}}\right)\left(\sum_{m \geq 1} \frac{g(m)}{m^{s}}\right)=\sum_{k, m \geq 1} \frac{f(k) g(m)}{(k m)^{s}} \tag{7}
\end{equation*}
$$

Hence looking terms of same denominator, namely, in fact summing at km constant we have .

$$
\begin{equation*}
\widehat{f}(s) \cdot \widehat{g}(s)=\sum_{n \geq 1} \frac{1}{n^{s}}\left(\sum_{k m=n} f(k) g(m)\right)=\sum_{n \geq 1} \frac{h(n)}{n^{s}}=\widehat{h}(s), \tag{8}
\end{equation*}
$$

if everyone of series is convergent (absolutely convergent), namely $h<+\infty$, hence the theorem results.

Theorem 3.2 Dirichlet's transformation $\wedge: \mathbb{A} \longrightarrow \mathfrak{C}$ is an homomorphism from algebra ($\mathbb{A},+$, mult.by scal., *) into algebra ($\mathfrak{C},+$, mult.by scal., \bullet) :
a) $\hat{f}+g=\hat{f}+\hat{g}$;
b) $\hat{\alpha f}=\alpha \hat{f}, \alpha \in \mathbb{N}$;
c) $f \hat{*} g=\hat{f} \cdot \hat{g}$.

Figure 1:

4 Dirichlet's Transformation of Möbius Transformation

Theorem 4.1 Let $f \in \mathbb{A}$ and F be its Möbius transformation : $F=1 * f$. Then

$$
\begin{equation*}
\hat{F}(s)=\zeta(s) \cdot \hat{f}(s), \quad \Re e(s)>\operatorname{Max}\{\ell(f), 1\} \tag{9}
\end{equation*}
$$

Proof. Apply Theorem 3.1, then we have

$$
\hat{1}(s)=\sum \frac{1}{n^{s}}=\zeta(s) ; \ell(1)=1
$$

and $\hat{F}=\hat{1} . \hat{f}$.

Probabilistic Interpretation

Interpret the expression (9) above in probabilistic meaning.
Suppose s real $>\operatorname{Max}\{\ell(f), 1\}$, we have

$$
\frac{1}{\zeta(s)} \hat{F}(s)=\hat{f}(s)
$$

namely

$$
\frac{1}{\zeta(s)} \sum_{n \geq 1} \frac{F(n)}{n^{s}}=\hat{f}(s)
$$

and the mathematical expectation $E_{s}(F)$ of F is

$$
E_{s}(F)=\hat{f}(s)
$$

For the remainder of interpretation see ([3]).

5 Calculus of Dirichlet Transformations

5.1 Direct Calculus

Consider the following cases :
a) $f(n)=1$, then

$$
\widehat{f}(s)=\sum_{n \geq 1} \frac{1}{n^{s}}=\zeta(s), s>1
$$

b) $f(n)=n$, then

$$
\widehat{f}(s)=\sum_{n \geq 1} \frac{1}{n^{s-1}}=\zeta(s-1), s>2
$$

c) $f(n)=n^{\alpha}, \alpha \in \mathbb{R}$, then

$$
\widehat{f}(s)=\sum_{n \geq 1} \frac{1}{n^{s-\alpha}}=\zeta(s-\alpha), s>\alpha+1
$$

d) $f(n)=$ indicator function of the set of numbers of perfect squares, then

$$
\widehat{f}(s)=\sum_{n \geq 1} \frac{1}{\left(n^{2}\right)^{s}}=\zeta(2 s), s>\frac{1}{2}
$$

e) $f(n)=$ indicator function of powers $k^{t h}\left(k \in \mathbb{N}^{*}\right)$, then

$$
\widehat{f}(s)=\sum_{n \geq 1} \frac{1}{\left(n^{k}\right)^{s}}=\zeta(k s), s>\frac{1}{k} .
$$

f) $f(n)=u(n)=\left\{\begin{array}{ll}1 & \text { if } n=1, \\ 0 & \text { if } n>1,\end{array}\right.$ then

$$
\widehat{u}(s)=\sum_{n \geq 1} \frac{u(n)}{n^{s}}=1
$$

$g)$ Generally, $f(n)=\delta_{a}(n)$, where

$$
\delta_{a}(n)=\left\{\begin{array}{l}
1 \text { if } n=a, \\
0 \text { if } n \neq a,
\end{array} a \in \mathbb{N}^{*},\right.
$$

then

$$
\widehat{\delta}_{(a)}(s)=\sum_{n \geq 1} \frac{\delta_{a}(n)}{n^{s}}=\frac{1}{a^{s}}
$$

h) $f(n)=(-1)^{n-1}$, then

$$
\widehat{f}(s)=\sum_{n \geq 1} \frac{(-1)^{n-1}}{n^{s}}=\left(1-2^{1-s}\right) \zeta(s)=\eta(s)
$$

Proof. We have

$$
\begin{aligned}
\eta(s) & =\sum_{n \geq 1} \frac{(-1)^{n-1}}{n^{s}}=\frac{1}{1^{s}}-\frac{1}{2^{s}}+\frac{1}{3^{s}}-\frac{1}{4^{s}}+\ldots \\
& =\frac{1}{1^{s}}+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\ldots-2\left(\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{6^{s}}+\ldots\right) \\
& =\sum_{n \geq 1} \frac{1}{n^{s}}-2\left(\frac{1}{2^{s}}+\frac{1}{4^{s}}+\frac{1}{6^{s}}+\ldots\right) \\
& =\zeta(s)-2 \frac{1}{2^{s}}\left(1+\frac{1}{2^{s}}+\frac{1}{3^{s}}+\frac{1}{4^{s}}+\ldots\right)=\left(1-2^{1-s}\right) \zeta(s) .
\end{aligned}
$$

Remark 5.1 We have

$$
\eta(s)=\left(1-2^{1-s}\right) \zeta(s)
$$

a) $\zeta(s)$ is definite for $s>1$;
b) a function

$$
\eta(s)=\sum_{n \geq 1} \frac{(-1)^{n-1}}{n^{s}}
$$

is definite for $s>0$, (it is an alternate series of abscissa of convergence 0) and

$$
\zeta(s)=\frac{\eta(s)}{1-2^{1-s}} .
$$

We have

Figure 2:

6 Calculus of Dirichlet Transformations of Multiplicative Arithmetic Function

A calculus of Dirichlet transformations of multiplicative arithmetic function will be doing in pleasant way using generalized Euler's identity. Apply generalized Euler identity to the following multiplicative function

$$
\frac{f(n)}{n^{s}}
$$

Theorem 6.1 Let $f: \mathbb{N}^{*} \longrightarrow \mathbb{C}$ be a multiplicative function (no identically zero) and s be a real number such that series of general term

$$
\sum_{n \geq 1} \frac{f(n)}{n^{s}}
$$

converges, namely, $\lambda(f)<+\infty$ and $\Re e(s)>\lambda(f)$. Then one has

$$
\begin{equation*}
\widehat{f}(s)=\sum_{n \geq 1} \frac{f(n)}{n^{s}}=\prod_{p}\left(1+\frac{f(p)}{p^{s}}+\frac{f\left(p^{2}\right)}{p^{2 s}}+\ldots\right) \tag{10}
\end{equation*}
$$

Corollary 6.2 A necessary and sufficient condition for an arithmetic function f to be multiplicative is that its Dirichlet's transformation can be written in the form

$$
h(s)=\prod_{p}\left(1+\frac{c_{p}}{p^{s}}+\frac{c_{p}^{2}}{p^{2 s}}+\ldots\right)
$$

where c_{p} are complex numbers.
We have the following particular cases :

Proposition 6.3 Suppose f strongly multiplicative, namely, for all $p \in \mathbb{P}$, for any $\alpha \in \mathbb{N}^{*}$, one has $f\left(p^{\alpha}\right)=f(p)$. Then

$$
\widehat{f}(s)=\prod_{p}\left(1+\frac{f(p)}{p^{s}}+\frac{f\left(p^{2}\right)}{p^{2 s}}+\ldots\right)=\prod_{p}\left(1+\frac{f(p)}{p^{s}-1}\right) .
$$

Proposition 6.4 If f is completely multiplicative, namely, for all $p \in \mathbb{P}$, for any $\alpha \in \mathbb{N}^{*}$, one has $f\left(p^{\alpha}\right)=(f(p))^{\alpha}$. Then

$$
\widehat{f}(s)=\prod_{p}\left(1+\frac{f(p)}{p^{s}}+\left(\frac{f(p)}{p^{s}}\right)^{2}+\ldots\right)
$$

Moreover, if for any p such that

$$
\left|\frac{f(p)}{p^{s}}\right|<1
$$

then

$$
\widehat{f}(s)=\prod_{p}\left(\frac{1}{1-\frac{f(p)}{p^{s}}}\right) .
$$

Example 6.5 If $f=1$ then

$$
\widehat{f}(s)=\prod_{p}\left(\frac{1}{1-\frac{1}{p^{s}}}\right)=\zeta(s), \text { for } s>1
$$

Indeed, $f=1$ is an arithmetic function and completely multiplicative, $f(p)=$ 1, for any p. Hence

$$
\hat{1}(s)=\prod_{p}\left(\frac{1}{1-\frac{1}{p^{s}}}\right)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1}=\zeta(s), \text { for } s>1
$$

Example 6.6 Put $f=\mu$, where

$$
\mu\left(p^{\alpha}\right)= \begin{cases}-1 & \text { if } \alpha=1 \\ 0 & \text { if } \alpha>1\end{cases}
$$

Then

$$
\widehat{\mu}(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)=\frac{1}{\zeta(s)}, \text { for } s>1
$$

Indeed, $f=\mu$ is a multiplicative arithmetic function. According to previous example and a definition of μ, one has

$$
\widehat{\mu}(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)=\frac{1}{\zeta(s)}, \text { for } s>1
$$

Remark 6.7 Functions 1 and μ are inverse one of the other in Dirichlet's algebra.

Example 6.8 Let $f=|\mu|=\mu^{2}$ be an indicator function of square free numbers. Then

$$
|\widehat{\mu}|(s)=\prod_{p}\left(1+\frac{1}{p^{s}}\right)=\frac{\zeta(s)}{\zeta(2 s)}, \text { for } s>1 .
$$

Proof. Indeed, one has $f=|\mu|=\mu^{2}$ the indicator function of square free numbers. It is a multiplicative arithmetic function and

$$
|\mu|\left(p^{\alpha}\right)=\left\{\begin{array}{lll}
1 & \text { if } \alpha=1 \\
0 & \text { if } \alpha>1
\end{array}\right.
$$

Then according to previous examples and a definition of f we have

$$
|\widehat{\mu}|(s)=\prod_{p}\left(1+\frac{1}{p^{s}}\right) .
$$

But

$$
1+t=\frac{1-t^{2}}{1-t}
$$

then

$$
|\widehat{\mu}|(s)=\prod_{p}\left(\frac{1-\frac{1}{p^{2 s}}}{1-\frac{1}{p^{s}}}\right)=\frac{\zeta(s)}{\zeta(2 s)}, \text { for } s>1 .
$$

Example 6.9 Let $f=\lambda$ be Liouville's function, where

$$
\lambda(n)= \begin{cases}1 & \text { if } n=1 \\ (-1)^{\Omega(n)} & \text { if } n>1\end{cases}
$$

with $\lambda(p)=-1$. Then

$$
\widehat{\lambda}(s)=\prod_{p}\left(\frac{1}{1+\frac{1}{p^{s}}}\right)=\frac{\zeta(2 s)}{\zeta(s)}, \text { for } s>1
$$

Proof. Indeed, let $f=\lambda$ be the Liouville's arithmetic function. It is a completely multiplicative arithmetic function.

According to previous examples and a definition of λ on prime numbers, we have

$$
\widehat{\lambda}(s)=\prod_{p}\left(\frac{1}{1+\frac{1}{p^{s}}}\right)
$$

But

$$
\frac{1}{1+t}=\frac{1-t}{1-t^{2}}
$$

then

$$
\widehat{\lambda}(s)=\prod_{p}\left(\frac{1-\frac{1}{p^{s}}}{1-\frac{1}{p^{2 s}}}\right)=\frac{\zeta(2 s)}{\zeta(s)}, \text { for } s>1
$$

Remark 6.10 We have

$$
\left.\begin{array}{l}
\widehat{\lambda}(s)=\frac{\zeta(2 s)}{\zeta(s)}, \\
|\widehat{\mu}|(s)=\frac{\zeta(s)}{\zeta(2 s)}
\end{array}\right\}
$$

imply $|\mu|$ and λ are inverse one of the other in Dirichlet's algebra.
Example 6.11 Put $f=d$, where $d(n)=$ number of divisors of n. Then

$$
\widehat{d}(s)=\prod_{p}\left(1+\frac{2}{p^{s}}+\frac{3}{p^{2 s}}+\ldots+\frac{\alpha+1}{p^{\alpha s}}\right)=(\zeta(s))^{2} .
$$

Proof. Let $f=d$ be the arithmetic function number of divisors of n. It is a multiplicative arithmetic function.

According to previous examples and a definition of d, we have

$$
\widehat{d}(s)=\prod_{p}\left(1+\frac{2}{p^{s}}+\frac{3}{p^{2 s}}+\ldots+\frac{\alpha+1}{p^{\alpha s}}\right)
$$

But

$$
1+2 t+3 t^{2}+4 t^{3}+\ldots=\frac{1}{(1-t)^{2}}
$$

then

$$
\widehat{d}(s)=\prod_{p}\left(1+\frac{2}{p^{s}}+\frac{3}{p^{2 s}}+\ldots+\frac{\alpha+1}{p^{\alpha s}}\right)=\prod_{p} \frac{1}{\left(1-\frac{1}{p^{s}}\right)^{2}}=(\zeta(s))^{2} .
$$

Example 6.12 Let $f=d^{*}$ be a strongly multiplicative projection of d (see [1])
$d^{*}(n)=2^{\omega(n)}$ number of square free divisors of n. Then

$$
\widehat{d^{*}}(s)=\prod_{p} \frac{1-\frac{1}{p^{2 s}}}{\left(1-\frac{1}{p^{s}}\right)^{2}}=\frac{(\zeta(s))^{2}}{\zeta(2 s)} .
$$

Proof. Indeed, let $f=d^{*}$ be a strongly multiplicative projection of d. Then f is a strongly multiplicative arithmetic function. According to previous examples and a definition of d^{*}, we have

$$
\widehat{d^{*}}(s)=\prod_{p}\left(1+\frac{1+\frac{d^{*}(p)-1}{p^{s}}}{1-\frac{1}{p^{s}}}\right)=\prod_{p}\left(\frac{1+\frac{1}{p^{s}}}{1-\frac{1}{p^{s}}}\right) .
$$

But

$$
1+t=\frac{1-t^{2}}{1+t}
$$

hence

$$
\widehat{d^{*}}(s)=\prod_{p} \frac{1-\frac{1}{p^{2 s}}}{\left(1-\frac{1}{p^{s}}\right)^{2}}=\frac{(\zeta(s))^{2}}{\zeta(2 s)}
$$

Example 6.13 Let $f=\varphi$ be the totient Euler's arithmetic function. Then

$$
\widehat{\varphi}(s)=\prod_{p}\left(\frac{1-\frac{1}{p^{s}}}{1-\frac{1}{p^{s-1}}}\right)=\frac{\zeta(s-1)}{\zeta(s)}, \text { for } s>2 .
$$

Proof. Indeed, let $f=\varphi$ be the totient Euler's arithmetic function. According to ([2]), Theorem 5.1, we have

$$
\varphi\left(p^{\alpha}\right)=p^{\alpha-1}(p-1)
$$

Hence

$$
\begin{aligned}
\widehat{\varphi}(s) & =\prod_{p}\left(1+\frac{\varphi(p)}{p^{s}}+\frac{\varphi\left(p^{2}\right)}{p^{2 s}}+\ldots\right)=\prod_{p}\left(1+\frac{p-1}{p^{s}}+\frac{p(p-1)}{p^{2 s}}+\frac{p^{2}(p-1)}{p^{3 s}}+\ldots\right) \\
& =\prod_{p}\left(1+\frac{p-1}{p^{s}}\left(1+\frac{1}{p^{s-1}}+\frac{1}{p^{2 s-1}}+\ldots\right)\right), s>2 \\
& =\prod_{p}\left(1+\frac{p-1}{p^{s}} \cdot \frac{1}{1-\frac{1}{p^{s-1}}}\right)=\prod_{p}\left(\frac{1-\frac{1}{p^{s}}}{1-\frac{1}{p^{s-1}}}\right)=\frac{\zeta(s-1)}{\zeta(s)}, \text { for } s>2 .
\end{aligned}
$$

7 Calculus of Dirichlet Transformations of Möbius Transformations

We have, if $F=1 * f$, then

$$
\widehat{F}(s)=\zeta(s) \cdot \widehat{f}(s) .
$$

We obtain the following results as propositions :
Proposition 7.1 Put $f=1$, then

$$
\widehat{f}(s)=\zeta(s), \text { for } s>1
$$

Put

$$
d(n)=\sum_{d \mid n} 1
$$

We have $d=1 * 1$. Then

$$
\widehat{d}(s)=(\zeta(s))^{2}, \text { for } s>1
$$

Proposition 7.2 Let $f(n)=n$, then

$$
\widehat{f}(s)=\sum_{n \geq 1} \frac{n}{n^{s}}=\zeta(s-1), \text { for } s>2 \text { and } F(n)=\sum_{k \mid n} k .
$$

We have

$$
\sigma(n)=\sum_{k \mid n} k ; \quad \sigma=1 * f
$$

and

$$
\widehat{\sigma}(s)=\zeta(s) \zeta(s-1), \text { for } s>2
$$

Proposition 7.3 Generally, let $f(n)=n^{\alpha}, \alpha \in \mathbb{R}$, then

$$
\widehat{f}(s)=\zeta(s-\alpha), \text { for } s>\alpha+1
$$

We have

$$
\sigma_{\alpha}(n)=\sum_{k \mid n} k^{\alpha} ; \quad \sigma_{\alpha}=1 * f
$$

and

$$
\widehat{\sigma}_{\alpha}(s)=\zeta(s) \zeta(s-\alpha), \text { for } s>\max (\alpha+1,1)
$$

We obtain some particular cases in the following corollary :

Corollary 7.4 a) if $\alpha=0$ then $\sigma_{0}=\alpha$;
b) if $\alpha=1$ then $\sigma_{1}=\sigma$;
c) if $\alpha=-1$ then

$$
\sigma_{-1}(n)=\sum_{k \mid n} \frac{1}{k},
$$

and $\widehat{\sigma}_{-1}(s)=\zeta(s) \zeta(s+1)$, for $s>1$.
Proposition 7.5 Let $f=\varphi$, where φ is a totient Euler's arithmetic function. Then

$$
\begin{equation*}
\widehat{\varphi}(s)=\frac{\zeta(s-1)}{\zeta(s)}, \text { for } s>2 \tag{11}
\end{equation*}
$$

Proof. Indeed, we have

$$
\begin{equation*}
\widehat{f}(s)=\sum_{n \geq 1} \frac{\varphi(n)}{n^{s}} \leq \sum_{n \geq 1} \frac{1}{n^{s-1}}=\zeta(s-1) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
n=\sum_{k \mid n} \varphi(k) \text { (Möbius's transformation) } \tag{13}
\end{equation*}
$$

implies $\zeta(s-1)=\zeta(s) \widehat{\varphi}(s)$, for $s>2$, hence

$$
\widehat{\varphi}(s)=\frac{\zeta(s-1)}{\zeta(s)}, \text { for } s>2
$$

Proposition 7.6 Let $f=\Lambda$ be von Mangoldt's arithmetic function introduced in ([6]). Then we have

$$
\widehat{\Lambda}(s)=-\frac{\zeta^{\prime}(s)}{\zeta(s)}, \text { for } s>1
$$

Proof. Indeed, put $f=\Lambda$, then we have

$$
\widehat{f}(s)=\sum_{n \geq 1} \frac{\Lambda(n)}{n^{s}}, \text { for } s>1
$$

with

$$
\sum_{n \geq 1} \frac{\Lambda(n)}{n^{s}} \leq \sum_{n \geq 1} \frac{\log n}{n^{s}}<+\infty, \text { for } s>1
$$

and

$$
\log n=\sum_{k \mid n} \lambda(k),
$$

hence

$$
\sum_{n \geq 1} \frac{\log n}{n^{s}}=\zeta(s) \widehat{\Lambda}(s), \text { for } s>1
$$

But

$$
\sum_{n \geq 1} \frac{\log n}{n^{s}}=-\frac{d}{d s}\left(\sum_{n \geq 1} \frac{1}{n^{s}}\right)=-\zeta^{\prime}(s), \text { for } s>1
$$

hence

$$
\widehat{\Lambda}(s)=-\frac{\zeta^{\prime}(s)}{\zeta(s)}, \text { for } s>1
$$

Proposition 7.7 Let $f=\mu$, then

$$
\widehat{\mu}(s)=\frac{1}{\zeta(s)}, \text { for } s>1
$$

Proof. We have

$$
\widehat{f}(s)=\sum_{n \geq 1} \frac{\mu(n)}{n^{s}}
$$

with

$$
\sum_{n \geq 1} \frac{|\mu(n)|}{n^{s}} \leq \sum_{n \geq 1} \frac{1}{n^{s}}=\zeta(s), \text { for } s>1
$$

But

$$
\sum_{k \mid n} \mu(k)=u(n)=\left\{\begin{array}{l}
1 \text { if } n=1 \\
0 \text { if } n>1
\end{array}\right.
$$

hence

$$
\zeta(s) \widehat{\mu}(s)=1, \text { for } s>1
$$

We find the same results in ([6]) but in analytical way using real and complex analysis in its proofs.

References

[1] N. Daili, Some projections of number-theoretic functions, advances and applications in discrete mathematics, (AADM), 1(2) (2008), 35-44.
[2] N. Daili, An elementary probabilistic approach to the Euler φ-Function, far east J. Math. Sci. (FJMS) 26(3) (2007), 539-555.
[3] N. Daili, Random Dirichlet's Series, Preprint, (2011), 1-10.
[4] G.H. Hardy and M. Riesz, The General Theory of Dirichlet's Series, Cambridge Univ. Press, (1955).
[5] J. Knopp, Theorie und Anwendung der Unendlichen Reihen,SpringerVerlag, New York, (1964).
[6] E.C. Titchmarsh, The Theory of the Riemann Zeta Function, Clarendon Press, Oxford, (1951).

