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Abstract
In this paper the large scale structure of R is investigated and two kinds of

non-coarse equivalent subsets of R are characterized. In addition L-spaces and
H-spaces in arbitrary metric spaces are introduced and it is shown that they
are not coarse equivalent.
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1 Introduction

Coarse geometry [4, 5, 1, 2, 3] is the study of spaces from a ”large scale” point
of view. Two spaces that look the same from a great distance are equivalent in
coarse geometry. This point of view is useful because it is often true that the
geometric properties of metric spaces are determined by their coarse geometry.
When one defines continuity of a function on a metric space, one neglects a
great deal of information about the metric d. For example the topology of the
metric d and d′ = min{d, 1} are the same. But d′ erases all information about
d-distance greater than 1.
Coarse geometry studies the dual case. Instead of focusing on the small scale
structure defined on a metric space we will focus on the large scale structure.
In this paper we investigate the large scale structure of subsets of real numbers.
Let us recall some definitions from coarse geometry.

Definition 1.1 [4] Let X and Y be metric spaces, and let f : X → Y be a
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map (not necessarily continuous).

• The map f is (metrically) proper if the inverse image of each bounded
subset of Y is a bounded subset of X.

• The map f is (uniformly) bornologous if for every R > 0 there is S > 0
such that

d(x, y) < R⇒ d(f(x), f(y)) < S.

• The map f is coarse if it is proper and bornologous.

For example, if X = Y = N , the natural numbers, then the map n 7→ 14n+78
is coarse, but the map n 7→ 1 is not coarse (it fails to be proper) and the map
n 7→ n2 is not coarse either (it fails to be brornologous).

Definition 1.2 [4] Two maps f , g from X into a metric space Y are close
if d(f(x), f(y)) is bounded, uniformly in X. We say that the metric spaces
X and Y are coarsely equivalent if there exist coarse maps f : X → Y and
g;Y → X such that f ◦ g and g ◦ f are close to the identity maps on Y and
X, respectively.

Definition 1.3 [4] One says that f : X → Y is large-scale Lipschitz if
there are positive constants c and A such that

d(f(x), f(y)) ≤ cd(x, y) + A.

Clearly a large-scale Lipschitz map is bornologous. In general the converse is
not true.

Lemma 1.4 [4] Let X be a lenght space and Y any metric space. Then the
following properties of a map f : X → Y are equivalent.

• f is large-scale Lipschitz;

• f is bornologous;

• There exist R, S > 0 such that d(x, y) < R implies d(f(x), f(y)) < S.

Example 1.5 The inclusion map i : Z → R and the map [.] : R → Z
(which assigns to each real number x the greatest integer less than or equal to
x) are coarse maps. In addition i ◦ [.] and [.] ◦ i are close to the identity maps
on R and Z. Consequently, R and Z are coarsely equivalent.

Remark 1.6 1) finite sets are coarse equivalent.
2) If X is a set with more than one element and a ∈ X, then X and X − {a}
are coarse equivalent.
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Lemma 1.7 Let A2 = {2n,−2n : n ∈ N}. A2 and Z are not coarse equiv-
alent.

Proof: Suppose by contradiction that the coarse maps f : Z → A2 and
g : A2 → Z exist such that f ◦g and g◦f are close to idA2 and idZ , respectively.
Based on definition 1.1, there exists c > 0 such that |z1 − z2| < 2 implies
|f(z1)− f(z2)| < c. Hence |f(n+ 1)− f(n)| < c, for every n ∈ Z+. We choose
m > 0 such that 2m+1 − 2m > c. Hence for every n ∈ N , f(n) = f(n + 1) or
f(n), f(n + 1) ∈ Km, where Km = {n : |n| ≤ 2m}.
Claim: For every n0 ∈ N , there is n > n0 such that f(n) ∈ Km.
Proof of the claim. If f(n) /∈ Km for all n > n0, then we have

f(n) = f(n + 1) = ... = d.

Since g ◦ f is close to the identity map there is a > 0 such that

|p− g ◦ f(p)| = |p− g(d)| < a.

This is a contradiction if we choose p sufficiently large.
Since Km is finite g(Km) is finite too. In addition, since for every n0 ∈ N
there exists n > n0 such that f(n) ∈ Km, g(f(n)) ∈ g(Km) and we have
|n− g(f(n))| < a, which is a contradiction.

2 Coarse Equivalent Subsets of N

Let A+
2 = {2n, n ∈ N}.

Theorem 2.1 Suppose that {xn : n ∈ N} and {dm = |xm+1− xm|,m ∈ N}
are increasing sequences in N .

• {xn} and N are coarse equivalent if limm→∞dm <∞;

• {xn} and A+
2 are coarse equivalent if limm→∞dm =∞.

Proof: Let limm→∞dm < ∞ Suppose that the map f : N → {xn} is defined
by n 7→ xn. We prove that f and f− are coarse maps.
Let |n−n1| < R, for R > 0. By assumption, there is m ∈ N such that di = d,
for i ≥ m. If c = max{(R + 1)d, |xi − xj|, 1 ≤ i, j ≤ m} then |xn − xn1| < c,
so f is a coarse map.
Similarly let |xn − xk| < R, for R > 0. if c = max{m, (R/d) + 1} then
|n− k| < c and consequently g is a coarse map too.
If limm→∞dm = ∞ then consider the natural maps f : A+

2 → {xn}, f(2n) =
xn and f−1. Let |2n − 2k| < R for R > 0. We choose m ∈ N such that
|2m+1− 2m| = 2m > R. If c = xm then |2n− 2k| < R implies that |xn−xk| < c
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and consequently f is a coarse map. If |xn − xk| < R then we choose m ∈ N
such that xm+1 − xm > R. Now if c = 2m the proof is complete.
The following example shows that the coarse equivalence of A1 with A2 and
B1 with B2 doesn’t imply the coarse equivalence of A1 ∪ A2 with B1 ∪B2.

Example 2.2 1) A+
2 and {n! : n ∈ N} are coarse equivalent.

2) Let A1 = A2 = N , B1 = {n−1/n : n ∈ N} and B2 = {−1,−2,−3, ...}. It is
easy to check that A1 is coarse equivalent with A2 and B1 is coarse equivalent
with B2.
A1 ∪ B1 = {1, 1 − 1, 2, 2 − 1/2, 3, 3 − 1/3, 4, 4 − 1/4, ...} is coarse equivalent
with N . But A2 ∪B2 = Z − {0} which is not coarse equivalent with A2 ∪B2.

Theorem 2.3 Let X be a metric space and Ai, Bi ⊆ X, for i = 1, 2, be
such that A1 ∩ B1 = A2 ∩ B2 = ∅. In addition, suppose that A1 is coarse
equivalent with A2, Using the coarse maps f1 : A1 → A2 and f2 : A2 → A1,
and B1 is coarse equivalent with B2, Using the coarse maps g1 : B1 → B2 and
g2 : B2 → B1. If there is M > 0 such that

|d(ai, bi)− d(fi(ai), gi(bi))| < M,

for ai ∈ Ai and bi ∈ Bi, then A1 ∪B1 is coarse equivalent with A2 ∪B2.

Proof: Suppose that the map f1∪g1 : A1∪B1 → A2∪B2 (f2∪g2 : A2∪B2 →
A1∪B1) is defined by f1∪g1(x) = f1(x) if x ∈ A1 (f2∪g2(x) = f2(x) if x ∈ A2)
and f1 ∪ g1(x) = g1(x), x ∈ B1 (f2 ∪ g2(x) = g2(x), x ∈ B2).
For every R > 0 there is s1 and s2 such that
d(x, y) < R implies d(f1(x), f1(y)) < s1, for x, y ∈ A1,
and
d(x, y) < R implies d(g1(x), g1(y)) < s1, for x, y ∈ B1.
Let x ∈ A1, y ∈ B1 and d(x, y) < R then
d(f1(x), g1(x)) < M + d(x, y) < M + R.
This implies that d(f1∪g1(x), f1∪g1(y)) < M+R. Let s = max{s1, s2,M+R}.
d(x, y) < R implies d(f1 ∪ g1(x), f1 ∪ g1(y)) < s and consequently f1 ∪ g1 is
bornolougous. In a similar way one can prove that A1∪B1 is coarse equivalent
with A2 ∪B2.

3 L-Spaces and H-Spaces

The properties of N and Z helps us to define two kinds of subspaces which are
not coarse equivalent.

Definition 3.1 The metric space Y is called a L-space if for each Ny
R there

are subsets A,B 6= ∅ of Y such that A ∪ B = (Ny
R)c, d(A,B) ≥ R and

supa∈Ad(a,Ny
R) = supb∈Bd(b,Ny

R) = ∞, where Ny
R = {z ∈ Y : d(y, z) < R}

and d(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}
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Example 3.2 The metric space Z is a L-space.

Definition 3.3 The metric space X is called a H- space if there is c > 0
such that for each x0 ∈ X there is R0 ∈ N that:

If x, z ∈ (Nx0
R )c, for every R ≥ R0, then there is a net {x1 = x, x2, ..., xn =

z} ⊆ Nx0
R

c that d(xi, xi+1) ≤ c for all i = 1, 2, ..., n− 1.

Example 3.4 The metric space N is a H-space. The Euclidean space Rn,
n 6= 2, is a H-spaces.

Theorem 3.5 Let Y be a L-space and X ⊂ Y be a H-space. Then X and
Y are not coarse equivalent.

Proof: Since X is a H-space we choose c > 0 as in definition 2.2. Suppose
by contradiction that X and Y , using the coarse maps f : X → Y and
g : Y → X, are coarse equivalent. There is R > 0 such that for x, x1 ∈ X,
d(x, x1) < c implies d(f(x), f(x1)) < R and for y, y1 ∈ Y , d(y, y1) < c implies
d(g(y), g(y1)) < R. There is a > 0 such that

d(x, g ◦ f(x)) < a ∀x ∈ X

and
d(y, f ◦ g(y)) < a ∀y ∈ Y,

since f ◦ g and g ◦ f are close to iY and iX , respectively.
We choose T > max{a,R}. If y0 ∈ Y then f−1(Ny0

T ) is bounded. Hence there
are x0 ∈ X and M > 0 such that f−1(Ny0

T ) ⊆ Nx0
M . By hypothesis there are

subsets A,B 6= ∅ of Y such that A ∪B = (Ny0
T )c and d(A,B) ≥ T .

Let R0 > 0 be such that if x, z ∈ (Nx0
R )c, for every R ≥ R0, then there is a net

{x1 = x, x2, ..., xn = z} ⊆ Nx0
R

c that d(xi, xi+1) ≤ c for all i = 1, 2, ..., n − 1.
Let m0 > {R0,M}.

Claim 1: f((Nx0
m0

)c) ⊆ A or f((Nx0
m0

)c) ⊆ B.

Proof of the Claim 1: Suppose that x, z ∈ (Nx0
m0

)c. If f(x) ∈ A we prove
that f(z) ∈ A.
Suppose that f(z) /∈ A , since f(z) /∈ Ny0

T f(z) ∈ B and there is a net {x1 =
x, x2, ..., xn = z} ⊆ (Nx0

m0
)c such that d(xi, xi+1) ≤ c for all i = 1, 2, ..., n − 1.

This implies that d(x, x2) < c and consequently d(f(x), f(x2)) < R. Hence
f(x2) ∈ A. By induction f(xn) = f(z) ∈ A and this is a contradiction. Indeed
f(X) ⊆ f(Nx0

m0
) ∪ A.

We note that if K is a bounded subset of X then f(K) is a bounded subset of
Y .
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Now let f(Nx0
m0

) ⊆ Ny0
k . Let b ∈ B. If f(g(b)) ∈ A then d(b, f(g(b))) < a so

d(A,B) < a < T which is a contradiction. If f(g(b)) ∈ f(Nx0
m0

) Since B is
not bounded f(g(B)) is not bounded too but by the pervious claim f(Nx0

m0
) is

bounded and hence f(g(B)) is bounded which is again a contradiction.
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