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Abstract
This expository article states and proves four, concrete, projective, central

limit theorems. The results are known or suspected to be true by experts who
are familiar with the more general central limit theorem for convex bodies, and
related theory. Here we consider only four types of high dimensional geometric
objects: spheres, balls, cubes, and boundaries of cubes. Each is capable of
transforming uniform random variables into normal random variables through
projection. This paper has been written to introduce new proof techniques,
demonstrate how statistical simulation can be applied to geometry, and to build
a foundation upon which recreational research projects can be built. The goal
is to give the reader a better understanding of some of the mathematics at the
juncture of probability theory, analysis, and geometry in high dimensions.

Keywords: Concentration of measure, Dominated convergence, Law of
large numbers, Convolution, Statistical simulation.

1 Introduction

High-dimensional geometry is a fascinating subject. Techniques of modern,
convex geometry are applicable in probability and statistics [2], and recently
the projective central limit theorem for convex bodies has been proven [15]
(see also [7]). Meanwhile, entertaining expository articles have been published
that discuss some counter-intuitive phenomena in high dimensions (see [11]
or [10]). This paper presents four concrete examples of how high-dimensional
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geometric objects can relate uniform random variables, through projection, to
normal random variables.

The objects are the sphere, the ball, the cube, and the surface of the cube,
and the associated results are presented here so as to highlight connections
to established features of classical mathematics and statistics. For the sphere,
concentration of measure is demonstrated with the Law of Large Numbers.
For the ball, Stirling’s approximation is used, demonstrating the relationship
between the gamma function, associated factorials, π, and e. For the cube,
the central limit theorem applies, and surprisingly, we illustrate how statistical
simulation can be used to gather empirical evidence, in the case of the cube’s
boundary, demonstrating how statistics can be applied even to pure geometry.

At the juncture of high dimensional geometry and probability theory, math-
ematics can be written with one of two separate sets of notation. While this
paper uses mainly the terminology of probability theory, the reader is encour-
aged to visualize the content of the theorems whenever possible. In some
instances, it may be beneficial to mentally restate a given result using geomet-
ric language. For example, despite its formal probabilistic statement, Theorem
5.1 simply asserts that the volumes of sections orthogonal to the diagonal of a
high dimensional cube follow the common Gaussian function of statistics and
probability.

The rich interplay between geometry and probability theory leads natu-
rally to generalizations and new conjectures. For instance, while the central
limit theorem for convex sets asserts that any high-dimensional convex body
is capable of transforming a uniform random variable into a normal random
variable via projection, this same outcome is observed for surfaces as well. An
exciting research program would involve a search for and classification of all ge-
ometric objects with such capabilities, and we needn’t project onto only lines.
Moreover, combinatorial analysis of concrete objects, e.g. tetrahedrons and
their boundaries, could lead to startling analytic results, producing rational
sequences that converge via the central limit theorems to interesting products
like πe. For such a sequence arising from the cube see [13].

While this paper could generate novel research hypotheses and lead to
interesting results, it has also been written for educational purposes. Readers
can improve their understanding of convolution with a recreational problem in
Section 7. Foundational issues relating to problems defining uniform random
variables on arbitrary sets are discussed in Section 4. Formulas for volumes of
balls and their surfaces are derived in the appendix. Proofs and mathematical
development occur in sections 2, 3, 5, and 6. Section 6 deals also with statistical
simulation.
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Figure 1: An illustration of the objects in R3

2 Spheres

We say in this section that a random variable Xn
r is uniformly distributed on a

sphere Snr = {x ∈ Rn : x2
1 +x2

2 + ...+x2
n = r2} if Xn

r is distributed according to
the unique, rotationally invariant, probability measure on Snr . For a proof of
uniqueness see [14], Theorem 7.23. Note that we are using n for the ambient
dimension, so that Snr itself has dimension n− 1.

With an orthonormal basis for Rn

Xn
r = (Xn

r,1, X
n
r,2, ..., X

n
r,n)

and the components {Xn
r,i}ni=1 are identically distributed. Given a fixed k ∈ N

and a sequence of expanding spheres, {Sn√
n
}n∈N, define the following sequence

of projected random variables:{
Y n =

(
Xn√

n,1, X
n√
n,2, ..., X

n√
n,k

)}
n∈N,n>k

.

With the symbol →d denoting convergence in distribution, and with N(0, Ik)
denoting the k-variate standard normal distribution, the projective central
limit theorem can be stated as follows.

Theorem 2.1 (Projective Central Limit Theorem for Spheres). With Y n

as just defined, as n→∞,

Y n →d N(0, Ik).

Proof. It suffices to show that Xn√
n,1
→d N(0, 1).

Let {Z1, Z2, ..., Zn, ...} be a set of independent, standard normal, random
variables, so that each of {Zn = (Zn

1 , Z
n
2 , ..., Z

n
n)}k<n<∞ is a standard, multi-

variate, normal random variable. Each density, namely

fZn(x1, x2, ..., xn) =
1

(2π)n/2
e
∑n

i=1 x
2
i /2,
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defines a rotationally invariant, probability measure on Rn, and thus each√
n

|Zn|Z
n is distributed uniformly on Sn√

n
. By uniqueness of such a uniform

measure (see [14], Theorem 7.23),

√
n

|Zn|
Zn =d Xn√

n. (1)

Furthermore, the strong law of large numbers, applied to χ2(1) random vari-
ables, ensures that

|Zn|√
n

=

(
((Z1)2 + (Z2)2 + ...+ (Zn)2)

n

)1/2

→ 1 a.s.

Therefore, by way of the equality in (1), Xn√
n,1
→d Z1 =d N(0, 1).

In closing, for curiosity, we note that for all t ∈ N, E((χ2(n))t) <∞, so for
small ε > 0,

P (||Zn| −
√
n| > ε) = O(1/nt), (2)

since P (||Zn|2−n| > ε) = O(1/nt) (see [3]). Said another way, for any ε > 0, as
the dimension increases, the standard, normal, multivariate, random variable
N(0, Ik) is located within ε of Sn√

n
with probability that approaches one.

3 Balls

We say in this section that a random variable Xn
r is uniformly distributed on

a ball Bn
r = {x ∈ Rn : x2

1 + x2
2 + ... + x2

n ≤ r2}, if for any measurable subset
E ⊆ Bn

r , we have with µ denoting measure that

P (Xn
r ∈ E) =

µ(E)

µ(Bn
r )
.

Assume henceforth the use of Lebesgue measure and assume also that all ecoun-
tered sets are measurable.

With an orthonormal basis for Rn,

Xn
r = (Xn

r,1, X
n
r,2, ..., X

n
r,n),

and the components {Xn
r,i}ni=1 are identically distributed. Given a fixed k ∈ N

and a sequence of expanding balls, {Bn√
n
}n∈N, define the following sequence of

projected random variables:{
Y n =

(
Xn√

n,1, X
n√
n,2, ..., X

n√
n,k

)}
n∈N,n>k

.

As with spheres, we can conclude the following.
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Theorem 3.1 (Projective Central Limit Theorem for Balls). With Y n as
just defined, as n→∞,

Y n →d N(0, Ik).

Some preparation is required before stating the proof.

Definition 3.2. For x > 0,

Γ(x) =

∫ ∞
0

tx−1e−tdt.

Remark 3.3. Γ(n) = (n− 1)!.

Theorem 3.4.

µ(Snr ) =
rn−12πn/2

Γ(n/2)
.

Theorem 3.5.

µ(Bn
r ) =

rn2πn/2

nΓ(n/2)
.

These formulas are derived in the appendix. See also Figure 3.

Remark 3.6. In Rn, the measure of the unit sphere is always n times the
measure of the unit ball.

Figure 2: With r = 1, as n increases, the measures increase temporarily before
decreasing to zero.
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In order to prove Theorem 3.1 it suffices to demonstrate that Xn√
n,1
→d

N(0, 1). For n ≥ 2, the density function for Xn√
n,1

, denoted with fn(x), can be

expressed on {x : −
√
n < x <

√
n} as

fn(x) =
µ
(
Bn−1√

n−x2

)
µ
(
Bn√

n

) =

(
√
n−x2)n−12π(n−1)/2

(n−1)Γ((n−1)/2)

(
√
n)n2πn/2

nΓ(n/2)

. (3)

Stirling’s formula [20], namely

Γ(x) =

√
2π

x

(x
e

)x(
1 +O

(
1

x

))
,

justifies the following lemma.

Lemma 3.7. As n→∞

Γ(n
2
)

Γ(n−1
2

)

1√
n− 1

→ 1√
2
.

And the definition e = limn→∞(1 + 1
n
)n leads to a second lemma.

Lemma 3.8. For any x ∈ R, as n→∞,(
1− x2

n

)n−1
2

→ e−
x2

2 .

Together, these lemmas allow for further simplification of (3), with the result
being

fn(x)→ 1√
2π
e−

x2

2 , (4)

which is the density for the standard normal random variable.
For any n, argmax

x∈R
fn(x) = 0, and since fn(0) is decreasing in n,

max{fn(x)}x∈R,n≥2 = f2(0) = π−1.

Thus, on any interval [a, b], and for any n ≥ 2, the function fn(x) is bounded by
the function g(x) = π−1, which is integrable over [a, b]. Lebesgue’s dominated
convergence theorem (see [5], Chapter 8) then justifies

P (a ≤ Xn√
n,1 ≤ b) =

∫ b

a

fn(x)dx→
∫ b

a

1√
2π
e−

x2

2 dx = P (a ≤ N(0, 1) ≤ b).

This implies that Xn√
n,1
→d N(0, 1).
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4 Interlude

Note that direct computation with density functions, as carried out in Section
3, could have been used to prove the projective central limit theorem of Section
2, with only slight modification. The main difference being that with a sphere,
the measures of sections are not proportional to the corresponding values of
the density function for the projected, random variable—the curvature of the
sphere must be accounted for. The ball, however, provides a more geometric
route to the bell curve of the Gaussian function, because in high dimensions,
the measures of sections orthogonal to any axis of the ball, are approximately
the values of a scaled, Gaussian function. The scaling is necessary because the
Lebesgue measure of balls of radius

√
n, or unit balls, is not constant in the

dimension n.

No scaling is necessary with unit cubes though. In all dimensions the
unit cube has constant Lebesgue measure equal to one. Furthermore, as the
dimension increases, the diameter of the unit cube, being

√
n, increases as

did the expanding radius required previously of spheres and balls. Perhaps
not surprisingly then, we find that the measures of sections orthogonal to the
diagonal are approximately a Gaussian function of their positions along the
diagonal (see Figure 3). However, this Gaussian function represents a normal
random variable with variance 1/12. If a standard normal limit is desired, the
edge lengths for the cubes must not be one, but rather

√
3.

It seems that the standard units of Lebesgue measure are not in tune with
the standard deviations assigned to distributions, and thus our geometric, cen-
tral limit theorems, as currently formulated, lack a sense of aesthetic beauty.
If not balls or cubes, what type of geometric object, definable at once in all
dimensions, is required for the bell curve of the standard Gaussian function to
be realized as the high dimensional limit of the Lebesgue measures of sections?
Perhaps different measures are required. The curious reader is encouraged to
consult Federer’s classic text on geometric measure theory [8].

As a final point for consideration, before we proceed with cubes, note that
we have defined a uniform random variable on the sphere by specifying that
its measure be rotationally invariant. With balls, however, we have worked di-
rectly with Lebesgue measures of subsets, defining a uniform random variable
as one whose associated measure is proportional to Lebesgue measure. This di-
rect approach could have been used on the sphere as well, assuming a specified
differentiable structure in order to define the measure (see [19], [9] or [4] for
introductions to differentiable topology). The standard differentiable structure
on a sphere, arising through stereographic projection for example, would result
in a rotationally invariant measure, and the normal results for projections that
we have now become accustomed to would remain unchanged. However, there
are exotic spheres, discovered in 1956 by Milnor [16]. An exotic sphere consists
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of the same set of points as a standard sphere, but with a different differen-
tiable structure. Not all standard spheres have exotic analogues, and some
spheres in higher dimensions admit more differentiable structures than oth-
ers [12]. It would be interesting to define uniform random variables on exotic
spheres, and to investigate whether projection still gives rise to normality.

5 Cubes

Given c > 0, we say that a random variable Xn
c is uniformly distributed on

the cube Cn
c = {(x1, x2, ..., xn) ∈ Rn : ∀i ∈ {1, 2, ..., n},−c/2 ≤ xi ≤ c/2}, if

for any measurable subset E ⊆ Cn
c , we have with µ denoting the measure that

P (Xn
c ∈ E) =

µ(E)

µ(Cn
c )
.

a section of the square

a section of the cube

Figure 3: The measure of a section is a function of its position along the
diagonal

Let Dn = span((1, 1, ..., 1n)/
√
n) represent a canonical line in Rn that in-

tersects Cn
c along a diagonal. Let p(Xn

c ) denote the projection of Xn√
3

onto
Dn. Consider {

Y n = |p(Xn√
3
)|
}
n∈N

.
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Similar to previous results for spheres and balls, we can conclude the following
for cubes.

Theorem 5.1 (Projective Central Limit Theorem for Cubes). With Y n as
just defined, as n→∞,

Y n →d N(0, 1).

Proof. Assuming the standard, orthonormal basis for Rn we have

Xn
c = (Xn

c,1, X
n
c,2, ..., X

n
c,n),

where each of {Xn
ci
}ni=1 is independent and uniformly distributed on [−c/2, c/2].

Note that E(Xn
c,i) = 0 and E((Xn

c,i)
2) = 1. The following lemma is easily

verified.

Lemma 5.2. p(Xn
c ) =

∑n
i=1X

n
c,i√

n
(1, 1, ..., 1n)/

√
n

An immediate consequence of Lemma 5.2 is that Y n =
∑n

i=1X
n
c,i√

n
and thus

according to our observations, Theorem 5.1 follows directly from the central
limit theorem.

To conclude that the volumes of sections orthogonal to a diagonal of a high
dimensional unit cube are approximately a Gaussian function with variance
1/12, the same reasoning is used, but with c = ±1/2, and the local version
of the central limit theorem, that applies to densities, is required. Both the
local central limit theorem and the standard central limit theorem are treated
in Petrov’s book Sums of Independent Random Variables [17]. In the next
section we will employ Lyapunov’s central limit theorem.

6 Faces of Cubes

For c > 0, consider the n-cube,

Cn
c = {(x1, x2, ..., xn) ∈ Rn : ∀i ∈ {1, 2, ..., n},−c/2 ≤ xi ≤ c/2},

and then consider its topological boundary, ∂Cn
c . The boundary is a union of

2n faces:
∂Cn

c = ∪i∈{1,2,...,n},j∈{+,−}Fi,j,

where Fi,j = {(x1, x2, ..., xn) ∈ Cn
c : xi = jc/2}}.

A random variable is is said to be uniformly distributed on ∂Cn
c , if for any

measurable subset E ⊆ ∂Cn
c , we have

P (Xn
c ∈ E) =

µ(E)

µ(Cn
c )
.
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Note that we are using (n − 1)-dimensional Lebesgue measure on the faces.
These faces overlap on sets of measure zero.

Let Dn = span((1, 1, ..., 1n)/
√
n) represent a canonical line in Rn. Let

p(Xn√
3
) denote the projection of Xn√

3
onto Dn. Consider{

Y n = |p(Xn√
3
)|
}
n∈N

.

As with the sphere, ball, and cube, we can conclude the following for the
boundary of the cube.

Theorem 6.1 (Projective Central Limit Theorem for Boundaries of Cubes).
With Y n as just defined, as n→∞,

Y n →d N(0, 1).

Experimental evidence for Theorem 6.1 can be obtained through statisti-
cal simulation. We can simulate a random sample of observations of Y n, by
randomly∗ selecting m points on ∂Cn√

3
, projecting them onto Dn, and then

recording their magnitudes.
A randomly selected point of ∂Cn√

3
can be obtained by randomly selecting a

face, Fi,j, and then upon that face randomly selecting a point. Since the point

is to be projected via (x1, x2, ..., xn) 7→
∑n

i=1 xi√
n

(1, 1, ..., 1)/
√
n, we need not con-

sider all faces, but only F1,− and F1,+. Thus a single, simulated observation of
Y n can be obtained through the following two-step procedure. First, randomly
select x1 to be either −

√
3/2 or

√
3/2, and then for i = 2, 3, ..., n randomly

select xi within [−
√

3/2,
√

3/2]. Second, given the resulting (x1, x2, ..., xn)

compute
∑n

i=1 xi√
n

, which is the simulated observation of Y n.
In order to take advantage of existing computer software, note that within

the procedure just described, x1 can be thought of as a Bernoulli random vari-
able, while each of {x2, x3, ..., xn} can be thought of as continuous, uniform
random variables. Thus, within R (see [18]), for example, our simulated sam-
ple of m independent observations of Y n is obtainable through the following
commands.

> A <- matrix(c(2*sqrt(3)*(rbinom(m,1,.5)-.5),

runif(n*m-m,-sqrt(3),sqrt(3))),nrow=m)

> apply(A,1,sum)/sqrt(n)

In order to avoid sampling error, the simulation should be run with m as
large as possible. For sufficiently large, fixed m, as n increases, it is possible

∗Throughout this section the adverb “randomly” is to be interpreted as specifying that
the selection is to be done according to the uniform distribution, continuous or discrete, on
the space in question.
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to observe the convergence of Y n to N(0, 1). This convergence in the case of
the boundary of the cube is slower than in the case of the cube.

Fortunately, our simulation procedure points the way to a theoretical proof
for Theorem 6.1. We have seen that Y n = (W + U2 + U3 + ... + Un)/

√
n,

where the random variables, {W, {Ui}ni=2}, are independent, W takes the values
−
√

3 or
√

3 each with probability 1/2, and each Ui is uniformly distributed
on [−

√
3,
√

3]. This sets the stage for the Lyapunov central limit theorem (see
[6], Theorem 24.4).

Theorem 6.2. (Lyapunov Central Limit Theorem) Let {Xn}∞n=1 be a se-
quence of independent random variables, each with a mean of zero and a finite
third moment. Define s2

n :=
∑n

i=1E(X2
i ). If Lyapunov’s condition,

lim
n→∞

1

s3
n

n∑
i=1

E(|Xi|3) = 0,

is satisfied, then ∑n
i=1 Xi

sn
→d N(0, 1).

In our case, E(W 2) = 3 and E(U2
i ) = 1, resulting in s2

n = n + 2. Also,
E(|W |3) = 3

√
3 and E(|Ui|3) = 3

√
3/4, resulting in E(|W |3)+

∑n
i=2E(|Ui|3) =

3
√

3(1 + n−1
4

). Combining these results demonstrates that Lyapunov’s condi-
tion is satisfied:

lim
n→∞

3
√

3(1 + n−1
4

)

(n+ 2)3/2
= 0.

Lyapunov’s central limit theorem thus applies and implies
√
n√
n+2

Y n →d N(0, 1),

which in turn implies Y n →d N(0, 1).

7 Recreation

For c > 0 and n ∈ N we have defined Cn
c = {(x1, x2, ..., xn) ∈ Rn : ∀i ∈

{1, 2, ..., n},−c/2 ≤ xi ≤ c/2}. Let t 7→ t(1, 1, ..., 1n)/
√
n parametrize a line in

Rn. Define the orthogonal section of Cn
c at t 6= 0 to be Hn

c,t = {(x1, x2, ..., xn) ∈
Cn
c : 〈(x1, x2, ..., xn) − t(1, 1, ..., 1n)/

√
n, t(1, 1, ..., 1n)/

√
n〉 = 0}. For t 6= 0,

define the family of functions {gnc (t)}c>0,n∈N, via gnc (t) = µ(Hn
c,t). Extend each

function by defining gnc (0) = limt→0 g
n
c (t).

Proposition 7.1. ∀c > 0, and ∀n ∈ N : n > 1, the function gnc : R → R
has the following properties:

(i) gnc (−t) = gnc (t)
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(ii) 0 < a < b =⇒ g(a) > g(b).

Corollary 7.2. ∀c > 0, and ∀n ∈ N : n > 1,

argmax
t

gnc (t) = 0.

These are statements regarding the geometry of high dimensional cubes.
The corollary follows immediately from the proposition. A roundabout proof
for the proposition is possible using the theory from Section 5.

It can be assumed that c = 1 in all dimensions. When n = 2 the truth of
the proposition is easily verified. Thus, assuming the proposition to be true
for n = N , by using the principle of mathematical induction, it remains to
show that the proposition is true for n = N + 1.

With {Ui}∞i=1 a sequence of independent random variables, each uniformly

distributed on [−1/2, 1/2], observe that gN1 (t) is the density function for
∑N

i=1 Ui√
N

(see Lemma 5.2 of Section 5). Furthermore, gN+1
1 (t) is the density function for∑N+1

i=1 Ui√
N + 1

=

(∑N
i=1 Ui√
N

+
U1√
N

) √
N√

N + 1
=

√
N√

N + 1

∑N
i=1 Ui√
N

+
U1√
N + 1

.

Because the density for the sum of two independent random variables is the
convolution of their densities (see Section 6.4 of [1]), we thus conclude

gN+1
1 (t) =

N + 1√
N

∫ t+2/
√
N

t−2/
√
N

gN1

( √
N√

N + 1
s

)
ds. (5)

The following lemma, when applied to (5), completes the argument.

Lemma 7.3. Let g : R→ R be a function with the following properties:

(i) g(−t) = g(t)

(ii) 0 < a < b =⇒ g(a) > g(b).

Then for any k > 0 the function

h(t) =

∫ t+k

t−k
g(s)ds

has the same properties.

Proof. Since g is an even function, h(−t) =
∫ −t+k
−t−k g(s)ds = −

∫ −t−k
−t+k g(s)ds =

−
∫ t+k
t−k g(−s)ds =

∫ t+k
−t−k g(s)ds = h(t). Also since g is strictly decreasing

on the positive reals, for 0 < a < b we have |a − k| < |b + k|, and thus∫ a+k

a−k g(s)ds −
∫ b+k
b−k g(s)ds =

∫ b−k
a−k g(s)ds −

∫ b+k
a+k

g(s)ds > 0, which implies

h(a) =
∫ a+k

a−k g(s)ds >
∫ b+k
b−k g(s)ds = h(b).
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A Appendix: Measures of Balls and Spheres

Lemma A.1.

∫ ∞
−∞

e−x
2

dx =
√
π.

Proof.∫ ∞
−∞

e−x
2

dx =

((∫ ∞
−∞

e−x
2
1dx1

)(∫ ∞
−∞

e−x
2
2dx2

)) 1
2

=

(∫ ∞
−∞

(∫ ∞
−∞

e−x
2
1dx1

)
e−x

2
2dx2

) 1
2

=

(∫ ∞
−∞

∫ ∞
−∞

(
e−x

2
1e−x

2
2

)
dx1dx2

) 1
2

=

(∫ ∞
−∞

∫ ∞
−∞

(
e−(x21+x22

)
dx1dx2

) 1
2

=

(∫ ∞
0

e−r
2

2πrdr

) 1
2

=

(∫ ∞
0

e−uπdu

) 1
2

=
(
(−e−u)|∞0 π

) 1
2 = ((0− (−1))π)

1
2 = π

1
2 =
√
π.

Proposition A.2. µ(Sn1 ) =
2πn/2

Γ(n/2)

Proof.

πn/2 =

(∫ ∞
−∞

e−x
2

dx

)n
=

∫
Rn

e−|x|
2

dx =

∫ ∞
0

µ(Sn1 )rn−1e−r
2

dr

=
µ(Sn1 )

2

∫ ∞
0

u
n
2
−1e−udu

=
µ(Sn1 )

2
Γ(n/2).

Remark A.3. µ(Snr ) = µ(Sn1 )rn−1.

Proposition A.4. µ(Bn
1 ) = µ(Sn1 )/n.

Proof. µ(Bn
1 ) =

∫ 1

0

µ(Sn1 )rn−1dr = µ(Sn1 )
rn

n
|10 = µ(Sn1 )/n.

Remark A.5. µ(Bn
r ) = µ(Bn

1 )rn.

Acknowledgments: Thanks to Lajos Horváth, Davar Khoshnevisan, and
Andrejs Treibergs.
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