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Abstract

This paper is mainly concerned with introducing the spaces fs(4(m)), f(4(m))
and f0(4(m)) that consist of all sequence whose 4(m) transforms are in the set
of almost convergent sequence and series spaces. Certain topological proper-
ties of these new almost convergent sets have been investigated as well as γ−
and β−duals of the spaces fs(4(m)) and f(4(m)). In addition to that the
non-existence of Schauder basis of the spaces fs and fs(∆(m)) is shown. Fur-
thermore, the characterization of certain matrix classes on/into the sets of
generalized difference almost convergent sequence and series has exhaustively
been examined. Finally, some identities and inclusion relations related to core
theorems are established.

Keywords: Almost convergence, Schauder basis, Beta- and gamma -duals,
Matrix mappings, Core theorems.

1 Introduction

From summability theory perspective, the role played by algebraic, geometric
and topologic properties of new Banach spaces which are matrix domains of
triangle matrices in sequence spaces is very well-known.
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While studies of certain inclusion relations between almost convergent
spaces and some other spaces is very old, the examination of topologic proper-
ties of almost convergent sequence and series spaces and the studies connected
with their duals are very recent (see [29], [30]). Matrix domains of the gen-
eralized difference matrix B(r, s) and triple band matrix B(r, s, t) in sets of
almost null f0 and almost convergent f sequences have been investigated by
Başar and Kirişçi [3] and Sönmez [8], respectively. They have examined some
algebraic and topologic properties of certain almost null and almost convergent
spaces. Following these authors, Kayaduman and Şengönül have subsequently
introduced some almost convergent spaces which are matrix domains of the
Riesz matrix and Cesàro matrix of order 1 in sets of almost null f0 and almost
convergent f sequences (see, [4] and [5]). They have also studied some topolog-
ical properties of these spaces, characterized some classes of matrix mappings
and finally gave some core theorems. Quite recently, Karaisa and Karabıyık
examined and studied some new almost sequence spaces which derived ma-
trix domains of Ar matrix [36]. Note that, Karaisa and Özger introduced
certain almost convergent sequence spaces which are related to almost conver-
gent sequence and series spaces [37]. Further information on matrix domains
of sequence spaces can be found in(see[1, 2, 21, 23, 26, 27, 28]).

The rest of this paper is organized, as follows: We give foreknowledge on
main argument of this study and notations in the next section. In Section
3, we introduce almost convergent sequence and series spaces fs(4(m)) and
f(4(m)) which are matrix domains of ∆(m) matrix in the almost convergent
sequence and series spaces fs and f , respectively, in addition to give certain
theorems related to behavior of some sequences. In Section 4, we determine
the beta- and gamma-duals of spaces fs(4(m)) and f(4(m)) and characterize
classes (γ : f(4(m))), (f(4(m)) : µ), (δ : fs(4(m))) and (f(4(m)) : θ); where
γ ∈ {c(p), c0(p), `∞(p), cs, bs, fs, f, c, `∞}, µ ∈ {cs, bs, c, `∞}, δ ∈ {cs, fs, bs}
and θ ∈ {f, c, fs, `∞}. In the last section of paper; after comparing with
related results in the existing literature, we note some original aspects of this
study.

2 Notions, Notations and the Sets fs, f and

f0

In this section, we start with recalling the most important notations, definitions
and make a few remarks on the meaning of the notions which are needed in
this study.

By w, we shall denote the space of all real or complex valued sequences.
We shall write `∞, c and c0 for spaces of all bounded, convergent, and null
sequences respectively. Also by bs and cs, we denote the spaces of all bounded
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and convergent series. Let µ and γ be two sequence spaces and A = (ank) be
an infinite matrix of real or complex numbers ank, where n, k ∈ N. Then, we
say that A defines a matrix mapping from µ into γ, and we denote it by writing
A : µ→ γ, if for every sequence x = (xk) ∈ µ the sequence Ax = {(Ax)n}n∈N
the A− transform of x, is in γ; where

(Ax)n =
∑
k

ankxk (n ∈ N). (1)

The notation (µ : γ) denotes the class of all matrices A such that A : µ → γ.
Thus, A ∈ (µ : γ) if and only if the series on the right hand side of (1) converges
for each n ∈ N and every x ∈ µ, and we have Ax = {(Ax)n}n∈N ∈ γ for all
x ∈ µ. The matrix domain µA of an infinite matrix A in a sequence space µ is
defined by

µA = {x = (xk) ∈ ω : Ax ∈ µ}. (2)

A sequence x is said to be A-summable to l if Ax converges to l which is called
as the A-limit of x. The sequence space µ with a linear topology is called a K-
space provided each of the maps pi : µ→ C defined by pi(x) = xi is continuous
for all i ∈ N, where C denotes the complex field. A K-space µ is called an
FK-space provided µ is a complete linear metric space. An FK-space whose
topology is normable is called a BK-space. A sequence (bk) in a normed space
µ is called a Schauder basis for µ if and only if for each x ∈ µ, there exists a
unique sequence (αk) of scalars such that x =

∑∞
k=0 αkbk.

The concept of statistically convergence for sequence real numbers was
defined by Fast [7] and Steinhaus [6] independently in 1951. First we recall
the following definitions:

LetK be a subset of N. The natural density δ(K) ofK ⊆ N is limn n
−1|{k ≤

n : k ∈ K}| provided it exists, where |E| denotes the cardinality of a set E.
A sequence x = (xk) is called statistically convergent (st−convergent) to the
number l, denoted st− limx = l, if every ε > 0, δ({k : |xk − l| ≥ ε}) = 0. We
write S and S0 to denote the sets of all statistically convergent sequences and
statistically null sequences, respectively. The concepts of statistical bound-
edness, statistical limit superior(or briefly st − lim sup) and statistical limit
inferior (or briefly st − lim inf) have been introduced by Fridy and Orhan
in [13]. They have also studied on the notions of statistical core (or briefly
st−core) of a statistically bounded sequence as closed interval [st − lim inf,
st− lim sup].
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We list the following functionals on `∞:

l(x) = lim inf
k→∞

xk, L(x) = lim sup
k→∞

xk,

qσ(x) = lim sup
m→∞

sup
n∈N

m∑
i=0

xσi(n),

L∗(x) = lim sup
m→∞

sup
n∈N

m∑
i=0

xn+i.

The σ−core of a real bounded sequence x is defined as the closed inter-
val [−qσ(−x), qσ(x)] and also the inequality qσ(Ax) ≤ qσ(x) holds for all
bounded sequences x. The Knopp-core (shortly K−core) of x is the interval
[l(x), L(x)] while Banach core (in short B−core) of x defined by the interval
[−L∗(−x), L∗(x)]. In particular, when σ(n) = n + 1 because of the equality
qσ(x) = L∗(x), σ−core of x is reduced to the B−core of x (see [17, 14]). The
necessary and sufficient conditions for an infinite matrix matrix A to satisfy the
inclusion K − core(Ax) ⊆ B− core(x) for each bounded sequences x obtained
in [15].

We now focus on sets of almost convergent sequences. A continuous linear
functional φ on `∞ is called a Banach limit if (i) φ(x) ≥ 0 for x = (xk), xk ≥ 0
for every k, (ii) φ(xσ(k)) = φ(xk) where σ is shift operator which is defined
on ω by σ(k) = k + 1 and (iii) φ(e) = 1 where e = (1, 1, 1, . . .). A sequence
x = (xk) ∈ `∞ is said to be almost convergent to the generalized limit α if all
Banach limits of x are α [11], and denoted by f − limx = α. In other words,
f − limxk = α uniformly in n if and only if

lim
m→∞

1

m+ 1

m∑
k=0

xk+n uniformly in n.

The characterization given above was proved by Lorentz in [11]. We denote
the sets of all almost convergent sequences f and series fs by

f =
{
x = (xk) ∈ ω : lim

m→∞
tmn(x) = α uniformly in n

}
and

fs =

{
x = (xk) ∈ ω : ∃l ∈ C 3 lim

m→∞

m∑
k=0

n+k∑
j=0

xj
m+ 1

= l uniformly in n

}
,

where

tmn(x) =
m∑
k=0

1

m+ 1
xk+n, t−1,n = 0
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for all m,n ∈ N. We know that the inclusions c ⊂ f ⊂ `∞ strictly hold.
Because of these inclusions, norms ‖.‖f and ‖.‖∞ of the spaces f and `∞
are equivalent. So the sets f and f0 are BK-spaces with the norm ‖x‖f =
supm,n |tmn(x)|.

We note that, the γ- and β-duals of the set fs have been found by Başar
and Kirişçi lately. Two basic results related to the space f : ”f is a non-
seperable closed subspace of (`∞, ‖.‖∞)” and ”Banach space f has no Shauder
basis” are given in their paper [3].

Now, we give a theorem about non-existence of Schauder basis of the space
fs.

Theorem 2.1 The set fs has no Schauder basis.

Proof: Let us define the matrix S = (snk) by snk = 1 (0 ≤ k ≤ n), snk = 0
(n > k). Then x ∈ fs if and only if (Sx)n ∈ f for all n. As a result, since the
set f has no basis fs has no basis too.

3 Difference Sequence Spaces

The difference spaces c0(4), c(4) and `∞(4) consisting of all sequences such
that 41x = (xk − xk+1) in sequence spaces c0, c, `∞ which were introduced
by Kızmaz [10]. Recently, the difference spaces bvp consisting of sequences
x = (xk) such that (xk − xk+1) ∈ `p have been studied in case 0 < p < 1 by
Altay and Başar [22], and in case 1 ≤ p < ∞ by Başar and Altay [20]. A
linear topological space X over the real field R is said to be a paranormed
space if there exists subadditive function h : X −→ R such that h(θ) = 0,
h(−x) = h(x) and scalar multiplication is continuous, i.e., |αn − α| −→ 0 and
h(xn − x) −→ 0 imply h(αnxn − αx) −→ 0 for all α’s in R and all x’s in X,
where θ is the zero vector in the linear space X and p = (pk) be an arbitrary
bounded sequence of positive reals. Then, linear spaces c0(p), c(p) and `∞(p)
were defined by Maddox [41] as follows:

c0(p) = {x = (xk) ∈ ω : lim
k→∞
|xk|pk = 0},

c(p) = {x = (xk) ∈ ω : lim
k→∞
|xk|pk = l for some l ∈ R},

`∞(p) = {x = (xk) ∈ ω : sup
k
|xk|pk <∞}.

Let µ denote any one of the classical sequence spaces c0, c, `∞. In [25], Ahmad
and Mursaleen defined paranormed spaces of difference sequences

4µ(p) = {x = (xk) ∈ ω : 41x = (xk − xk+1) ∈ µ(p)}.
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The idea of difference sequences was generalized by Çolak and Et [16]. They
defined the sequence spaces

4mµ(p) = {x = (xk) ∈ ω : 4mx ∈ µ(p)},

where m ∈ N and 4m = 41(4m−1). In [35], Polat and Başar introduced
the spaces er0(4(m)), erc(4(m)) and er∞(4(m)) consisting of all sequences whose
mth order differences are in Euler spaces er0, e

r
c and er∞ respectively. Altay

[24] studied the space `p(4(m)) consisting of all sequences whose mth order
differences are p−absolutely summable, which is a generalization of the spaces
bvp introduced by Başar and Altay [20] .

4 The Sets f (4(m)), fs(4(m)) and their Topo-

logical Properties

This section is devoted to examination of basic topologic properties of the sets
fs(4(m))) and f(4(m)). Most of the study given in this section is, by now,
classical and not very difficult, but it is mandatory to give. Our main focus in
this study is on the triangle matrix 4(m) = {δ(m)

nk } is defined by

δ
(m)
nk =

{
(−1)n−k

(
m
n−k

)
(max{0, n−m} ≤ k ≤ n),

0 (0 ≤ k < max{0, n−m} or k > n).

We introduce sequence spaces f(4(m)), f0(4(m)) and fs(4(m)) as the sets of
all sequences such that their 4(m)− transforms are in spaces f , f0 and fs,
respectively, that is

f(4(m)) =

{
x = (xk) ∈ ω : lim

n→∞

n∑
k=0

1

n+ 1

k∑
i=0

(−1)k−i
(
m

i

)
xk−i+l = α uniformly in l

}
,

f0(4(m)) =

{
x = (xk) ∈ ω : lim

n→∞

n∑
k=0

1

n+ 1

k∑
i=0

(−1)k−i
(
m

i

)
xk−i+l = 0 uniformly in l

}
and

fs(4(m)) =

{
x = (xk) ∈ ω : lim

n→∞

n∑
k=0

l+k∑
j=0

j∑
i=0

(−1)j−i
(
m

i

)
xj−i = β uniformly in l

}
.

We can redefine the spaces f0(4(m)), f(4(m)) and fs(4(m)) by notation of (2)

f0(4(m)) = (f0)4(m) , f(4(m)) = f4(m) and fs(4(m)) = (fs)4(m) .
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Define sequence y = (yk), which will be frequently used, as the4(m)-transform
of a sequence x = (xk), i.e.

yk(m) =
k∑

i=max{0,n−m}

(−1)k−i
(

m

k − i

)
xi =

k∑
i=0

(−1)k−i
(
m

i

)
xk−i. (3)

Theorem 4.1 Spaces f(4(m)) and fs(4(m)) have no Schauder basis.

Proof: Since, it is known that the matrix domain µA of a normed sequence
space µ has a basis if and only if µ has a basis whenever A = (ank) is a triangle
[12, Remark 2.4]. The space f has no Schauder basis by [3, Corollary 3.3] we
have f(4(m)) has no Schauder basis. Since the set fs has no basis in Theorem
2.1, fs(4(m)) has no Schauder basis.

Theorem 4.2 The following statements hold.

(i) The sets f(4(m)) and f0(4(m)) are linear spaces with co-ordinatewise ad-
dition and scalar multiplication which are BK-spaces with the norm

‖x‖f(4(m)) = sup
n

∣∣∣∣∣
n∑
j=0

j∑
i=0

(−1)j−i
(
m

i

)
xj−i+k

∣∣∣∣∣ . (4)

(ii) The set fs(4(m)) is a linear space with co-ordinatewise addition and scalar
multiplication which is a BK-space with the norm

‖x‖fs(4(m)) = sup
n

∣∣∣∣∣
n∑
k=0

l+k∑
j=0

j∑
i=0

(−1)j−i
(
m

i

)
xj−i

∣∣∣∣∣ .
Proof: Since the second part can be similarly proved we only focus on the

first part. Since the sets f and f0 endowed with the norm ‖.‖∞ are BK-spaces

(see[18, Example 7.3.2(b)]) and the matrix 4(m) = (δ
(m)
nk ) is normal, Theorem

4.3.2 of Wilansky [19, p.61] gives the fact that the spaces f(4(m)) andf0(4(m))
are BK-spaces with the norm in (4).

Now, we may give the following theorem concerning isomorphisms between
our spaces and the sets f , f0 and fs.

Theorem 4.3 The sequence spaces f(4(m)), f0(4(m)) and fs(4(m)) are
linearly isomorphic to the sequence spaces f , f0 and fs, respectively. That is
f(4(m)) ∼= f , f0(4(m)) ∼= f0 and fs(4(m)) ∼= fs.
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Proof: To prove the fact that f(4(m)) ∼= f , we should show the existence
of a linear bijection between the spaces f(4(m)) and f . Consider the transfor-
mation T defined by notation of (2) from f(4(m)) to f by x 7→ y = Tx = 4mx.
The linearity of T is clear. Further, it is clear that x = θ whenever Tx = θ
and hence T is injective.

Let y = (yk) ∈ f(4(m)) and define the sequence x = (xk) by

xk =
k∑
i=0

(
m+ k − i− 1

k − i

)
yi for each k ∈ N. (5)

Whence

f(4(m))− limx = lim
n→∞

n∑
k=0

1

n+ 1

k∑
i=0

(−1)k−i
(

m

k − i

)
xk−i+l

= lim
n→∞

n∑
k=0

1

n+ 1

k∑
i=0

(−1)k−i
(

m

k − i

) i∑
j=0

(
m+ i− j − 1

i− j

)
yi−j+l

= lim
n→∞

1

n+ 1

n∑
k=0

yn−k+l uniformly in l

= f − lim y

which implies that x ∈ f(4(m)). As a result, T is surjective. Hence, T is a
linear bijection which implies that the spaces f(4m) and f are linearly isomor-
phic, as desired. Similarly, the isomorphisms f0(4(m)) ∼= f0 and fs(4(m)) ∼= fs
can be proved.

Theorem 4.4 The inclusions f0(4(m)) ⊂ f0(4(m+1)), f(4(m)) ⊂ f(4(m+1)),
c(4(m)) ⊂ f(4m) and f(4m) ⊂ `∞(4m) strictly hold.

Proof: Let x ∈ f0(4m). Then, since the following inequality

1

n+ 1

∣∣∣∣∣
n∑
k=0

(4(m+1)x)k+l

∣∣∣∣∣ =
1

n+ 1

∣∣∣∣∣
n∑
k=0

41(4(m)x)k+l

∣∣∣∣∣
=

1

n+ 1

∣∣∣∣∣
n∑
k=0

(4(m)x)k+l − (4(m)x)l+k−1

∣∣∣∣∣
≤ 1

n+ 1

∣∣∣∣∣
n∑
k=0

(4mx)l+k

∣∣∣∣∣+
1

n+ 1

∣∣∣∣∣
n∑
k=0

(4(m)x)l+k−1

∣∣∣∣∣
trivially holds and tends to zero uniformly in l as n −→ ∞, x ∈ f0(4(m+1)).
This shows that the inclusion f0(4(m)) ⊂ f0(4(m+1)) holds. Further, let us
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consider sequence x = {xk(m)} defined xk(m) =
(
m+k
k

)
for all k ∈ N. Then

as u = 4(m)x = (1, 1, . . . 1, . . .) = e /∈ f0(4(m)). On the other hand, v =
(4(m+1)x)k = (4(m)x)k − (4(m)x)k−1 = (0, 0, . . .) ∈ f0(4(m+1)).

We immediately observe that x is in f0(4(m+1)) but not in f0(4(m)).
This shows that x ∈ f0(4(m+1))\f0(4(m)), hence the inclusion f0(4(m)) ⊂
f0(4(m+1)) is strict. Similarly, we can show that f(4(m)) ⊂ f(4(m+1)).

The validity of the inclusion c(4(m)) ⊂ f(4(m)) ⊂ `∞(4(m)) is easily by
combining the definition of the sequence spaces c(4(m)), f(4(m)) and `∞(4(m))
and strict inclusions c ⊂ f ⊂ `∞ (see, [3]). This completes the proof.

5 Certain Matrix Mappings on the Sets f (4(m))

and fs(4(m)) and Some Duals

In present section, we shall characterize some matrix transformations between
spaces of lamda almost convergent and almost convergent sequences in addition
to paranormed and classical sequence spaces after giving β− and γ duals of
spaces fs(4(m)) and f(4(m)). We start with definition of β− and γ− duals.

If x and y are sequences and X and Y are subsets of ω, then we write
x · y = (xkyk)

∞
k=0, x

−1 ∗ Y = {a ∈ ω : a · x ∈ Y } and

M(X, Y ) =
⋂
x∈X

x−1 ∗ Y = {a : a · x ∈ Y for all x ∈ X}

for the multiplier space of X and Y ; in particular, we use notations Xβ =
M(X, cs) and Xγ = M(X, bs) for the β– and γ–duals of X.

Lemma 5.1 [9] A = (ank) ∈ (f : `∞) if and only if

sup
n

∑
k

|ank| <∞. (6)

Lemma 5.2 [9] A = (ank) ∈ (f : c) if and only if (6) holds and there are
α, αk ∈ C such that

lim
n→∞

ank = αk for all k ∈ N,

lim
n→∞

∑
k

ank = α,

lim
n→∞

∑
k

|∆(ank − αk)| = 0.

Theorem 5.3 The γ− dual of the space f(4(m)) is d1, where

d1 =

{
a = (ak) ∈ ω : sup

n∈N

∑
k=1

∣∣∣∣∣
n∑
j=k

(
m+ j − k − 1

j − k

)
aj

∣∣∣∣∣ <∞
}

.
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Proof: Take any sequence a = (ak) ∈ ω and consider the following equality

n∑
k=0

akxk =
n∑
k=0

ak

k∑
j=0

(
m+ k − j − 1

k − j

)
yj =

n∑
k=0

[
n∑
j=k

(
m+ j − k − 1

j − k

)
aj

]
yk = (Cy)n

(7)
for all n ∈ N, where C = {cnk} is

cnk =

{ ∑n
j=k

(
m+j−k−1

j−k

)
aj, 0 ≤ k ≤ n,

0, k > n
(8)

for all k, n ∈ N. Thus, we deduce from (7) that ax = (akxk) ∈ bs whenever x =
(xk) ∈ f(4(m)) if and only if Cy ∈ `∞ whenever y = (yk) ∈ f where C = {cnk}
is defined in (8). Therefore, with the help of Lemma 5.1 (f(4(m)))γ = d1.

Theorem 5.4 The β− dual of the space f(4(m)) is the intersection of sets

d2 =

{
a = (ak) ∈ ω : lim

n→∞

n∑
j=k

(
m+ j − k − 1

j − k

)
aj exists

}
,

d3 =

{
a = (ak) ∈ ω : lim

n→∞

n∑
k=0

ak

[
n∑
j=k

(
m− j − 1

j

)]
exists

}
,

d4 =

{
a = (ak) ∈ ω : lim

n→∞

∑
k

4

[
n∑
j=k

(
m+ j − k − 1

j − k

)
aj − ak

]
<∞

}
,

where ak = limn→∞
∑n

j=k

(
m+j−k−1

j−k

)
aj, that is (f(4(m)))β = d1 ∩ d2 ∩ d3 ∩ d4.

Proof: Let us take any sequence a ∈ ω. By (7), ax = (akxk) ∈ cs
whenever x = (xk) ∈ f(4(m)) if and only if Dy ∈ c whenever y = (yk) ∈ f ,
where C = {cnk} defined in (8), we derive the consequence by Lemma 5.2 that
(f(4(m)))β = d1 ∩ d2 ∩ d3 ∩ d4.

Theorem 5.5 The γ− dual of the space fs(4(m)) is the intersection of the
sets

c1 =

{
a = (ak) ∈ ω : sup

k

∑
k

∣∣∣∣∣4
[

n∑
j=k

(
m+ j − k − 1

j − k

)
aj

]∣∣∣∣∣ <∞
}

,

c2 =

{
a = (ak) ∈ ω : lim

k→∞

(
n∑
j=k

(
m+ j − k − 1

j − k

)
aj

)
= 0

}
,

Namely, we have [fs(4(m))]γ = c1 ∩ c2.
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Proof: We obtain from (7), ax = (akxk) ∈ bs whenever x = (xk) ∈
fs(4(m)) if and only if Cy ∈ `∞ whenever y = (yk) ∈ fs, where C = {cnk} is
defined (8). Therefore, by Lemma 5.12(viii) [fs(4(m)]γ = c1 ∩ c2.

Theorem 5.6 Define the set c3 by

c3 =

{
a = (ak) ∈ ω : lim

n→∞

∑
k

∣∣∣∣∣42

[
n∑
j=k

(
m+ j − k − 1

j − k

)
aj

]∣∣∣∣∣ exists

}
.

Then, [fs(4(m))]β = c1 ∩ c2 ∩ c3 ∩ d2.

Proof: Let us take any sequence a ∈ ω. By (7) ax = (akxk) ∈ cs whenever
x = (xk) ∈ if and only if Cy ∈ c whenever y = (yk) ∈ fs. Since the column
sequences of matrix C = {Cnk} defined in (8) are convergent, we derive the
consequence by Lemma 5.12(vii) that [fs(4(m))]β = c1 ∩ c2 ∩ c3.

For the sake of brevity following notations will be used:

ã(n, k,m) =
1

m+ 1

m∑
i=0

ãn+i,k, ã(n, k) =
n∑
i=0

ãik,

c(n, k,m) =
1

m+ 1

m∑
i=0

cn+i,k, c(n, k) =
n∑
i=0

cik,

where cnk is defined in (8) and ãnk =
∑∞

j=k

(
m+ j − k − 1

j − k

)
anj for all

k,m, n ∈ N.

Assume that infinite matrices Υ = (υnk) and Ω = ($nk) map the sequences
x = (xk) and y = (yk) which are connected with relation (3) to the sequences
r = (rn) and s = (sn), respectively, i.e.,

rn =
(
Υx
)
n

=
∑
k

υnkxk for all n ∈ N, (9)

sn =
(
Ωy
)
n

=
∑
k

$nkyk for all n ∈ N. (10)

One can easily conclude here that the method Υ is directly applied to the terms
of the sequence x = (xk) while the method Ω is applied to the ∆(m)-transform
of the sequence x = (xk). So, the methods Υ and Ω are essentially different.

Now suppose that matrix product Ω∆(m) exists which is a much weaker
assumption than conditions on the matrix Ω belonging to any matrix class, in
general. It is not difficult to see that sequence in (10) reduces to the sequence
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in (9) as follows:(
Ωy
)
n

=
∑
k

m∑
j=0

(−1)j
(
m
j

)
$nkxk−j

=
∑
k

∞∑
j=k

(−1)j−k
(

m
j − k

)
$njxk

=
(
Υx
)
n
. (11)

Hence matrices Υ = (υnk) and Ω = ($nk) are connected with the relations

$nk =
∞∑
j=k

(
m+ j − k − 1

j − k

)
υnj (12)

or

υnk =
∞∑
j=k

(−1)j−k
(

m
j − k

)
$nj for all k, n ∈ N. (13)

Note that the methods Υ and Ω are not necessarily equivalent since the
order of summation may not be reversed.

We now give the following fundamental theorem connected with the matrix
mappings on/into the almost convergent spaces f(∆(m)) and fs(∆(m)):

Theorem 5.7 Let Y be any given sequence space and the matrices Υ =
(υnk) and Ω = ($nk) are connected with the relation (13). Then, Υ ∈ (f(∆(m)) :
Y ) if and only if

Ω ∈ (f : Y ) and (υnk)k∈N ∈ [f(∆(m))]β for all n ∈ N. (14)

Proof: Suppose that Υ = (υnk) and Ω = ($nk) are connected with the
relation (13) and let Y be any given sequence space and keep in mind that
spaces f(∆(m)) and f are norm isomorphic.

Let Υ ∈ (f(∆(m)) : Y ) and take any sequence x ∈ f(∆(m)) and keep in
mind that y = ∆(m)x. Then (υnk)k∈N ∈ [f(∆(m))]β that is, (14) holds for all
n ∈ N and Ω∆(m) exists which implies that ($nk)k∈N ∈ `1 = fβ for each n ∈ N.
Thus, Ωy exists for all y ∈ f . Hence by equality (11) we have Ω ∈ (f : Y ).

On the other hand, assume that (14) holds and Ω ∈ (f : Y ). Then, we have
($nk)k∈N ∈ `1 for all n ∈ N which gives together with (υnk)k∈N ∈ [f(∆(m))]β

for each n ∈ N that Υx exists. Then, equality Υx = Ωy in (11) again holds.
Hence Υx ∈ Y for all x ∈ f(∆(m)), that is Υ ∈ (f(∆(m)) : Y ).

Theorem 5.8 Let Y be any given sequence space and elements of infinite
matrices A = (ank) and C = (cnk) are connected with the relation

cnk =
m∑
j=k

(−1)j−k
(
m
j

)
an−j,k for all k, n ∈ N. (15)
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Then, A = (ank) ∈ (Y : f(∆(m))) if and only if C ∈ (Y : f).

Proof: Let z = (zk) ∈ Y and consider the following equality

{∆(m)(Az)}n =
m∑
j=0

(−1)j
(
m
j

)
(Az)n−j

=
m∑
j=0

(−1)j
(
m
j

)∑
k

an−j,kzk

=
∑
k

m∑
j=k

(−1)j−k
(
m
j

)
an−j,kzk

for all n ∈ N. Whence, it can be seen from here that Az ∈ f(∆(m)) whenever
z ∈ Y if and only if Cz ∈ f whenever z ∈ Y . This completes the proof.

Theorem 5.9 Let Y be any given sequence space and the matrices Υ =
(υnk) and Ω = ($nk) are connected with the relation (13). Then, Υ ∈ (fs(∆(m)) :
Y ) if and only if Ω ∈ (fs : Y ) and (υnk)k∈N ∈ [fs(∆(m))]β for all n ∈ N.

Proof: The proof is based on the proof of Theorem 5.7.

Theorem 5.10 Let Y be any given sequence space and the elements of the
infinite matrices A = (ank) and C = (cnk) are connected with the relation (15).
Then, A = (ank) ∈ (Y : fs(∆(m))) if and only if C ∈ (Y : fs).

Proof: The proof is based on the proof of Theorem 5.8.
By Theorem 5.7, Theorem 5.8, Theorem 5.9 and Theorem 5.10 we have

quite a few outcomes depending on the choice of space Y to characterize certain
matrix mappings. Hence, by help of these theorems the necessary and sufficient
conditions for classes (f(∆(m)) : Y ), (Y : f(∆(m))), (fs(∆(m)) : Y ) and (Y :
fs(∆(m))) may be derived by replacing the entries of Υ and A by those of the
entries of Ω = Υ[∆(m)]−1 and C = ∆(m)A, respectively; where the necessary
and sufficient conditions on matrices Ω and C are read from the concerning
results in the current literature.

Lemma 5.11 Let A = (ank) be an infinite matrix. Then, the following
statements hold:

i A ∈ (c0(p) : f) if and only if

∃N > 1 3 sup
m∈N

∑
k

|a(n, k,m)|N−1/pk <∞ for all n ∈ N, (16)

∃αk ∈ C for all k ∈ N 3 lim
m→∞

a(n, k,m) = αk uniformly in n. (17)
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ii A ∈ (c(p) : f) if and only if (16), (17) hold and

∃α ∈ C 3 lim
m→∞

∑
k

a(n, k,m) = α uniformly in n. (18)

iii A ∈ (`∞(p) : f) if and only if (16), (17) hold and

∃N > 1 3 lim
m→∞

∑
k

|a(n, k,m)− αk|N1/pk = 0 uniformly in n. (19)

Lemma 5.12 Let A = (ank) be an infinite matrix. Then, the following
statements hold.

i [Duran, [31]] A ∈ (`∞ : f) if and only if (6) holds and

f − lim ank = αk exists for each fixed k, (20)

lim
m→∞

∑
k

|a(n, k,m)− αk| = 0 uniformly in n. (21)

ii [King, [33]] A ∈ (c : f) if and only if (6), (20) hold and

f − lim
∑
k

ank = α. (22)

iii [Başar and Çolak, [39]] A ∈ (cs : f) if and only if (20) holds and

sup
n∈N

∑
k

|∆ank| <∞ . (23)

iv [Başar and Çolak, [39]] A ∈ (bs : f) if and only if (20), (23) hold and

lim
k
ank = 0 exists for each fixed n, (24)

lim
q→∞

∑
k

1

q + 1

q∑
i=0

|∆ [a(n+ i, k)− αk]| = 0 uniformly in n. (25)

v [Duran, [31]] A ∈ (f : f) if and only if (6), (20), (22) hold and

lim
m→∞

∑
k

|∆ [a(n, k,m)− αk]| = 0 uniformly in n. (26)

vi [Başar, [38]] A ∈ (fs : f) if and only if (20), (24), (26) and (25) hold.
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vii [Öztürk, [32]] A ∈ (fs : c) if and only if (5.2), (23), (24) hold and

lim
n→∞

∑
k

∣∣∆2ank
∣∣ = α, (27)

viii A ∈ (fs : `∞) if and only if (23) and (24) hold.

ix [Başar and Solak, [34]] A ∈ (bs : fs) if and only if (24), (25) hold and

sup
n∈N

∑
k

|∆a(n, k)| <∞ , (28)

f − lim a(n, k) = αk exists for each fixed k. (29)

x [Başar, [38]] A ∈ (fs : fs) if and only if (25), (28), (29) hold and

lim
q→∞

∑
k

1

q + 1

q∑
i=0

∣∣∆2 [a(n+ i, k)− αk]
∣∣ = 0 uniformly in n, (30)

xi [Başar and Çolak, [39]] A ∈ (cs : fs) if and only if (28) and (29) hold.

xii [Başar, [40]] A ∈ (f : cs) if and only if

sup
n∈N

∑
k

|a(n, k)| <∞ , (31)

∑
n

ank = αk exists for each fixed k, (32)

∑
n

∑
k

ank = α, (33)

lim
m→∞

∑
k

|∆ [a(n, k)− αk]| = 0. (34)

Now we give our main results related to matrix mappings on/into spaces
of almost convergent series fs(∆(m)) and sequences f(∆(m)).

Corollary 5.13 Let A = (ank) be an infinite matrix. Then, the following
statements hold:

i A ∈ (fs(∆(m)) : f) if and only if {ank}k∈N ∈ [f(∆(m))]β for all n ∈ N and
(20), (24) hold with ãnk instead of ank, (26) holds with ã(n, k,m) instead
of a(n, k,m) and (25) holds with ã(n, k) instead of a(n, k).

ii A ∈ (fs(∆(m)) : c) if and only if {ank}k∈N ∈ [f(∆(m))]β for all n ∈ N and
(5.2), (23), (24) and ( 27) hold with ãnk instead of ank.
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iii A ∈ (fs(∆(m)) : `∞) if and only if {ank}k∈N ∈ [f(∆(m))]β for all n ∈ N and
(23) and (24) hold with ãnk instead of ank.

iv A ∈ (fs(∆(m)) : fs) if and only if {ank}k∈N ∈ [f(∆(m))]β for all n ∈ N and
(25), (28), (29) and (30) hold with ã(n, k) instead of a(n, k).

v A ∈ (cs : fs(∆(m))) if and only if (28) and (29) hold with c(n, k) instead of
a(n, k).

vi A ∈ (bs : fs(∆(m))) if and only if (24) holds with cnk instead of ank, (25),
(28) and (29) hold with c(n, k) instead of a(n, k).

vii A ∈ (fs : fs(∆(m))) if and only if (25), (28), (29) and (30) hold with
c(n, k) instead of a(n, k).

Corollary 5.14 Let A = (ank) be an infinite matrix. Then, the following
statements hold:

i A ∈ (c(p) : f(∆(m))) if and only if (16), (17) and (18) hold with c(n, k,m)
instead of a(n, k,m).

ii A ∈ (c0(p) : f(∆(m))) if and only if (16) and ( 17) hold with c(n, k,m)
instead of a(n, k,m).

iii A ∈ (`∞(p) : f(∆(m))) if and only if (16), (17) and (19) hold with c(n, k,m)
instead of a(n, k,m).

Corollary 5.15 Let A = (ank) be an infinite matrix. Then, the following
statements hold:

i A ∈ (f(∆(m)) : `∞) if and only if {ank}k∈N ∈ [f(∆(m))]β for all n ∈ N and
(6) holds with ãnk instead of ank.

ii A ∈ (f(∆(m)) : c) if and only if {ank}k∈N ∈ [f(∆(m))]β for all n ∈ N and
(6), (5.2), (5.2) and (5.2) hold with ãnk instead of ank.

iii A ∈ (f(∆(m)) : bs) if and only if {ank}k∈N ∈ [f(∆(m))]β for all n ∈ N and
(28) holds with ã(n, k) instead of a(n, k).

iv A ∈ (f(∆(m)) : cs) if and only if {ank}k∈N ∈ [f(∆(m))]β for all n ∈ N and
(5.2)-(31) hold with ã(n, k) instead of a(n, k).

Corollary 5.16 Let A = (ank) be an infinite matrix. Then, the following
statements hold:

i A ∈ (`∞ : f(∆(m))) if and only if (6), (20) hold with cnk instead of ank and
(21) holds with c(n, k,m) instead of a(n, k,m).
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ii A ∈ (f : f(∆(m))) if and only if (6), (20), (26) hold with c(n, k,m) instead
of a(n, k,m) and (22) hold with cnk instead of ank.

iii A ∈ (c : f(∆(m))) if and only if (6), (20) and (22) hold with cnk instead of
ank.

iv A ∈ (bs : f(∆(m))) if and only if (20), (23), (24) hold with cnk instead of
ank and (25) holds with c(n, k) instead of a(n, k).

v A ∈ (fs : f(∆(m))) if and only if (20), (24) hold with cnk instead of ank,
(26) holds with c(n, k,m) instead of a(n, k,m) and (25) holds with c(n, k)
instead of a(n, k).

vi A ∈ (cs : f(∆(m))) if and only if (23) and (24) hold with cnk instead of ank.

Remark 5.17 Characterization of the classes (f(∆(m)) : f∞), (f∞ : f(∆(m))),
(fs(∆(m)) : f∞) and (f∞ : fs(∆(m))) is redundant since spaces of almost
bounded sequences f∞ and `∞ are equal.

6 Some Core Theorems

Let us start with the definition of4(m)−core of x. Let x ∈ `∞ then4(m)−core
of x defined by closed interval [R(x), r(x)], where

R(x) = lim sup
n→∞

sup
l∈N

n∑
k=0

1

n+ 1

k∑
i=0

(−1)k−i
(
m

i

)
xk−i+l,

r(x) = lim inf
n→∞

sup
l∈N

n∑
k=0

1

n+ 1

k∑
i=0

(−1)k−i
(
m

i

)
xk−i+l.

Hence, it is easy to see that4(m)−core of x is α if and only if f(4(m))−limx =
α.

Theorem 6.1 4(m) − core(Ax) ⊆ K − core(x), (R(Ax) ≤ L(x)) for all
x ∈ `∞ if and only if A ∈ (c : f(4(m)))reg and

lim
n→∞

sup
l∈N

∑
i

1

n+ 1

∣∣∣∣∣
n∑
k=0

k∑
j=0

(−1)k−j
(
m

j

)
ak−j+l,i

∣∣∣∣∣ = 1. (35)

Proof: Assume that 4(m) − core(Ax). Let x = (xk) be a convergent
sequences, so we have L(x) = l(x). By given assumption, we have

l(x) ≤ r(Ax) ≤ R(Ax) ≤ L(x).
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Hence, we obtain the equalties R(Ax) = r(Ax) = limx which imply that
A ∈ (c : f(4(m)))reg. Now, let us consider sequences D = (dnk(m)) of infinite
matrices defined by

dnk(m) =
n∑
k=0

1

n+ 1

k∑
j=0

(−1)k−j
(
m

j

)
ak−j+l,i.

Since A ∈ (c : f(4(m)))reg, it is easy to see that conditions of Lemma 2 (see
Das, [17]) are satisfied for the matrix sequence A. Hence there exists y ∈ `∞
such that ‖y‖ ≤ 1 and

R(Ay) = lim sup
n→∞

sup
l

∑
k

|dnk(m)|.

Hence x = e = (1, 1, 1 . . .), by using hypothesis, we can write

1 = r(Ae) ≤ lim inf
n→∞

sup
l∈N

∑
k

|dnk(m)| ≤ lim sup
n→∞

sup
l∈N

∑
k

|dnk(m)|

= R(Ay) ≤ L(y) ≤ ‖y‖ ≤ 1

which proves necessity of (35).
On the other hand, let A ∈ (c : f(4(m)))reg and (35) hold for all x ∈ `∞.

We define any real number µ we write µ+ = max{0, µ} and µ− = max{−µ, 0}
then |µ| = µ+ + µ− and µ = µ+ − µ−. Hence for any given ε > 0, there exists
a k0 ∈ N such that xk < L(x) + ε for all k > k0. Then, we can write∑

k

dnk(m) =
∑
k<k0

dnk(m)xk +
∑
k≥k0

(dnk(m))+xk −
∑
k≥k0

(dnk(m))−xk

≤ ‖x‖∞
∑
k<k0

|dnk(m)|+ [L(x) + ε]
∑
k≥k0

|dnk(m)|

+‖x‖∞
∑
k≥k0

[|dnk(m)| − dnk(m)].

Thus, by applying lim supn supl∈N to the above equation and using our hypoth-
esis, we have R(x) ≤ L(x) + ε. This completes the proof, since ε is arbitrary
and x ∈ `∞.

Theorem 6.2 A ∈ (S∩ `∞ : f(4(m)))reg if and only if A ∈ (c : f(4(m)))reg
and

lim
n→∞

∑
i∈E

1

n+ 1

∣∣∣∣∣
n∑
k=0

k∑
j=0

(−1)k−j
(
m

j

)
ak−j+l,i

∣∣∣∣∣ = 0 (36)

for every E ⊆ N with δ(E) = 0.
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Proof: Firstly, suppose that A ∈ (S ∩ `∞ : f(4(m)))reg. Then A ∈ (c :
f(4(m)))reg immediately follows from the fact that c ⊆ S ∩ `∞. Now define
sequence z = (zk) for all x ∈ `∞ as

zk =

{
xk, k ∈ E,
0, k /∈ E,

where E any subset of N with δ(E) = 0. By our assumption, since z ∈ S0, we
have Az ∈ f(4(m)). On the other hand, since Az =

∑
k∈E ankzk, the matrix

C = (cnk) defined by

cnk =

{
ank, k ∈ E,
0, k /∈ E

for all n, must belong to the class (`∞ : f(4(m))). Hence, the necessity (36)
follows from Corollary (5.16)(i).
Conversely, let A ∈ (c : f(4(m)))reg and (36) holds. Let x be any sequence in
S ∩ `∞ with st− limx = s and write E = {i : |xi− s| ≥ ε} for any given ε > 0,
so that δ(E) = 0. Since A ∈ (c : f(4(m)))reg and f(4(m)) − lim

∑
k ank = 1,

we have

f(4(m))− lim(Ax) = f(4(m))− lim

(∑
k

ank(xk − s) + s
∑
k

ank

)
= f(4(m))− lim

∑
k

ank(xk − s) + s

= lim
n→∞

sup
l∈N

∑
i

1

n+ 1

n∑
k=0

k∑
j=0

(−1)k−j
(
m

j

)
al+k−j,i(xi − s) + s.

On the other hand, since we have∣∣∣∣∣∑
i

1

n+ 1

k∑
j=0

(−1)k−j
(
m

j

)
ak−j+l,i(xi − s)

∣∣∣∣∣ ≤ ‖x‖∞
n+ 1

∑
i∈E

∣∣∣∣∣
k∑
j=0

(−1)k−j
(
m

j

)
ak−j+l,i

∣∣∣∣∣
+ε‖A‖

condition (36) implies that

lim
n→∞

∑
i

1

n+ 1

k∑
j=0

(−1)k−j
(
m

j

)
ak−j+l,i(xi − s) = 0 uniformly l.

Therefore, f(4(m)) − lim(Ax) = st − limx that is A ∈ (S ∩ `∞ : f(4(m)))reg
which completes the proof.

Theorem 6.3 4(m) − core(Ax) ⊆ st − core(x) for all x ∈ `∞ if and only
if A ∈ (S ∩ `∞ : f(4(m)))reg and (35) holds.
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Proof: Assume that the inclusion 4(m) − core(Ax) ⊆ st − core(x) holds
for each bounded sequence x. Then, R(Ax) ≤ st − sup(x) for all x ∈ `∞.
Hence one may easily see that the following inequalities hold:

st− inf(x) ≤ r(Ax) ≤ R(Ax) ≤ st− sup(x).

If x ∈ (S ∩ `∞), then we have st − inf(x) = st − sup(x) = st − limx. Which
implies that st− sup(x) = r(x) = R(x) = f(4(m))− lim(Ax) that is A ∈ (c :
f(4(m)))reg.

On the other hand, let A ∈ (S ∩ `∞ : f(4(m)))reg and (35) hold for all
x ∈ `∞. Then st − sup(x) is finite. Let E be a subset of N defined by
E = {p : xk > st− sup(x) + ε} for a given ε > 0. Then obvious that δ(E) = 0
and xk ≤ st− sup(x) + ε, if p /∈ E.

We define any real number µ we write µ+ = max{0, µ} and µ− = max{−µ, 0}
then |µ| = µ+ + µ− and µ = µ+− µ−, then for fixed positive integer i0 we can
write ∑

i

dni(m) =
∑
i<i0

dni(m)xi +
∑
i≥i0
i∈E

(dni(m))+xi

+
∑
i>i0
i/∈E

(dni(m))−xi −
∑
i≥i0

(dni(m))+xi

≤ ‖x‖∞
∑
i<i0

|dni(m)|+ [st− sup(x) + ε]
∑
i≥i0
i/∈E

|dni(m)|

+ ‖x‖∞
∑
i≥i0
i∈E

|dni(m)|+ ‖x‖∞
∑
i≥i0

[|dni(m)| − dni(m)].

Whence, applying lim supn supl∈N to the above equation and using the hypoth-
esis, we obtain R(x) ≤ st − sup(x) + ε. This completes the proof since ε is
arbitrary and x ∈ `∞.

7 Conclusion

Although the concept of almost convergence was defined by Lorentz [11], in
1948, neither the algebraic structure nor the topological structure of the space
f has been essentially studied until Başar and Kirişçi [3, Section 3]. Two
basic results related to the space f : ”f is a non-seperable closed subspace
of (`∞, ‖.‖∞)” and ”Banach space f has no Shauder basis” are given in their
paper. One of the nice parts of their paper was to find beta- and gamma duals
of set of almost convergent series fs. As a generalization of the spaces Başar
and Kirişçi, the sequence space f(B) which is matrix domain of the triple band
matrix B(r, s, t) in space f has recently been examined by Sönmez.
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In the present paper, we study the domains of the triangle matrix ∆(m)

in almost convergent sequence spaces f and f0 and series space fs. Nev-
ertheless, the present results does not compare with the results obtained by
Sönmez [8] and Başar and Kirişçi [3]. Corollaries 5.13 and 5.14 have a special
importance to characterize the matrix classes (γ : f(∆(m))), (fs(∆(m)) : δ)
and (η : fs(∆(m))) where γ ∈ {c(p), c0(p), `∞(p)}, δ ∈ {f, fs, c, `∞} and
η ∈ {cs, fs, bs}. Finally, we should mention that some of the original as-
pects of this study are to give some core theorems connected with the matrix
classes on/into almost convergent sequence space f(∆(m)) besides the beta
and gamma duals of the set fs(∆(m)). In addition to that the non-existence of
Schauder basis of spaces fs and fs(∆(m)) was shown, which is an important
result.
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