

Gen. Math. Notes, Vol. 25, No. 1, November 2014, pp.103-111 ISSN 2219-7184; Copyright ©ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

# Local Existence of the Solution for Stochastic Functional Differential Equations with Infinite Delay

Le Anh Minh<sup>1</sup>, Nguyen Xuan Thuan<sup>2</sup> and Hoang Nam<sup>3</sup>

<sup>1,2,3</sup>Department of Mathematical Analysis Hong Duc University, Vietnam
<sup>1</sup>E-mail: leanhminh@hdu.edu.vn
<sup>2</sup>E-mail: thuannx7@gmail.com
<sup>3</sup>E-mail: hoangnam@hdu.edu.vn

(Received: 28-6-14 / Accepted: 14-8-14)

#### Abstract

In this paper we present and prove the existence of solution for stochastic functional differential equations with infinite delay in a separable Hilbert space respects to a local Lipchitz condition.

**Keywords:** Local existence, stochastic functional differential equation, local Lipchitz condition, infinite delay.

## 1 Introduction

a class of stochastic functional differential equations in a separable Hilbert space  ${\cal H}$  which has the form:

$$\begin{cases} dX(t) = AX(t)dt + f(t, X_t)dt + g(t, X_t)dW(t), \quad t \ge 0\\ X(t) = \varphi(t), \quad t \le 0 \end{cases}$$
(1)

where  $A : \mathcal{D}(A) \subset H \to H$  is a linear (possibly unbound) operator,  $\varphi$  is in the phase space  $\mathcal{B}$ , and  $X_t$  is defined as

$$X_t(\theta) = X(t+\theta), \quad -\infty < \theta \le 0,$$

 $f: \mathbb{R}_+ \times \mathcal{B} \to H, g: \mathbb{R}_+ \times \mathcal{B} \to L_2^0$  are continuous functions.

In this paper, we present the condition for the local existence of solutions for (1)

### 2 Preliminaries

#### 2.1 Basic Concepts of Stochastic Analysis

Let  $(\Omega, \mathcal{F}, \mathbb{P})$  be a complete probability space with a normal filtration  $\{\mathcal{F}_t\}_{t\geq 0}$  ie. a right continuous, increasing family of sub  $\sigma$ -fields of  $\mathcal{F}$  ( $\mathcal{F}_t \subset \mathcal{F}_s \subset \mathcal{F}$ , for all  $0 \leq t < s < \infty$ ).

**Definition 2.1.** [2] An H - valued random variable is an  $\mathcal{F}$  - measurable function  $X : \Omega \to H$  and a collection of random variables  $X = \{X(t, \omega) : \Omega \to H | 0 \le t \le T\}$  is called a stochastic process.

**Note.** In this paper, we write X(t) instead of  $X(t, \omega)$ .

**Definition 2.2.** [2] A stochastic process X is said to be adapted if for every t, X(t) is  $\mathcal{F}_t$  - measurable.

Let K be a separable Hilbert space, Q be a nonnegative difinite symmetric trace-class operator on K, and  $\{e_n\}_{n=1}^{\infty}$  be an orthonormal basis in K, and let the corresponding eigenvalues of Q be  $\lambda_n$  i.e  $Qe_n = \lambda_n e_n$ , for n = 1, 2, ... Let  $w_n(t)$  be a sequence of real valued independent Brownian motions defined on  $(\Omega, \mathcal{F}, \mathbb{P})$ .

**Definition 2.3.** [2] The process

$$W(t) = \sum_{n=1}^{\infty} \sqrt{\lambda_n} w_n(t) e_n \tag{2}$$

is called a Q - Weiner process in K.

Let  $K_Q = Q^{1/2}K$  is a Hilbert space equipped with the norm

$$||u||_{K_Q} = ||Q^{1/2}u||_K, \ u \in K_Q$$

Clearly,  $K_Q$  is separable with complete orthonormal basis  $\{\sqrt{\lambda_n}e_n\}_{n=1}^{\infty}$ .

Now, let  $L_2^0 = L_2^0(K_Q, H)$  be the space of all Hilbert - Schimidt operators from  $K_Q$  to H. Then  $L_2^0$  is a separable Hilbert space with norm

$$||L||_{L_2^0} = \sqrt{tr\left((LQ^{1/2})(LQ^{1/2})^*\right)}, \quad L \in L_2^0.$$

**Remark 2.4.** For  $\kappa \in B(K, H)$  this norm reduce to

$$||\kappa||_{L_2^0} = \sqrt{tr(\kappa Q \kappa^*)}$$

Now, for any  $T \ge 0$ , if  $\Phi = \{\Phi(t), t \in [0, T]\}$  be an  $\mathcal{F}_t$  - adapted,  $L_2^0$ - valued process such that

$$E\left(\int_{0}^{T} tr\left((\Phi Q^{1/2})(\Phi Q^{1/2})^{*}\right) ds\right) < \infty$$

then the stochastic integral  $\int_{0}^{t} \Phi(s) dW(s) \in H$  be well defined by

$$\int_{0}^{t} \Phi(s) dW(s) = \lim_{n \to \infty} \sum_{i=1}^{n} \int_{0}^{t} \Phi(s) \sqrt{\lambda_i} e_i dw_i(s)$$
(3)

#### 2.2 Phase Space

Let  $\mathcal{E}$  be a Banach space, we assume that the phase space  $(\mathcal{B}, ||.||_{\mathcal{B}})$  is a seminormed linear space of functions mapping  $(-\infty, 0]$  into  $\mathcal{E}$  satisfying the following fundamental axioms

- (A<sub>1</sub>) For a > 0, if X is a function mapping  $(-\infty, a]$  into  $\mathcal{E}$ , such that  $X \in \mathcal{B}$  and X is continuous on [0, a], then for every  $t \in [0, a]$  the following conditions hold:
  - (i)  $X_t$  is in  $\mathcal{B}$ ;
  - (ii)  $||X(t)|| \leq \mathcal{H}||X_t||_{\mathcal{B}};$
  - (iii)  $||X_t||_{\mathcal{B}} \le K(t) \sup_{s \in [0,t]} ||X(s)|| + M(t)||X_0||_{\mathcal{B}};$

where  $\mathcal{H}$  is a possitive constant,  $K, M : [0, \infty) \to [0, \infty)$ , K is continuous, M is locally bounded, and they are independent of X.

- (A<sub>2</sub>) For the function X in (A<sub>1</sub>),  $X_t$  is a  $\mathcal{B}$  valued continuous function for t in [0, a].
- $(A_3)$  The space  $\mathcal{B}$  is complete.

**Example 2.5.** We recall some useful phase space  $\mathcal{B}$ .

(i) Let BC be the space of bounded continuous functions from  $(-\infty, 0]$  to  $\mathcal{E}$ , we define

$$C^{0} := \{ \varphi \in BC : \lim_{\theta \to -\infty} \varphi(\theta) = 0 \}$$

and

$$C^{\infty} := \{ \varphi \in BC : \lim_{\theta \to -\infty} \varphi(\theta) \text{ exists in } \mathcal{E} \}$$

endowed with the norm

$$||\varphi||_{\mathcal{B}} = \sup_{\theta \in (-\infty,0]} ||\varphi(\theta)||$$

then  $C^0, C^\infty$  satisfies  $(A_1) - (A_3)$ . However, BC satisfies  $(A_1)$ ,  $(A_3)$  but  $(A_2)$  is not satisfied.

(ii) For any real constant  $\gamma$ , we define the functional spaces  $C_{\gamma}$  by

$$C_{\gamma} = \left\{ \varphi \in C((-\infty, 0], X) : \lim_{\theta \to -\infty} e^{\gamma \theta} \varphi(\theta) \text{ exists in } \mathcal{E} \right\}$$

endowed with the norm

$$||\varphi|| = \sup_{\theta \in (-\infty,0]} e^{\gamma \theta} ||\varphi(\theta)||.$$

Then conditions  $(A_1)$  -  $(A_3)$  are satisfied in  $C_{\gamma}$ .

We prefer the reader to [3] for more comprehensive properties of phase space.

## 3 Main Results

**Definition 3.1.** [1] For  $\tau > 0$ , a stochastic process X is said to be a strong solution of (1) on  $(-\infty, \tau]$  if the following conditions holds

- a) X(t) is  $\mathfrak{F}_t$  adapted for all  $0 \leq t \leq \tau$ ;
- b) X(t) is almost surely continuous in t;
- c) for all  $0 \le t \le \tau$ ,  $X(t) \in \mathcal{D}(A)$ ,  $\int_{0}^{t} ||AX(s)||ds < +\infty$  almost surely, and

$$X(t) = X(0) + \int_{0}^{t} AX(s)ds + \int_{0}^{t} f(s, X_s)ds + \int_{0}^{t} g(s, X_s)dW(s)$$
(4)

with probability one;

d)  $X(t) = \varphi(t)$  with  $-\infty < t \le 0$  almost surely.

**Definition 3.2.** [1] For  $\tau > 0$ , a stochastic process X is said to be a mild solution of (1) on  $(-\infty, \tau]$  if the following conditions holds

a) X(t) is  $\mathcal{F}_t$  - adapted for all  $0 \leq t \leq \tau$ ;

Local Existence of the Solution for Stochastic...

- b) X(t) is almost surely continuous in t;
- c) for all  $0 \le t \le \tau$ , X(t) is measurable,  $\int_{0}^{t} ||X(s)||^{2} ds < +\infty$  almost surely, and

$$X(t) = T(t)\varphi(0) + \int_{0}^{t} T(t-s)f(s, X_s)ds + \int_{0}^{t} T(t-s)g(s, X_s)dW(s)$$
(5)

with probability one;

d)  $X(t) = \varphi(t)$  with  $-\infty < t \le 0$  almost surely.

**Remark 3.3.** In [4], we proved that if A generates a strongly semi-group  $(T(t))_{t\geq 0}$  in H and  $\varphi(0) \in \mathcal{D}(A)$  then (5) can be written as follow

$$X(t) = T(t)\varphi(0) + \int_{0}^{t} T(t-s)f(s, X_s)ds + \int_{0}^{t} T(t-s)g(s, X_s)dW(s)$$

This means a strong solution to be a mild one.

We asumme that

for

- $(M_1)$  A generates a strongly semigroup  $(T(t))_{t\geq 0}$  in H.
- $(M_2)$  f(t,x) and g(t,x) satisfy local Lipchitz conditions respects to second argument i.e. for any  $\alpha > 0$  be a given real number, there exists  $C_1(\alpha), C_2(\alpha) > 0$  such that

$$\begin{aligned} ||f(t,x) - f(t,y)|| &\leq C_1(\alpha)||x - y||_{\mathcal{B}}, \\ ||g(t,x) - g(t,y)||_{L_2^0} &\leq C_2(\alpha)||x - y||_{\mathcal{B}} \\ \text{all } t \geq 0, \ x, y \in \mathcal{B} \text{ which satisfy } ||x||_{\mathcal{B}}, ||y||_{\mathcal{B}} \leq \alpha. \end{aligned}$$

Since Remark 3.3 we have our main result on the local existence of solution for (1).

**Theorem 3.4.** If  $(M_1)$  and  $(M_2)$  are satisfied then (1) has only local mild solution.

*Proof.* Let T > 0 be a fixed given real number. Since f, g satisfy Local Lipchitz condition then for each  $\alpha > 0$  there exists  $\varphi \in \mathcal{B}$  ( $||\varphi||_{\mathcal{B}} \leq \alpha$ ), such that

$$||f(t,\varphi)|| \le C_1(\alpha)||\varphi||_{\mathcal{B}} + ||f(t,0)|| \le \alpha C_1(\alpha) + \sup_{s \in [0,T]} ||f(s,0)|| \le C,$$
  
$$||g(t,\varphi)|| \le C_2(\alpha)||\varphi||_{\mathcal{B}} + ||g(t,0)|| \le \alpha C_2(\alpha) + \sup_{s \in [0,T]} ||g(s,0)|| \le C.$$

where

$$C = \max\left\{\alpha C_1(\alpha) + \sup_{s \in [0,T]} ||f(s,0)||, \alpha C_2(\alpha) + \sup_{s \in [0,T]} ||g(s,0)||\right\}$$

For  $\varphi \in \mathcal{B}$ , we chose  $\alpha = ||\varphi||_{\mathcal{B}} + 1$ . Let  $C_{ad}$  be a spaces of all functions X which adapted with  $\{\mathcal{F}_t\}_{t\geq 0}$  such that  $X_0 \in \mathcal{B}$  and  $X : [0,T] \to H$  is continuous.  $C_{ad}$  is a Banach space with norm

$$||X||_{ad} = ||X_0||_{\mathcal{B}} + \max_{0 \le t \le T} \left( E||X(t)||^2 \right)^{1/2}$$

Let Z be a closed subset of  $C_{ad}$  which is defined by

$$Z = \{ X \in C_{ad} : X(s) = \varphi(s) \text{ for } s \in (-\infty, 0] \text{ and } \sup_{0 \le s \le T} ||X(s) - \varphi(0)||_H \le 1 \}$$

Let  $U: Z \to Z$  be the operator defined by

$$U(X)(t) = \begin{cases} T(t)\varphi(0) + \int_{0}^{t} T(t-s)f(s,X_s)ds + \int_{0}^{t} T(t-s)g(s,X_s)dW(s) & \text{for } t \in [0,T] \\ \varphi(t) & \text{for } t \leq 0 \end{cases}$$

then  $U(Z) \subseteq Z$ . Indeed,

$$\begin{split} \|U(X)(t) - \varphi(0)\|_{H}^{2} &= E||U(X)(t) - \varphi(0)||^{2} \\ &= E\left(\left\| \left\| T(t)\varphi(0) - \varphi(0) + \int_{0}^{t} T(t-s)f(s,X_{s})ds + \int_{0}^{t} T(t-s)g(s,X_{s})dW(s) \right\| \right)^{2} \\ &\leq 3E||T(t)\varphi(0) - \varphi(0)||^{2} + 3E\left\| \int_{0}^{t} T(t-s)f(s,X_{s})ds \right\|^{2} \\ &\quad + 3E\left\| \int_{0}^{t} T(t-s)g(s,X_{s})dW(s) \right\|^{2} \\ &\leq 3E||T(t)\varphi(0) - \varphi(0)||^{2} + 3MT \int_{0}^{t} E||f(s,X_{s})||^{2}ds + 3M \int_{0}^{t} E||g(s,X_{s})||_{L_{2}^{0}}^{2}ds. \end{split}$$

Since  $||X(s) - \varphi(0)|| \leq 1$  for  $s \in [0, T]$  and  $\alpha = ||\varphi||_{\mathcal{B}} + 1$  we have  $||X(s)|| \leq \alpha$ , implies  $||X_s||_{\mathcal{B}} \leq \alpha$  for  $s \in [0, T]$ . Furthermore,

$$||f(s, X_s)|| \le C \quad \text{and} \quad ||g(t, X_s)|| \le C.$$

108

Local Existence of the Solution for Stochastic...

Hence

$$||U(X)(t) - \varphi(0)||_{H}^{2} \le 3E||T(t)\varphi(0) - \varphi(0)||^{2} + 3MC^{2}(T^{2} + T)$$

where 
$$M = \sup_{0 \le t \le T} ||T(t)||^2$$
. If T is small enough, such that  
$$\sup_{0 \le s \le T} \left\{ 3E ||T(s)\varphi(0) - \varphi(0)||^2 + 3MC^2(T^2 + T) \right\} \le 1.$$

$$\begin{split} & \text{then for any } t \in [0,T] \text{ we have } ||U(X)(t) - \varphi(0)|| \leq 1. \text{ In other words,} \\ & U(Z) \subseteq Z. \\ & \text{Now, for any } X, Y \in Z, \\ & E||U(X)(t) - U(Y)(t)||^2 \\ & = E||\int_0^t T(t-s)[f(s,X_s) - f(s,Y_s)]ds + \int_0^t T(t-s)[g(s,X_s) - g(s,Y_s)]dW(s)||^2 \\ & \leq 2E\left(\int_0^t ||T(t-s)[f(s,X_s) - f(s,Y_s)]||ds\right)^2 \\ & \quad + 2E\left(\int_0^t ||T(t-s)[g(s,X_s) - g(s,Y_s)]||dW(s)\right)^2 \\ & \leq 2ME\left(\int_0^t ||f(s,X_s) - f(s,Y_s)||ds\right)^2 + 2ME\left(\int_0^t ||g(s,X_s) - g(s,Y_s)||dW(s)\right)^2 \\ & \leq 2MC^2T\int_0^t E||X(s) - Y(s)||^2ds + 2MC^2\int_0^t E||X(s) - Y(s)||^2ds \\ & \leq 2MC^2(T+1)\int_0^t E||X(s) - Y(s)||^2ds. \end{split}$$

Now, for any a > 0, and  $t \in [0, T]$  we have

$$\begin{split} &e^{-at}E||U(X)(t) - U(Y)(t)||^2 \\ &\leq 2MC^2(T+1)\int_0^t e^{-a(t-s)}e^{-as}E||X(s) - Y(s)||^2ds \\ &\leq 2MC^2(T+1)\max_{0\leq s\leq t}e^{-as}E||X(s) - Y(s)||^2\int_0^t e^{-a(t-s)}ds \\ &\leq 2a^{-1}MC^2(T+1)\max_{0\leq s\leq t}e^{-as}E||X(s) - Y(s)||^2. \end{split}$$

Therefore,

$$\max_{0 \le t \le T} e^{-at} E||U(X)(t) - U(Y)(t)||^2 \le 2a^{-1}MC^2(T+1)\max_{0 \le s \le T} e^{-as}E||X(s) - Y(s)||^2.$$

Finally, if  $a > 2MC^2(T+1)$  then U be a contraction mapping on Z respects to the norm

$$|||X||| = ||X_0||_{\mathcal{B}} + \max_{0 \le t \le T} \left( e^{-at} E ||X(t)||^2 \right)^{1/2}, \quad X \in C_{ad}.$$

Since the norm |||.||| is equivalent to the norm  $||.||_{ad}$  then by applying fixed point theorem we conclude that (1) has only local mild solution.

## 4 Conclusion

Our main results is the Theorem 3.4, in which we present and prove the local existence of solution to a class of stochastic functional differential equations with infinite delay in a separable Hilbert space has the form (1). In this Theorem, we can replace Local Lipchitz condition  $(M_2)$  by some other conditions, for example

 $(M_3)$  For any  $\alpha > 0$  be a given real number, there exists a constant  $C(\alpha) > 0$  such that

$$||f(t,x) - f(t,y)|| + ||g(t,x) - g(t,y)||_{L^{2}_{0}} \le C(\alpha)||x - y||_{\mathcal{B}}$$

or

 $(M_3')$  For any  $\alpha>0$  be a given real number, there exists a constant  $C(\alpha)>0$  such that

$$\max\{||f(t,x) - f(t,y)||, ||g(t,x) - g(t,y)||_{L^2_0}\} \le C(\alpha)||x - y||_{\mathcal{B}}$$

Acknowledgements: The authors thank to all our coworkers for their valued comments.

## References

 P.H. Bezandry and T. Diagana, Almost Periodic Stochastic Processes, Springer, (2011).

- [2] L. Gawarecki and V. Mandrekar, Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations, Springer, (2011).
- [3] J.K. Hale and J. Kato, Phase space for retarded equations with infinite delay, *Fukcialaj Ekvacioj*, 21(1978), 11-41.
- [4] L.A. Minh, H. Nam and N.X. Thuan, Local existence of solution to a class of stochastic differential equations with finite delay in Hilbert space, *Applied Mathematics*, 4(2013), 97-101.