Gen. Math. Notes, Vol. 23, No. 2, August 2014, pp.96-107
ISSN 2219-7184; Copyright © ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

Regular Elements of Semigroups $B_{X}(D)$ Defined by the Generalized X-Semilattice

Barış Albayrak ${ }^{1}$, Neşet Aydin ${ }^{2}$ and Didem Yeşil Sungur ${ }^{3}$
${ }^{1,2,3}$ Canakkale Onsekiz Mart University, Art and Science Faculty
Department of Mathematics, Canakkale-Turkey
${ }^{1}$ E-mail: balbayrak77@gmail.com
${ }^{2}$ E-mail: neseta@comu.edu.tr
${ }^{3}$ E-mail: dyesil@comu.edu.tr

(Received: 29-4-14 / Accepted: 14-6-14)

Abstract

In this paper, we take $Q=\left\{T_{1}, T_{2}, \ldots, T_{m-3}, T_{m-2}, T_{m-1}, T_{m}\right\}$ subsemilattice of X-semilattice of unions D where the elements T_{i} 's are satisfying the following properties, $T_{1} \subset T_{3} \subset \cdots \subset T_{m-3} \subset T_{m-2} \subset T_{m}, T_{1} \subset T_{3} \subset \cdots \subset T_{m-3}$ $\subset T_{m-1} \subset T_{m}, T_{2} \subset T_{3} \subset \cdots \subset T_{m-3} \subset T_{m-2} \subset T_{m}, T_{2} \subset T_{3} \subset \cdots \subset T_{m-3} \subset T_{m-1}$ $\subset T_{m}, T_{1} \backslash T_{2} \neq \emptyset, T_{2} \backslash T_{1} \neq \emptyset, T_{m-2} \backslash T_{m-1} \neq \emptyset, T_{m-1} \backslash T_{m-2} \neq \emptyset, T_{1} \cup T_{2}=T_{3}$, $T_{m-2} \cup T_{m-1}=T_{m}$. We will investigate the properties of regular element $\alpha \in$ $B_{X}(D)$ satisfying $V(D, \alpha)=Q$. Moreover, we will calculate the number of regular elements of $B_{X}(D)$ for a finite set X.

Keywords: Semigroups, Binary relations, Regular elements.

1 Introduction

Let X be an arbitrary nonempty set and B_{X} be semigroup of all binary relations on the set X. If D is a nonempty family of subsets of X which is closed under the union then D is called a complete X - semilattice of unions. The union of all elements of D is denoted by the symbol \breve{D}.

Further, let $x, y \in X, Y \subseteq X, \alpha \in B_{X}, T \in D, \emptyset \neq D^{\prime} \subseteq D$ and $t \in \breve{D}$.

Then we have the following notations,

$$
\begin{aligned}
& y \alpha=\{x \in X \mid(y, x) \in \alpha\}, Y \alpha=\bigcup_{y \in Y} y \alpha, V(D, \alpha)=\{Y \alpha \mid Y \in D\} \\
& D_{t}=\left\{Z^{\prime} \in D \mid t \in Z^{\prime}\right\}, D_{T}^{\prime}=\left\{Z^{\prime} \in D^{\prime} \mid T \subseteq Z^{\prime}\right\}, \ddot{D}_{T}^{\prime}=\left\{Z^{\prime} \in D^{\prime} \mid Z^{\prime} \subseteq T\right\} \\
& N\left(D, D^{\prime}\right)=\left\{Z \in D \mid Z \subseteq Z^{\prime} \text { for any } Z^{\prime} \in D^{\prime}\right\}, \Lambda\left(D, D^{\prime}\right)=\cup N\left(D, D^{\prime}\right)
\end{aligned}
$$

Let f be an arbitrary mapping from X into D. Then one can construct a binary relation α_{f} on X by $\alpha_{f}=\bigcup_{x \in X}(\{x\} \times f(x))$. The set of all such binary relations is denoted by $B_{X}(D)$ and called a complete semigroup of binary relations defined by an X-semilattice of unions D. This structure was comprehensively investigated in Diasamidze [1].

Let D be a complete X-semilattice of unions. If it satisfies $\Lambda\left(D, D_{t}\right) \in D$ for any $t \in \breve{D}$ and $Z=\bigcup_{t \in Z} \Lambda\left(D, D_{t}\right)$ for any nonempty element Z of D, then D is called XI- semilattice of unions. $\alpha \in B_{X}(D)$ is called idempotent if $\alpha \circ \alpha=\alpha$ and $\alpha \in B_{X}(D)$ said to be regular if $\alpha \circ \beta \circ \alpha=\alpha$ for some $\beta \in B_{X}(D)$. Let D^{\prime} be an arbitrary nonempty subset of the complete X-semilattice of unions D. Set $l\left(D^{\prime}, T\right)=\cup\left(D^{\prime} \backslash D_{T}^{\prime}\right)$. We say that a nonempty element T is a nonlimiting element of D^{\prime} if $T \backslash l\left(D^{\prime}, T\right) \neq \emptyset$. Also, a nonempty element T said to be limiting element of D^{\prime} if $T \backslash l\left(D^{\prime}, T\right)=\emptyset$.

The family $C(D)$ of pairwise disjoint subsets of the set $\breve{D}=\cup D$ is the characteristic family of sets of D if the following hold
a) $\cap D \in C(D)$
b) $\cup C(D)=\breve{D}$
c) There exists a subset $C_{Z}(D)$ of the set $C(D)$ such that $Z=\cup C_{Z}(D)$ for all $Z \in D$.

A mapping $\theta: D \rightarrow C(D)$ is called characteristic mapping if $Z=(\cap D) \cup$ $\bigcup \theta\left(Z^{\prime}\right)$ for all $Z \in D$. The existence and the uniqueness of characteristic $Z^{\prime} \in \hat{D}$ family and characteristic mapping is given in Diasamidze [3]. Moreover, it is shown that every $Z \in D$ can be written as $Z=\theta(\breve{Q}) \cup \bigcup_{T \in \hat{Q}(Z)} \theta(T)$, where $\hat{Q}(Z)=Q \backslash\{T \in Q \mid Z \subseteq T\}$.

Definitions and properties of $\Phi\left(D, D^{\prime}\right), \Omega(D), R\left(D^{\prime}\right)$ and $R_{\varphi}\left(D, D^{\prime}\right)$ can be found in [1], [2] and [5].

In [5], they found that the properties of regular element $\alpha \in B_{X}(D)$ which satisfying $V(D, \alpha)=Q$ for $Q=\left\{T_{1}, T_{2}, T_{3}, T_{4}, T_{5}, T_{6}, T_{7}\right\}$ with seven elements. Therefore, we generalized the results which found in [5] for $Q=$ $\left\{T_{1}, T_{2}, \ldots, T_{m-3}, T_{m-2}, T_{m-1}, T_{m}\right\}$ with m elements.

Now we state two theorems which will be used later.
Theorem 1.1. [4, Theorem 10] Let α and σ be binary relations of the semigroup $B_{X}(D)$ such that $\alpha \circ \sigma \circ \alpha=\alpha$. If $D(\alpha)$ is some generating set of the semilattice $V(D, \alpha) \backslash\{\emptyset\}$ and $\alpha=\bigcup_{T \in V(D, \alpha)}\left(Y_{T}^{\alpha} \times T\right)$ is a quasinormal representation of the relation α, then $V(D, \alpha)$ is a complete $X I$ - semilattice of unions. Moreover, there exists a complete isomorphism φ between the semilattice $V(D, \alpha)$ and $D^{\prime}=\{T \sigma \mid T \in V(D, \alpha)\}$, that satisfies the following conditions:
a) $\varphi(T)=T \sigma$ and $\varphi(T) \alpha=T$ for all $T \in V(D, \alpha)$
b) $\bigcup_{T^{\prime} \in \ddot{D}(\alpha)_{T}} Y_{T^{\prime}}^{\alpha} \supseteq \varphi(T)$ for any $T \in D(\alpha)$,
c) $Y_{T}^{\alpha} \cap \varphi(T) \neq \emptyset$ for all nonlimiting element T of the set $\ddot{D}(\alpha)_{T}$,
d) If T is a limiting element of the set $\ddot{D}(\alpha)_{T}$, then the equality $\cup B(T)=T$ is always holds for the set $B(T)=\left\{Z \in \ddot{D}(\alpha)_{T} \mid Y_{Z}^{\alpha} \cap \varphi(T) \neq \emptyset\right\}$.
On the other hand, if $\alpha \in B_{X}(D)$ such that $V(D, \alpha)$ is a complete XIsemilattice of unions and if some complete α-isomorphism φ from $V(D, \alpha)$ to a subsemilattice D^{\prime} of D satisfies the conditions $\left.b\right)-d$) of the theorem, then α is a regular element of $B_{X}(D)$.

Theorem 1.2. [2, Theorem 6.3.5] Let X be a finite set. If φ is a fixed element of the set $\Phi\left(D, D^{\prime}\right)$ and $|\Omega(D)|=m_{0}$ and q is a number of all automorphisms of the semilattice D then $\left|R\left(D^{\prime}\right)\right|=m_{0} \cdot q \cdot\left|R_{\varphi}\left(D, D^{\prime}\right)\right|$.

The material in this work forms a part of first author's PH.D. Thesis, under the supervision of the second author Dr. Neşet Aydın.

2 Results

Let X be a finite set, D be a complete X-semilattice of unions, $m \geq 7$ and $Q=\left\{T_{1}, T_{2}, T_{3}, \ldots, T_{m-3}, T_{m-2}, T_{m-1}, T_{m}\right\}$ be a X-subsemilattice of unions of D satisfies the following conditions.

$$
\begin{aligned}
& T_{1} \subset T_{3} \subset T_{4} \subset \cdots \subset T_{m-3} \subset T_{m-2} \subset T_{m} \\
& T_{2} \subset T_{3} \subset T_{4} \subset \cdots \subset T_{m-3} \subset T_{m-2} \subset T_{m} \\
& T_{1} \subset T_{3} \subset T_{4} \subset \cdots \subset T_{m-3} \subset T_{m-1} \subset T_{m} \\
& T_{2} \subset T_{3} \subset T_{4} \subset \cdots \subset T_{m-3} \subset T_{m-1} \subset T_{m}, \\
& T_{m-1} \backslash T_{m-2} \neq \emptyset, T_{m-2} \backslash T_{m-1} \neq \emptyset, \\
& T_{1} \backslash T_{2} \neq \emptyset, T_{2} \backslash T_{1} \neq \emptyset, \\
& T_{1} \cup T_{2}=T_{3,}, T_{m-2} \cup T_{m-1}=T_{m}
\end{aligned}
$$

The diagram of the Q is shown in the following figure.

Let $C(Q)=\left\{P_{i} \mid i=1,2, \ldots, m\right\}$ be a characteristic family of sets of Q. The assignment $\varphi\left(T_{i}\right)=P_{i}$ defines a one to one correspondence between Q and $C(Q)$. Then $T_{m}=P_{m} \cup P_{m-1} \cup P_{m-2} \cup \cdots \cup P_{1}, T_{m-1}=P_{m} \cup P_{m-2} \cup \cdots \cup P_{1}$, $T_{m-2}=P_{m} \cup P_{m-1} \cup P_{m-3} \cup \cdots \cup P_{1}, T_{m-3}=P_{m} \cup P_{m-4} \cup \cdots \cup P_{1}, \ldots$, $T_{4}=P_{m} \cup P_{3} \cup P_{2} \cup P_{1}, T_{3}=P_{m} \cup P_{2} \cup P_{1}, T_{2}=P_{m} \cup P_{1}, T_{1}=P_{m} \cup P_{2}$ are obtained.

Now, let us investigate that in which conditions Q is an $X I$ - semilattice of unions. First, we determine the greatest lower bounds of the each semilattice Q_{t} in Q for $t \in T_{m}$. Since $T_{m}=P_{m} \cup P_{m-1} \cup P_{m-2} \cup \cdots \cup P_{1}$ and P_{i}
$(i=1,2, \ldots, m)$ are pairwise disjoint sets, it follows

$$
\begin{equation*}
Q_{t}=\left\{ .\right. \tag{2.1}
\end{equation*}
$$

From the Equation (2.1) the greatest lower bounds for each semilattice Q_{t}

$$
\begin{array}{cll}
t \in P_{m} & \Rightarrow N\left(Q, Q_{t}\right)=\emptyset & \Rightarrow \Lambda\left(Q, Q_{t}\right)=\emptyset \\
t \in P_{m-1} & \Rightarrow N\left(Q, Q_{t}\right)=\left\{T_{m-2}, T_{m-3}, \ldots, T_{1}\right\} & \Rightarrow \Lambda\left(Q, Q_{t}\right)=T_{m-2} \\
t \in P_{m-2} & \Rightarrow N\left(Q, Q_{t}\right)=\left\{T_{m-1}, T_{m-3}, \ldots, T_{1}\right\} & \Rightarrow \Lambda\left(Q, Q_{t}\right)=T_{m-1} \\
t \in P_{m-3} & \Rightarrow N\left(Q, Q_{t}\right)=\left\{T_{m-3}, \ldots, T_{1}\right\} & \Rightarrow \Lambda\left(Q, Q_{t}\right)=T_{m-3} \\
t \in P_{m-4} & \Rightarrow N\left(Q, Q_{t}\right)=\left\{T_{m-3}, \ldots, T_{1}\right\} & \Rightarrow \Lambda\left(Q, Q_{t}\right)=T_{m-3} \\
\vdots & & \vdots \\
t \in P_{4} & \Rightarrow N\left(Q, Q_{t}\right)=\left\{T_{5}, \ldots, T_{1}\right\} & \Rightarrow \Lambda\left(Q, Q_{t}\right)=T_{5} \\
t \in P_{3} & \Rightarrow N\left(Q, Q_{t}\right)=\left\{T_{4}, \ldots, T_{1}\right\} & \Rightarrow \Lambda\left(Q, Q_{t}\right)=T_{4} \\
t \in P_{2} & \Rightarrow N\left(Q, Q_{t}\right)=\left\{T_{1}\right\} & \Rightarrow \Lambda\left(Q, Q_{t}\right)=T_{1} \tag{2.2}\\
t \in P_{1} & \Rightarrow N\left(Q, Q_{t}\right)=\left\{T_{2}\right\} & \Rightarrow \Lambda\left(Q, Q_{t}\right)=T_{2}
\end{array}
$$

are obtained. If $t \in P_{m}$ then $\Lambda\left(D, D_{t}\right)=\emptyset \notin D$. So, $P_{m}=\emptyset$. Also using the Equation (2.2), we have easily seen that $\bigcup_{t \in T_{i}} \Lambda\left(Q, Q_{t}\right) \in D$.

Lemma 2.1. Q is an $X I$ - semilattice of unions if and only if $T_{1} \cap T_{2}=\emptyset$

Proof. \Rightarrow : Let Q be an $X I$ - semilattice of unions. Then $P_{m}=\emptyset$ and $T_{1}=P_{2}$, $T_{2}=P_{1}$ by Equation (2.1). Therefore $T_{1} \cap T_{2}=\emptyset$ since P_{1} and P_{2} are pairwise disjoint sets. \Leftarrow : If $T_{1} \cap T_{2}=\emptyset$, then $P_{m}=\emptyset$. Using the Equation (2.2), we see that $\bigcup_{t \in T_{i}} \Lambda\left(Q, Q_{t}\right)=T_{i}$. So, we have Q is an $X I-$ semilattice of unions.

Lemma 2.2. Let $G=\left\{T_{1}, T_{2}, \ldots, T_{m-1}\right\}$ be a generating set of Q. Then the elements $T_{1}, T_{2}, T_{4}, T_{5}, \ldots, T_{m-1}$ are nonlimiting elements of the set $\ddot{G}_{T_{1}}, \ddot{G}_{T_{2}}$, $\ddot{G}_{T_{4}}, \ddot{G}_{T_{5}}, \ldots, \ddot{G}_{T_{m-1}}$ respectively and T_{3} is limiting element of the set $\ddot{G}_{T_{3}}$.

Proof. Definition of \ddot{D}_{T}^{\prime} and $l\left(\ddot{G}_{T_{i}}, T_{i}\right)=\cup\left(\ddot{G}_{T_{i}} \backslash\left\{T_{i}\right\}\right), i \in\{1,2, \ldots, m-1\}$, we find nonlimiting and limiting elements of $\ddot{G}_{T_{i}}$.

$$
\begin{array}{ll}
T_{1} \backslash l\left(\ddot{G}_{T_{1}}, T_{1}\right)=T_{1} \backslash \emptyset=T_{1} \neq \emptyset, & \\
T_{1} \text { nonlimiting element of } \ddot{G}_{T_{1}} \\
T_{2} \backslash l\left(\ddot{G}_{T_{2}}, T_{2}\right)=T_{2} \backslash \emptyset=T_{2} \neq \emptyset, & \\
T_{2} \text { nonlimiting element of } \ddot{G}_{T_{2}} \backslash l\left(\ddot{G}_{T_{3}}, T_{3}\right)=T_{3} \backslash T_{3}=\emptyset, & \\
T_{3} \text { limiting element of } \ddot{G}_{T 3} \\
T_{4} \backslash l\left(\ddot{G}_{T_{4}}, T_{4}\right)=T_{4} \backslash T_{3} \neq \emptyset, & \\
T_{4} \text { nonlimiting element of } \ddot{G}_{T_{4}} &
\end{array}
$$

$$
\vdots \quad \vdots
$$

$$
T_{m-4} \backslash l\left(\ddot{G}_{T_{m-4}}, T_{m-4}\right)=T_{m-4} \backslash T_{m-5} \neq \emptyset, \quad T_{m-4} \text { nonlimiting element of } \ddot{G}_{T_{m-4}}
$$

$$
T_{m-3} \backslash l\left(\ddot{G}_{T_{m-3}}, T_{m-3}\right)=T_{m-3} \backslash T_{m-4} \neq \emptyset, \quad T_{m-3} \text { nonlimiting element of } \ddot{G}_{T_{m-3}}
$$

$$
T_{m-2} \backslash l\left(\ddot{G}_{T_{m-2}}, T_{m-2}\right)=T_{m-2} \backslash T_{m-3} \neq \emptyset, \quad T_{m-2} \text { nonlimiting element of } \ddot{G}_{T_{m-2}}
$$

$$
T_{m-1} \backslash l\left(\ddot{G}_{T_{m-1}}, T_{m-1}\right)=T_{m-1} \backslash T_{m-3} \neq \emptyset, \quad T_{m-1} \text { nonlimiting element of } \ddot{G}_{T_{m-1}}
$$

Now, we determine properties of a regular element α of $B_{X}(Q)$ where $V(D, \alpha)=Q$ and $\alpha=\bigcup_{i=1}^{m}\left(Y_{i}^{\alpha} \times T_{i}\right)$.

Theorem 2.3. Let $\alpha \in B_{X}(Q)$ with a quasinormal representation of the form $\alpha=\bigcup_{i=1}^{m}\left(Y_{i}^{\alpha} \times T_{i}\right)$ such that $V(D, \alpha)=Q$. Then $\alpha \in B_{X}(D)$ is a regular iff for some complete α-isomorphism $\varphi: Q \rightarrow D^{\prime} \subseteq D$, the following conditions are satisfied:

$$
\begin{align*}
& Y_{1}^{\alpha} \supseteq \varphi\left(T_{1}\right), \\
& Y_{2}^{\alpha} \supseteq \varphi\left(T_{2}\right), \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \varphi\left(T_{4}\right), \\
& \vdots \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-4}^{\alpha} \supseteq \varphi\left(T_{m-4}\right), \tag{2.3}\\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \supseteq \varphi\left(T_{m-3},\right. \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-2}^{\alpha} \supseteq \varphi\left(T_{m-2}\right), \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-1}^{\alpha} \supseteq \varphi\left(T_{m-1}\right), \\
& Y_{4}^{\alpha} \cap \varphi\left(T_{4}\right) \neq \emptyset, \ldots, Y_{m-1}^{\alpha} \cap \varphi\left(T_{m-1}\right) \neq \emptyset
\end{align*}
$$

Proof. Let $G=\left\{T_{1}, T_{2}, \ldots, T_{m-1}\right\}$ be a generating set of $Q . \Rightarrow$: Since $\alpha \in$ $B_{X}(D)$ is regular and $V(D, \alpha)=Q$ is an $X I$-semilattice of unions, by Theorem 1.1, there exits a complete α-isomorphism $\varphi: Q \rightarrow D^{\prime}$. By Theorem 1.1
(a), $\varphi(T) \alpha=T$ for all $T \in V(D, \alpha)$. Applying the Theorem 1.1 (b), we have

$$
\begin{aligned}
& Y_{1}^{\alpha} \supseteq \varphi\left(T_{1}\right), Y_{2}^{\alpha} \supseteq \varphi\left(T_{2}\right), \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{3}^{\alpha} \supseteq \varphi\left(T_{3}\right), Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \varphi\left(T_{4}\right), \\
& \vdots \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-4}^{\alpha} \supseteq \varphi\left(T_{m-4}\right), Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \supseteq \varphi\left(T_{m-3}\right), \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-2}^{\alpha} \supseteq \varphi\left(T_{m-2}\right), Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-1}^{\alpha} \supseteq \varphi\left(T_{m-1}\right)
\end{aligned}
$$

Moreover, considering that the elements $T_{1}, T_{2}, T_{4}, T_{5}, \ldots, T_{m-1}$ are nonlimiting elements of the sets $\ddot{G}_{T_{1}}, \ddot{G}_{T_{2}}, \ddot{G}_{T_{4}}, \ddot{G}_{T_{5}}, \ldots, \ddot{G}_{T_{m-1}}$ respectively and using the Theorem 1.1 (c), following properties

$$
Y_{1}^{\alpha} \cap \varphi\left(T_{1}\right) \neq \emptyset, \quad Y_{2}^{\alpha} \cap \varphi\left(T_{2}\right) \neq \emptyset, Y_{4}^{\alpha} \cap \varphi\left(T_{4}\right) \neq \emptyset, \ldots, \quad Y_{m-1}^{\alpha} \cap \varphi\left(T_{m-1}\right) \neq \emptyset
$$

are obtained. From $Y_{1}^{\alpha} \supseteq \varphi\left(T_{1}\right)$ and $Y_{2}^{\alpha} \supseteq \varphi\left(T_{2}\right) ; Y_{1}^{\alpha} \cap \varphi\left(T_{1}\right) \neq \emptyset, Y_{2}^{\alpha} \cap \varphi\left(T_{2}\right) \neq \emptyset$ always ensured. Also by using $Y_{1}^{\alpha} \supseteq \varphi\left(T_{1}\right)$ and $Y_{2}^{\alpha} \supseteq \varphi\left(T_{2}\right)$, we get

$$
\begin{aligned}
Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{3}^{\alpha} & \supseteq \varphi\left(T_{1}\right) \cup \varphi\left(T_{2}\right) \cup Y_{3}^{\alpha}=\varphi\left(T_{1} \cup T_{2}\right) \cup Y_{3}^{\alpha} \\
& =\varphi\left(T_{3}\right) \cup Y_{5}^{\alpha} \supseteq \varphi\left(T_{3}\right)
\end{aligned}
$$

Thus there is no need the condition $Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{3}^{\alpha} \supseteq \varphi\left(T_{3}\right)$. Therefore there exists a complete α-isomorphism φ which holds given conditions. \Leftarrow : Since $V(D, \alpha)=Q, V(D, \alpha)$ is an XI-semilattice of unions. Hence we have a complete α-isomorphism φ satisfying (2.3). Notice that T_{3} is a limiting element of the set $\ddot{G}_{T_{3}}$. By Theorem 1.1 we form $B\left(T_{3}\right)=\left\{Z \in \ddot{G}_{T_{3}} \mid Y_{Z}^{\alpha} \cap \varphi\left(T_{3}\right) \neq \emptyset\right\}$. It was seen in [5, Theorem 3.4] that $\cup B\left(T_{3}\right)=T_{3}$. By Theorem 1.1 we conclude that α is the regular element of the $B_{X}(D)$.

Now we calculate the number of regular elements α, satisfying the hyphothesis of Theorem 2.3. Let $\alpha \in B_{X_{m}}(D)$ be a regular element which is quasinormal representation of the form $\alpha=\bigcup_{i=1}^{m}\left(Y_{i}^{\alpha} \times T_{i}\right)$ and $V(D, \alpha)=Q$. Then there exist a complete α - isomorphism $\varphi: Q \rightarrow D^{\prime}=\left\{\varphi\left(T_{1}\right), \varphi\left(T_{2}\right), \ldots, \varphi\left(T_{m}\right)\right\}$ satisfying the hyphothesis of Theorem 2.3. So, $\alpha \in R_{\varphi}\left(Q, D^{\prime}\right)$. We will denote $\varphi\left(T_{i}\right)=\bar{T}_{i}, i=1,2, \ldots m$. Diagram of the $D^{\prime}=\left\{\bar{T}_{1}, \bar{T}_{2}, \ldots, \bar{T}_{m}\right\}$ is shown in the following figure.

Then the Equation (2.3) reduced to below equation.

$$
\begin{align*}
& Y_{1}^{\alpha} \supseteq \bar{T}_{1}, \\
& Y_{2}^{\alpha} \supseteq \bar{T}_{2}, \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup Y_{3}^{\alpha} \cup Y_{4}^{\alpha} \supseteq \bar{T}_{4}, \\
& \vdots \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-4}^{\alpha} \supseteq \bar{T}_{m-4}, \tag{2.4}\\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \supseteq \bar{T}_{m-3}, \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-2}^{\alpha} \supseteq \bar{T}_{m-2}, \\
& Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-1}^{\alpha} \supseteq \bar{T}_{m-1}, \\
& Y_{4}^{\alpha} \cap \bar{T}_{4} \neq \emptyset, \ldots, Y_{m-1}^{\alpha} \cap \bar{T}_{m-1} \neq \emptyset
\end{align*}
$$

On the other hand, $\bar{T}_{1}, \bar{T}_{2}, \bar{T}_{4} \backslash \bar{T}_{3}, \ldots, \bar{T}_{m-4} \backslash \bar{T}_{m-5},\left(\bar{T}_{m-2} \cap \bar{T}_{m-1}\right) \backslash \bar{T}_{m-4}, \bar{T}_{m-1} \backslash \bar{T}_{m-2}$, $\bar{T}_{m-2} \backslash \bar{T}_{m-1}, X \backslash \bar{T}_{m}$ are also pairwise disjoint sets and union of these sets equals X.

Lemma 2.4. For every $\alpha \in R_{\varphi}\left(Q, D^{\prime}\right)$, there exists an ordered system of disjoint mappings.

Proof. Let $f_{\alpha}: X \rightarrow D$ be a mapping satisfying the condition $f_{\alpha}(t)=$ $t \alpha$ for all $t \in X$. We consider the restrictions of the mapping f_{α} as $f_{1 \alpha}$, $f_{2 \alpha}, \ldots, f_{(m-1) \alpha}$ on the sets $\bar{T}_{1}, \bar{T}_{2}, \bar{T}_{4} \backslash \bar{T}_{3}, \bar{T}_{5} \backslash \bar{T}_{4}, \ldots, \bar{T}_{m-4} \backslash \bar{T}_{m-5},\left(\bar{T}_{m-2} \cap\right.$ $\left.\bar{T}_{m-1}\right) \backslash \bar{T}_{m-4}, \bar{T}_{m-1} \backslash \bar{T}_{m-2}, \bar{T}_{m-2} \backslash \bar{T}_{m-1}, \quad X \backslash \bar{T}_{m}$, respectively. Now, considering the definition of the sets $Y_{i}^{\alpha},(i=1,2, \ldots, m-1)$ together with the Equation (2.4) we have,

$$
\begin{aligned}
t \in \bar{T}_{1} \Rightarrow t \in Y_{1}^{\alpha} \Rightarrow t \alpha=T_{1} \Rightarrow & f_{1 \alpha}(t)=T_{1}, \forall t \in \bar{T}_{1} \\
t \in \bar{T}_{2} \Rightarrow t \in Y_{2}^{\alpha} \Rightarrow t \alpha=T_{2} & f_{2 \alpha}(t)=T_{2}, \forall t \in \bar{T}_{2} \\
t \in \bar{T}_{i} \backslash \bar{T}_{i-1},(i=4, \ldots, m-4) & \Rightarrow t \in \bar{T}_{i} \bar{T}_{i-1} \subseteq \bar{T}_{i} \subseteq Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{i}^{\alpha} \\
& \Rightarrow t \alpha \in\left\{T_{1}, T_{2}, \ldots, T_{i}\right\} \\
& \Rightarrow f_{(i-1) \alpha}(t) \in\left\{T_{1}, T_{2}, \ldots, T_{i}\right\}, \forall t \in \bar{T}_{i} \backslash \bar{T}_{i-1} \\
t \in\left(\bar{T}_{m-2} \cap \bar{T}_{m-1}\right) \backslash \bar{T}_{m-4} & \Rightarrow t \in \bar{T}_{m-2} \cap \bar{T}_{m-1} \subseteq Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \\
& \Rightarrow t \alpha \in\left\{T_{1}, \ldots, T_{m-3}\right\} \\
& \Rightarrow f_{(m-4) \alpha}(t) \in\left\{T_{1}, \ldots, T_{m-3}\right\}, \\
& \forall t \in\left(\bar{T}_{m-2} \cap \bar{T}_{m-1}\right) \backslash \bar{T}_{m-4} \\
t \in \bar{T}_{m-1} \backslash \bar{T}_{m-2} \Rightarrow & \Rightarrow t \in \bar{T}_{m-1} \subseteq Y_{1}^{\alpha} \cup \ldots \cup Y_{m-3}^{\alpha} \cup Y_{m-1}^{\alpha} \\
& \Rightarrow t \alpha \in\left\{T_{1}, \ldots, T_{m-3}, T_{m-1}\right\} \\
& \Rightarrow f_{(m-3) \alpha}(t) \in\left\{T_{1}, \ldots, T_{m-3}, T_{m-1}\right\}, \forall t \in \bar{T}_{m-1} \backslash \bar{T}_{m-2} \\
t \in \bar{T}_{m-2} \backslash \bar{T}_{m-1} & \Rightarrow t \in \bar{T}_{m-2} \subseteq Y_{1}^{\alpha} \cup \ldots \cup Y_{m-3}^{\alpha} \cup Y_{m-2}^{\alpha} \\
& \Rightarrow t \alpha \in\left\{T_{1}, \ldots, T_{m-3}, T_{m-2}\right\} \\
& \Rightarrow f_{(m-2) \alpha}(t) \in\left\{T_{1}, \ldots, T_{m-3}, T_{m-2}\right\}, \forall t \in \bar{T}_{m-2} \backslash \bar{T}_{m-1}
\end{aligned}
$$

$t \in X \backslash \bar{T}_{m} \Rightarrow t \in X \backslash \bar{T}_{m} \subseteq X=\bigcup_{i=1}^{m} Y_{i}^{\alpha} \Rightarrow t \alpha \in Q \Rightarrow f_{(m-1) \alpha}(t) \in Q, \forall t \in X \backslash \bar{T}_{m}$
Besides, $Y_{i}^{\alpha} \cap \bar{T}_{i} \neq \emptyset$ so there is an element $t_{i} \in Y_{i}^{\alpha} \cap \bar{T}_{i-1}$. Then $t_{i} \alpha=T_{i}$ and $t_{i} \in \bar{T}_{i}$. If $t_{i} \in \bar{T}_{i-1}$, then $t_{i} \in \bar{T}_{i-1} \subseteq Y_{1}^{\alpha} \cup \cdots \cup Y_{i-1}^{\alpha}$. Thus $t_{i} \alpha \in\left\{T_{1}, \ldots, T_{i-1}\right\}$ which is a contradiction with the equality $t_{i} \alpha=T_{i}$. So, there is an element $t_{i} \in \bar{T}_{i} \backslash \bar{T}_{i-1}$ such that $f_{(i-1) \alpha}\left(t_{i}\right)=T_{i}$. Similarly, $f_{(m-4) \alpha}\left(t_{m-3}\right)=T_{m-3}$ for some $t_{m-3} \in \bar{T}_{m-3} \backslash \bar{T}_{m-4}, f_{(m-3) \alpha}\left(t_{m-1}\right)=T_{m-1}$ for some $t_{m-1} \in \bar{T}_{m-1} \backslash \bar{T}_{m-2}$,$f_{(m-2) \alpha}\left(t_{m-2}\right)=T_{m-2}$ for some $t_{m-2} \in \bar{T}_{m-2} \backslash \bar{T}_{m-1}$ since $Y_{m-5}^{\alpha} \cap \bar{T}_{m-5} \neq \emptyset$, $Y_{m-2}^{\alpha} \cap \bar{T}_{m-2} \neq \emptyset, Y_{m-1}^{\alpha} \cap \bar{T}_{m-1} \neq \emptyset$. Therefore, for every $\alpha \in R_{\varphi}\left(Q, D^{\prime}\right)$ there exists an ordered system $\left(f_{1 \alpha}, f_{2 \alpha}, \ldots, f_{(m-1) \alpha}\right)$. On the other hand, suppose that for $\alpha, \beta \in R_{\varphi}\left(Q, D^{\prime}\right)$ which $\alpha \neq \beta$, be obtained $f_{\alpha}=\left(f_{1 \alpha}, f_{2 \alpha}, \ldots, f_{(m-1) \alpha}\right)$ and $f_{\beta}=\left(f_{1 \beta}, f_{2 \beta}, \ldots, f_{(m-1) \beta}\right)$. If $f_{\alpha}=f_{\beta}$, we get

$$
f_{\alpha}=f_{\beta} \Rightarrow f_{\alpha}(t)=f_{\beta}(t), \forall t \in X \Rightarrow t \alpha=t \beta, \forall t \in X \Rightarrow \alpha=\beta
$$

which contradicts to $\alpha \neq \beta$. Therefore different binary relations's ordered systems are different.

Lemma 2.5. Let Q be an $X I$-semilattice of unions and $f=\left(f_{1}, f_{2}, \ldots, f_{(m-1)}\right)$ be ordered system from X in the semilattice D such that

$$
\begin{aligned}
& f_{1}: \bar{T}_{1} \rightarrow\left\{T_{1}\right\}, f_{1}(t)=T_{1}, \\
& f_{2}: \bar{T}_{2} \rightarrow\left\{T_{1}\right\}, f_{2}(t)=T_{2}, \\
& f_{i-1}: \bar{T}_{i} \backslash \bar{T}_{i-1} \rightarrow\left\{T_{1}, \ldots, T_{i}\right\}, \quad(i=4, \ldots, m-4), \quad f_{i-1}(t) \in\left\{T_{1}, \ldots, T_{i}\right\} \\
& \text { and } f_{i-1}\left(t_{i}\right)=T_{i}, \exists t_{i} \in \bar{T}_{i} \backslash \bar{T}_{i-1}, \\
& f_{m-4}:\left(\bar{T}_{m-2} \cap \bar{T}_{m-1}\right) \backslash \bar{T}_{m-4} \rightarrow\left\{T_{1}, \ldots, T_{m-3}\right\}, \quad f_{m-4}(t) \in\left\{T_{1}, \ldots, T_{m-3}\right\} \\
& \text { and } f_{m-4}\left(t_{m-3}\right)=T_{m-3}, \quad \exists t_{m-3} \in \bar{T}_{m-3} \backslash \bar{T}_{m-4}, \\
& f_{m-3}: \bar{T}_{m-1} \backslash \bar{T}_{m-2} \rightarrow\left\{T_{1}, \ldots, T_{m-3}, T_{m-1}\right\}, \quad f_{m-3}(t) \in\left\{T_{1}, \ldots, T_{m-3}, T_{m-1}\right\} \\
& \text { and } f_{m-3}\left(t_{m-1}\right)=T_{m-1}, \quad \exists t_{m-1} \in \bar{T}_{m-1} \backslash \bar{T}_{m-2}, \\
& f_{m-2}: \bar{T}_{m-2} \backslash \bar{T}_{m-1} \rightarrow\left\{T_{1}, \ldots, T_{m-3}, T_{m-2}\right\}, \quad f_{m-2}(t) \in\left\{T_{1}, \ldots, T_{m-3}, T_{m-2}\right\} \\
& \text { and } f_{m-2}\left(t_{m-2}\right)=T_{m-2}, \quad \exists t_{m-2} \in \bar{T}_{m-2} \backslash \bar{T}_{m-1}, \\
& f_{m-1}: X \backslash \bar{T}_{m} \rightarrow Q, \quad f_{m-1}(t) \in Q .
\end{aligned}
$$

Then $\beta=\bigcup_{x \in X}(\{x\} \times f(x)) \in B_{X}(D)$ is regular and φ is complete β-isomorphism. So $\beta \in R_{\varphi}\left(Q, D^{\prime}\right)$.

Proof. First we see that $V(D, \beta)=Q$. Considering $V(D, \beta)=\{Y \beta \mid Y \in D\}$, the properties of f mapping, $\bar{T}_{i} \beta=\bigcup_{x \in \bar{T}_{i}} x \beta$ and $D^{\prime} \subseteq D$, we get $V(D, \beta)=Q$.
Also, $\beta=\bigcup_{T \in V\left(X^{*}, \beta\right)}\left(Y_{T}^{\beta} \times T\right)$ is quasinormal representation of β since $\emptyset \notin Q$.
From the definition of $\beta, f(x)=x \beta$ for all $x \in X$. It is easily seen that $V\left(X^{*}, \beta\right)=V(D, \beta)=Q$. We get $\beta=\bigcup_{i=1}^{m}\left(Y_{i}^{\beta} \times T_{i}\right)$. On the other hand $t \in \bar{T}_{1} \Rightarrow t \beta=f(t)=T_{1} \Rightarrow t \in Y_{1}^{\beta} \Rightarrow \bar{T}_{1} \subseteq Y_{1}^{\beta}$,
$t \in \bar{T}_{2} \Rightarrow t \beta=f(t)=T_{2} \Rightarrow t \in Y_{2}^{\beta} \Rightarrow \bar{T}_{2} \subseteq Y_{2}^{\beta}$,
$t \in \bar{T}_{i},(i=4, \ldots, m-4) \Rightarrow t \beta \in\left\{T_{1}, T_{2}, \ldots, T_{i}\right\} \Rightarrow t \in Y_{1}^{\beta} \cup Y_{2}^{\beta} \cup \cdots \cup Y_{1}^{\beta}$ $\Rightarrow Y_{1}^{\beta} \cup Y_{2}^{\beta} \cup \cdots \cup Y_{1}^{\beta} \supseteq \overline{T_{i}}$
$t \in \bar{T}_{m-3} \Rightarrow t \beta \in\left\{T_{1}, \ldots, T_{m-3}\right\} \Rightarrow t \in Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha}$ $\Rightarrow Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \supseteq \bar{T}_{m-3}$
$t \in \bar{T}_{m-2} \Rightarrow t \beta \in\left\{T_{1}, \ldots, T_{m-3}, T_{m-2}\right\} \Rightarrow t \in Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-2}^{\alpha}$

$$
\Rightarrow Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-2}^{\alpha} \supseteq \bar{T}_{m-2}
$$

$t \in \bar{T}_{m-1} \Rightarrow t \beta \in\left\{T_{1}, \ldots, T_{m-3}, T_{m-1}\right\} \Rightarrow t \in Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-1}^{\alpha}$

$$
\Rightarrow Y_{1}^{\alpha} \cup Y_{2}^{\alpha} \cup \cdots \cup Y_{m-3}^{\alpha} \cup Y_{m-1}^{\alpha} \supseteq \bar{T}_{m-1}
$$

Also, for $i=4, \ldots, m-4$ by using $f_{i-1}\left(t_{i}\right)=T_{i}, \exists t_{4} \in \bar{T}_{i} \backslash \bar{T}_{i-1}$, we obtain $Y_{i}^{\beta} \cap \bar{T}_{i} \neq \emptyset$. Similarly, $Y_{m-3}^{\beta} \cap \bar{T}_{m-3} \neq \emptyset, Y_{m-2}^{\beta} \cap \bar{T}_{m-2} \neq \emptyset$ and $Y_{m-1}^{\beta} \cap \bar{T}_{m-1} \neq \emptyset$. Therefore the mapping $\varphi: Q \rightarrow D^{\prime}=\left\{\bar{T}_{1}, \bar{T}_{2}, \ldots, \bar{T}_{m}\right\}$ to be defined $\varphi\left(T_{i}\right)=$ \bar{T}_{i} satisfies the conditions in the Equation (2.4) for β. Hence φ is complete β-isomorphism because of $\varphi(T) \beta=\bar{T} \beta=T$, for all $T \in V(D, \beta)$. By Theorem 2.3, $\beta \in R_{\varphi}\left(Q, D^{\prime}\right)$.

Therefore, there is one to one correspondence between the elements of $R_{\varphi}\left(Q, D^{\prime}\right)$ and the set of ordered systems of disjoint mappings.
Theorem 2.6. Let X be a finite set and Q be an $X I$ - semilattice and $m \geq 7$. If $D^{\prime}=\left\{\bar{T}_{1}, \bar{T}_{2}, \ldots, \bar{T}_{m}\right\}$ is $\alpha-$ isomorphic to Q and $\Omega(Q)=m_{0}$, then

$$
\begin{aligned}
\left|R\left(D^{\prime}\right)\right| & =4 m_{0}\left(4^{\mid \bar{T}_{4} \backslash \bar{T}_{3}} \mid-3^{\left|\bar{T}_{4} \backslash \bar{T}_{3}\right|}\right)\left(5^{\left|\bar{T}_{5} \backslash \bar{T}_{4}\right|}-4^{\left|\bar{T}_{5} \backslash \bar{T}_{4}\right|}\right) \cdots \\
& \left((m-4)^{\left|\bar{T}_{m-4} \backslash \bar{T}_{m-5}\right|}-(m-5)^{\left|\bar{T}_{m-4} \backslash \bar{T}_{m-5}\right|}\right)(m-3)^{\left|\left(\bar{T}_{m-2} \cap \bar{T}_{m-1}\right) \backslash \bar{T}_{m-3}\right|} \\
& \left((m-3)^{\left|\bar{T}_{m-3} \backslash \bar{T}_{m-4}\right|}-(m-4)^{\left|\bar{T}_{m-3} \backslash \bar{T}_{m-4}\right|}\right)\left((m-2)^{\left|\bar{T}_{m-1} \backslash \bar{T}_{m-2}\right|}-\right. \\
& \left.(m-3)^{\left|\bar{T}_{m-1} \backslash \bar{T}_{m-2}\right|}\right)\left.\left((m-2)^{\left|\bar{T}_{m-2} \backslash \bar{T}_{m-1}\right|}-(m-3)^{\left|\bar{T}_{m-2} \backslash \bar{T}_{m-1}\right|}\right) m\right|^{\left|X \backslash \bar{T}_{m}\right|}
\end{aligned}
$$

Proof. Lemma 2.4 and Lemma 2.5 show us that the number of the ordered system of disjoint mappings $\left(f_{1 \alpha}, f_{2 \alpha}, \ldots, f_{(m-1) \alpha}\right)$ is equal to $\left|R_{\varphi}\left(Q, D^{\prime}\right)\right|$, which $\alpha \in B_{X}(D)$ regular element $V(D, \alpha)=Q$ and $\varphi: Q \rightarrow D^{\prime}$ is a complete α-isomorphism. The number of the mappings $f_{1 \alpha}, f_{2 \alpha}, f_{3 \alpha}, f_{4 \alpha}, \ldots, f_{(m-5) \alpha}$, $f_{(m-4) \alpha}, f_{(m-3) \alpha}, f_{(m-2) \alpha}$ and $f_{(m-1) \alpha}$ are respectively

$$
\begin{aligned}
& 1,1,\left(4^{\mid \bar{T}_{4} \backslash \bar{T}_{3}}-3^{\left|\bar{T}_{4} \backslash \bar{T}_{3}\right|}\right),\left(5^{\left|\bar{T}_{5} \backslash \bar{T}_{4}\right|}-4^{\left|\bar{T}_{5} \backslash \bar{T}_{4}\right|}\right) \cdots \\
& \left((m-4)^{\left|\bar{T}_{m-4} \backslash \bar{T}_{m-5}\right|}-(m-5)^{\left|\bar{T}_{m-4} \backslash \bar{T}_{m-5}\right|}\right),(m-3)^{\left.\mid \bar{T}_{m-2} \cap \bar{T}_{m-1}\right) \backslash \bar{T}_{m-3} \mid} \\
& \left((m-3)^{\left|\bar{T}_{m-3} \backslash \bar{T}_{m-4}\right|}-(m-4)^{\left|\bar{T}_{m-3} \backslash \bar{T}_{m-4}\right|}\right),\left((m-2)^{\left|\bar{T}_{m-1} \backslash \bar{T}_{m-2}\right|}-\right. \\
& \left.(m-3)^{\left|\bar{T}_{m-1} \backslash \bar{T}_{m-2}\right|}\right),\left((m-2)^{\left|\bar{T}_{m-2} \backslash \bar{T}_{m-1}\right|}-(m-3)^{\left|\bar{T}_{m-2} \backslash \bar{T}_{m-1}\right|}\right),\left.m\right|^{\left|X \backslash \bar{T}_{m}\right|}
\end{aligned}
$$

The number q of all automorphisms of the semilattice Q is 4 . These are

$$
\left.\begin{array}{l}
I_{Q}=\left(\begin{array}{cccccc}
T_{1} & T_{2} & T_{3} & \cdots & T_{m-2} & T_{m-1} \\
T_{1} \\
T_{1} & T_{2} & T_{3} & \cdots & T_{m-2} & T_{m-1} \\
T_{m}
\end{array}\right) \quad \tau_{1}=\left(\begin{array}{llllll}
T_{1} & T_{2} & T_{3} & \cdots & T_{m-2} & T_{m-1}
\end{array} T_{m}\right. \\
T_{2} \\
T_{1}
\end{array} T_{3} \cdots T_{m-2} T_{m-1} T_{m}\right) .
$$

Therefore by using, one to one correspondence between the elements of $R_{\varphi}\left(Q, D^{\prime}\right)$ and the set of ordered systems of disjoint mappings and Theorem 1.2,

$$
\begin{aligned}
\left|R\left(D^{\prime}\right)\right| & =4 m_{0}\left(4^{\left|\bar{T}_{4} \backslash \bar{T}_{3}\right|}-3^{\left|\bar{T}_{4} \backslash \bar{T}_{3}\right|}\right)\left(5^{\left|\bar{T}_{5} \backslash \bar{T}_{4}\right|}-4^{\left|\bar{T}_{5} \backslash \bar{T}_{4}\right|}\right) \cdots \\
& \left((m-4)^{\left|\bar{T}_{m-4} \backslash \bar{T}_{m-5}\right|}-(m-5)^{\left|\bar{T}_{m-4} \backslash \bar{T}_{m-5}\right|}\right)(m-3)^{\left.\mid \bar{T}_{m-2} \cap \bar{T}_{m-1}\right) \backslash \bar{T}_{m-3} \mid} \\
& \left((m-3)^{\left|\bar{T}_{m-3} \backslash \bar{T}_{m-4}\right|}-(m-4)^{\left|\bar{T}_{m-3} \backslash \bar{T}_{m-4}\right|}\right)\left((m-2)^{\left|\bar{T}_{m-1} \backslash \bar{T}_{m-2}\right|}-\right. \\
& \left.(m-3)^{\left|\bar{T}_{m-1} \backslash \bar{T}_{m-2}\right|}\right)\left.\left((m-2)^{\left|\bar{T}_{m-2} \backslash \bar{T}_{m-1}\right|}-(m-3)^{\left|\bar{T}_{m-2} \backslash \bar{T}_{m-1}\right|}\right) m\right|^{\left|X \backslash \bar{T}_{m}\right|}
\end{aligned}
$$

are obtained.
By taking $m=7$ in Theorem 2.6 one gets the following corollary which is given in [5, Theorem 3.7].

Corollary 2.7. [5, Theorem 3.7] Let X be a finite set and Q be an $X I-$ semilattice. If $D^{\prime}=\left\{\bar{T}_{1}, \bar{T}_{2}, \bar{T}_{3}, \bar{T}_{4}, \bar{T}_{5}, \bar{T}_{6}, \bar{T}_{7}\right\}$ is $\alpha-$ isomorphic to Q and $\Omega(Q)=m_{0}$, then

$$
\begin{aligned}
& \left|R\left(D^{\prime}\right)\right|=4 \cdot m_{0} \cdot 4^{\left.\mid \bar{T}_{5} \cap \bar{T}_{6}\right) \backslash \bar{T}_{4} \mid} \cdot\left(4^{\left|\bar{T}_{4} \backslash \bar{T}_{3}\right|}-3^{\left|\bar{T}_{4} \backslash \bar{T}_{3}\right|}\right) \\
& \quad \cdot\left(5^{\left|\bar{T}_{6} \backslash \bar{T}_{5}\right|}-4^{\left|\bar{T}_{6} \backslash \bar{T}_{5}\right|}\right) \cdot\left(5^{\left|\bar{T}_{5} \backslash \bar{T}_{6}\right|}-4^{\left|\bar{T}_{5} \backslash \bar{T}_{6}\right|}\right) \cdot 7^{\left|X \backslash \bar{T}_{7}\right|}
\end{aligned}
$$

References

[1] Ya. Diasamidze, Complete semigroups of binary relations, Journal of Mathematical Sciences, Plenum Publ. Cor., New York, 117(4) (2003), 4271-4319.
[2] Ya. Diasamidze and Sh. Makharadze, Complete Semigroups of Binary Relations, Istanbul, Kriter Yayınevi, (2013), 524.
[3] Ya. Diasamidze, Sh. Makharadze, G. Partenadze and O. Givradze, On finite X-semilattices of unions, Journal of Mathematical Sciences, Plenum Publ. Cor., New York, 141(4) (2007), 1134-1181.
[4] Ya. Diasamidze and Sh. Makharadze, Complete semigroups of binary relations defined by X - semilattices of unions, Journal of Mathematical Sciences, Plenum Publ. Cor., New York, 166(5) (2010), 615-633.
[5] D.Y. Sungur and N. Aydın, Regular elements of the complete semigroups of binary relations of the class $\sum_{8}(X, 7)$, General Mathematics Notes, 21(1) (2014), 27-42.

