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Abstract
The focus of this article is on two forms of isometries and homomorphisms

in proximal relator spaces. A practical outcome of this study is the detection
of descriptively near, disjoint sets in proximity spaces with application in the
study of proximal algebraic structures.
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1 Introduction

An algebraic structure is a set equipped with one or more binary operations. A
proximal algebraic structure is an algebraic structure in a proximity space. This
article introduces two forms of isometries and homomorphisms in proximity
spaces. Proximity spaces were explored by Efremovič during the first part of
1930s and later formally introduced [2] and elaborated by Smirnov [13, 14].
The introduction of descriptive forms of isometry and homomorphism stems
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from recent work on near sets [11, 6, 12, 9], near groups [4] and proximal relator
spaces [10].

2 Preliminaries

X denotes a metric topological space endowed with 1 or more proximity rela-
tions. 2X denotes the collection of all subsets of a nonempty set X. Subsets
A,B ∈ 2X are near (denoted by A δ B), provided A ∩ B 6= ∅. That is,
nonempty sets are near, provided the sets have at least one point in common.
The closure of a subset A ∈ 2X (denoted by cl(A)) is the usual Kuratowski
closure of a set defined by

cl(A) = {x ∈ X : D(x,A) = 0} , where

D(x,A) = inf {d(x, a) : a ∈ A} .

i.e., cl(A) is the set of all points x in X that are close to A (D(x,A) is the
Hausdorff distance [3, §22, p. 128] between x and the set A and d(x, a) =
|x− a| (standard distance)). A discrete proximity relation is defined by

δ =
{

(A,B) ∈ 2X × 2X : cl(A) ∩ cl(B) 6= ∅
}

.

The following proximity space axioms are given by Ju.M. Smirnov [13] based
on what V. Efremovic̆ introduced during the first half of the 1930s [2]. Let
A,B ∈ 2X .

EF.1 If the set A is close to B, then B is close to A.
EF.2 A∪B is close to C, if and only if, at least one of the sets A or B is close

to C.
EF.3 Two points are close, if and only if, they are the same point.
EF.4 All sets are far from the empty set ∅.
EF.5 For any two sets A and B which are far from each other, there exists

C and D, C ∪D = X, such that A is far from C and B is far from D

(Efremovic̆ axiom).
In a proximity space X, the closure of A in X coincides with the intersection
of all closed sets that contain A.

Theorem 1. [13] The closure of any set A in the proximity space X is the set
of points x ∈ X that are close to A.

2.1 Descriptive EF-Proximity Space

Descriptively near sets were introduced as a means of solving classification
and pattern recognition problems arising from disjoint sets that resemble each
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other [8, 7]. Recently, the connections between near sets in EF-spaces and
near sets in descriptive EF-proximity spaces have been explored in [12, 9].

Let X be a metric topological space containing non-abstract points and
let Φ = {φ1, . . . , φn} a set of probe functions that represent features of each
x ∈ X. In a discrete space, a non-abstract point has a location and features
that can be measured [5, §3]. A probe function φ : X → R represents a feature
of a sample point in X. Let Φ(x) = (φ1(x), . . . , φn(x)) denote a feature vector
for x, which provides a description of each x ∈ X. To obtain a descriptive
proximity relation (denoted by δΦ), one first chooses a set of probe functions.
Let A,B ∈ 2X and Q(A),Q(B) denote sets of descriptions of points in A,B,
respectively. That is,

Q(A) = {Φ(a) : a ∈ A} ,

Q(B) = {Φ(b) : b ∈ B} .

The expression A δΦ B reads A is descriptively near B. Similarly, A δΦ B

reads A is descriptively far from B. The descriptive proximity of A and B is
defined by

A δΦ B ⇔ Q(A) ∩ Q(B) 6= ∅.

The descriptive intersection ∩
Φ
of A and B is defined by

A ∩
Φ
B = {x ∈ A ∪ B : Φ(x) ∈ Q(A) and Φ(x) ∈ Q(B)} .

That is, x ∈ A ∪ B is in A ∩
Φ
B, provided Φ(x) = Φ(a) = Φ(b) for some

a ∈ A, b ∈ B. Observe that A and B can be disjoint and yet A ∩
Φ
B can be

nonempty. The descriptive proximity relation δΦ is defined by

δΦ =
{

(A,B) ∈ 2X × 2X : cl(A) ∩
Φ

cl(B) 6= ∅
}

.

Whenever sets A and B have no points with matching descriptions, the sets
are descriptively far from each other (denoted by A δΦ B), where

δΦ = 2X × 2X \ δΦ.

The binary relation δΦ is a descriptive EF-proximity, provided the following
axioms are satisfied for A,B,C,D ∈ 2X .

dEF.1 If the set A is descriptively close to B, then B is descriptively close to
A.

dEF.2 A∪B is descriptively close to C, if and only if, at least one of the sets
A or B is descriptively close to C.

dEF.3 Two points x, y ∈ X are descriptively close, if and only if, the descrip-
tion of x matches the description of y.
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dEF.4 All nonempty sets are descriptively far from the empty set ∅.
dEF.5 For any two sets A and B which are descriptively far from each other,

there exists C and D, C∪D = X, such that A is descriptively far from
C and B is descriptively far from D (Descriptive Efremovic̆ axiom).

A relator is a nonvoid family of relations R on a nonempty set X. The
pair (X,R) (also denoted X(R)) is called a relator space [16]. Relator spaces
are natural generalisations of ordered sets and uniform spaces [15]. With the
introduction of a family of proximity relations Rδ on X, we obtain a proximal
relator space (X,Rδ). For simplicity, we consider only two proximity relations,
namely, the Efremovic̆ proximity δ [2] and the descriptive proximity δΦ in
defining the proximal relator RδΦ on a metric topological space. The pair
(X,RδΦ) is called a descriptive proximal relator space (briefly, proximal relator
space) [10]. With the introduction of (X,RδΦ), the traditional closure of a
subset provides a basis the descriptive closure of a subset.

In a proximal relator space X, the descriptive closure of a set A (denoted
by clΦ(A)) is defined by

clΦ(A) = {x ∈ X : Φ(x) ∈ Q(cl(A))} .

Theorem 2. [11] The descriptive closure of any set A in the proximal relator
space (X,RδΦ) is the set of points x ∈ X that are descriptively close to A.
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Figure 1: Descriptive isometry

3 Spatial and Descriptive Isometries and Ho-

momorphisms in Proximity Spaces

Let (X,RδΦ), (Y,RδΦ) be proximal relator spaces and A ⊆ X, B ⊆ Y . A
mapping gΦ : Q(A) −→ Q(A) is a descriptive isometry, provided gΦ (Φ (a)) =



Spatial and Descriptive Isometries... 129

gΦ (Φ (a′)) when Φ (a) = Φ (a′), a, a′ ∈ A. For a pseudometric d defined on X
and Y , gΦ : Q(A) −→ Q(A) is a descriptive isometry, provided

d(gΦ (Φ (a)) , gΦ (Φ (a′))) = 0 when d(Φ (a) ,Φ (a′)) = 0,

for a, a′ ∈ A [11]. Since a descriptive isometry is defined relative to matching
descriptions, such an isometry can be defined without reference to a pseudo-
metric.

Example 1. In Fig. 1, let M1,M2 be manifolds endowed with a descriptive
proximity relation δΦ, where Φ contains a probe function that represents the
angles between two curves on manifolds and let Tp (M1) , Tψ(p) (M2) be tangent
spaces. Let ψ : M1 −→ M2 be a conformal map that for all p ∈ M1 and all
v1, v2 ∈ Tp (M1), we have 〈dψp (v1) , dψp (v2)〉 = λ2 (p) 〈v1, v2〉. The geometric
meaning of this map is that the angles (but not necessarily the lengths) are
preserved by conformal maps.

In Fig. 1 , let we consider the pairs of curves (α1, α2),(β1, β2) ∈M1 and
(γ1 = ψ ◦ α1, γ2 = ψ ◦ α2),(η1 = ψ ◦ β1, η2 = ψ ◦ β2) ∈M2. Then

cos θ1 =
〈α′

1, α
′

2〉

|α′

1| |α
′

2|
, cos θ2 =

〈β′

1, β
′

2〉

|β′

1| |β
′

2|
, 0 < θ1, θ2 < π.

Observe that

cos θ̄1 =
〈γ′1, γ

′

2〉

|γ′1| |γ
′

2|
=

〈dψ (α′

1) , dψ (α′

2)〉

|dψ (α′

1)| |dψ (α′

2)|
=
λ2 〈α′

1, α
′

2〉

λ2 |α′

1| |α
′

2|
= cos θ1

and

cos θ̄2 =
〈η′1, η

′

2〉

|η′1| |η
′

2|
=

〈dψ (β′

1) , dψ (β′

2)〉

|dψ (β′

1)| |dψ (β′

2)|
=
λ2 〈β′

1, β
′

2〉

λ2 |β′

1| |β
′

2|
= cos θ2.

Hence, conformal map ψ is provided such that

Φ ((ψ (α1) , ψ (α2))) = Φ ((ψ (β1) , ψ (β2))) ,

when Φ ((α1, α2)) = Φ ((β1, β2)), α1, α2, β1, β2 ∈ M1. Hence ψ is a descriptive
isometry, but ψ is not an ordinary isometry. �

Lemma 1. Kuratowski closure of a set A is a subset of the descriptive closure
of A in a pseudometric proximal relator space.

Proof. Let (X,RδΦ) be a proximal relator space. Assume A ⊂ X and that Φ
is a set of probe functions the represent features of points in X. Let a ∈ A.
Consequently, Φ(a) ∈ Q(A), since a ∈ cl(A). Assume x ∈ X and x 6∈ cl(A)
such that Φ(x) = Φ(a) for some a ∈ A. Hence, cl(A) ⊆ clΦ(A).

Theorem 3. Let (X,RδΦ , dX), (Y,RδΦ , dY ) be pseudometric proximal relator
spaces, A ⊆ X and f : X −→ Y be an isometry. Then cl (f (A)) ⊆ clΦ (f (A)).
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Proof. Let y ∈ cl (f (A)), y = f (x), x ∈ A. Then dX (x,A) = 0. Since f is
an isometry dX (x,A) = dY (f (x) , f (A)) = 0, then d (Φ (f (x)) ,Φ (f (A))) =
0. Consequently Φ (f (x)) ∈ Q (f (A)). Hence y = f (x) ∈ clΦ (f (A)) and
cl (f (A)) ⊆ clΦ (f (A)).

The following result for a descriptive isometry on a proximal relator space
X into a proximal relator space Y , is obtained without using a metric.

Theorem 4. Let (X,RδΦ), (Y,RδΦ) be proximal relator spaces, A ⊆ X, B ⊆
Y , gΦ : Q(A) −→ Q(B) be a descriptively isometry. Then cl (gΦ (Q(A))) ⊆
clΦ (gΦ (Q(A))).

Proof. Let y ∈ cl (gΦ (Q(A))), then y = gΦ (x), x ∈ A, Φ (y) ∈ Q(B),
Φ (x) ∈ Q(A). Then Φ (gΦ (Φ(x))) ∈ Q(gΦ (Q(A))), Φ (x) ∈ Q(A).
Consequently, y = gΦ (Φ(x)) ∈ clΦ (gΦ (Q(A))). Hence, cl (gΦ (Q(A))) ⊆
clΦ (gΦ (Q(A))).

Theorem 5. Let (X, δ) , (Y, δ) be EF-proximity spaces, A1, A2 ⊆ X and f :
X −→ Y be an isometry, then

δ (A1, A2) = 0 ⇒ δ (f (A1) , f (A2)) = 0.

Theorem 6. Let (X,RδΦ), (Y,RδΦ) be proximal relator spaces, A1, A2 ⊆ X

and f : X −→ Y be an isometry, then

δΦ (A1, A2) = 0 ⇒ δΦ (f (A1) , f (A2)) = 0.

Theorem 7. Let (X, δΦ), (Y, δΦ) be proximal relator spaces, A1, A2

⊆ X, B ⊆ Y , gΦ : Q(X) −→ Q(Y ) be a descriptive isometry. Then δΦ (A1, A2) =
0 ⇒ δΦ (gΦ (Q(A1)) , gΦ (Q(A2))) = 0.

Proof. Let δΦ (A1, A2) = 0. Then Q(A1) ∩ Q(A2) 6= ∅, i.e., Φ (a1) = Φ (a2),
a1 ∈ A1, a2 ∈ A2. Since gΦ is a descriptive isometry Φ (gΦ (Φ(a1)) = Φ (gΦ (Φ(a2))).
Hence,

Q(gΦ (Q(A1))) ∩ Q(gΦ (Q(A2))) 6= ∅,

i.e., δΦ (gΦ (Q(A1)) , gΦ (Q(A2))) = 0.

4 Descriptive Homomorphism

A binary operation on a set S is a mapping of S × S into S, where S × S

is the set of all ordered pairs of elements of S. A groupoid (denoted S(◦))
is a non-empty set S equipped with a binary operation ◦ on S. Let A (◦)
and B (•) be groupoids. A mapping h from A into B is a homomorphism,
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if h (x ◦ y) = h (x) • y (y) for all x, y ∈ A [1, §1.3, p. 9]. A one-to-one
homomorphism h from A into B is called an isomorphism on A to B.

Let (X,RδΦ), (Y,RδΦ) be proximal relator spaces and consider the groupoids
Q(A) (◦1) , Q(B) (◦2), where A ⊂ X,B ⊂ Y .

A mapping
hΦ : Q(B) −→ Q(A)

is called a descriptive homomorphism, provided hΦ (ΦB (b1) ◦2 ΦB (b2)) = hΦ (ΦB (b1))◦1
hΦ (ΦB (b2)) for all ΦB (b1) ,ΦB (b2) ∈ Q(B).

A one-to-one descriptive homomorphism hΦ is called a descriptive mono-
morphism, a descriptive homomorphism hΦ of Q(B) onto Q(A) is called a de-
scriptive epimorphism and one-to-one descriptive homomorphism hΦ of Q(B)
onto Q(A) is called a descriptive isomorphism.

Example 2. Let M1 =M2 = R
2 be manifolds, (M1,RδΦ), (M2,RδΦ) be prox-

imal relator spaces, A ⊂ M1, B ⊂ M2 be sets of all 2-dimensional shapes and
Φ = {ϕ : ϕ is a area of shapes}. Let us consider the rotation

h : B −→ A, (x, y) 7−→ (x cos θ + y sin θ,−x sin θ + y cos θ) .

Observe that if area of b1 matches area of b2, then area of h (b1) matches
area of h (b2). That is, rotation h is provided Φ (h (b1)) = Φ (h (b2)) when
Φ (b1) = Φ (b2), b1, b2 ∈ B. Hence h is a descriptive isometry. �

Example 3. Again, let M1 = M2 = R
2 be manifolds, (M1,RδΦ), (M2,RδΦ)

be proximal relator spaces, A ⊂ M1, B ⊂ M2 be sets of all 2-dimensional
shapes and Φ = {ϕ : ϕ is a area of shapes}. Let Q (A) (◦1) and Q (B) (◦2) be
groupoids, where

◦1 :Q (A)×Q (A) −→ Q (A) :

(Φ (a1) ,Φ (a2)) 7−→ min {Φ (a1) ,Φ (a2)} ,

◦2 :Q (B)×Q (B) −→ Q (B) :

(Φ (b1) ,Φ (b2)) 7−→ min {Φ (b1) ,Φ (b2)} .

Let hΦ : Q (B) −→ Q (A) be a map such that hΦ (ΦB (b)) = ΦA (h (b)), for all
b ∈ B and ΦB (b) ∈ Q (B).

Observe that hΦ(ΦB(b1) ◦2 ΦB(b2)) = hΦ(ΦB(b1)) ◦1 hΦ(ΦB(b2)), for all
b1, b2 ∈ B. Hence, hΦ is a descriptive homomorphism. �

5 Descriptive Epimorphism

Theorem 8. A descriptive isomorphism is a descriptive epimorphism.
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Proof. Immediate from the definition of the definition of a descriptive epimor-
phism.

Theorem 9. The descriptive homomorphism in Example 3 is a descriptive
epimorphism.

Theorem 10. Let X, Y be proximal relator spaces and let A ⊂ X,B ⊂ Y

be proximal groupoids A(◦), B(•). If h : Q(A) −→ Q(B) is a descriptive
homomorphism such that every Φ(b) ∈ Q(B) has a corresponding Φ(x)◦Φ(y) ∈
Q(A) such that

h(Φ(x) ◦ Φ(y)) = h(Φ(x)) • h(Φ(y)) = Φ(b) ∈ Q(B),

then h is a descriptive epimorphism.

Proof. Immediate from the definition of a descriptive epimorphism from an
algebraic structure onto another algebraic structure.

6 Object Description

Let A(•),Q(A)(◦) be ordinary groupoid and descriptive groupoid, respectively.
Let a ∈ A. An object description ΦA is defined by a mapping

A −→ Q(A) : a 7−→ Φ(a).

The object description ΦA of A into Q(A) is an object description homomor-
phism, provided

ΦA (x • y) = ΦA (x) ◦ ΦA (y) for all x, y ∈ A.

h

hΦ

ΦB ΦA

Q(A)Q(B)

AΦBΦ

Figure 2: Object Description Homomorphism Diagram

Let h : B −→ A be a homomorphism and let hΦ : Q(B) −→ Q(A) be a
descriptive homomorphism such that

hΦ (ΦB (b)) = ΦA (h(b)) .
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See the arrow diagram in Fig. 2 for the object description homomorphism and
descriptive homomorphism mappings gathered together. For all b ∈ B,

(hΦ ◦ ΦB) (b) = hΦ (ΦB (b)) = ΦA (h (b)) = (ΦA ◦ h) (b) .

This leads to the following result.

Lemma 2. hΦ ◦ ΦB = ΦA ◦ h.

Theorem 11. Let (X,RδΦ), (Y,RδΦ) be proximal relator spaces, B (·2), A (·1),
Q(B) (◦2) and Q(A) (◦1) be groupoids and h be a homomorphism from B (·2)
to A (·1). If there are a descriptive monomorphism hΦ of Q(B) to Q(A) and
an object description homomorphism ΦA of A to Q(A), then there is an object
description homomorphism ΦB of B to Q(B).

Proof. For all b1, b2 ∈ B and Φ (b1) ,Φ (b2) ∈ Q(B),
hΦ (ΦB (b1 ·2 b2)) = ΦA (h (b1 ·2 b2)) = ΦA (h (b1) ·1 h (b2))

= ΦA (h (b1)) ◦1 ΦA (h (b2))
= hΦ (ΦB (b1)) ◦1 hΦ (ΦB (b2))
= hΦ (ΦB (b1) ◦2 ΦB (b2))

Consequently ΦB (b1 ·2 b2) = ΦB (b1) ◦2 ΦB (b2). Hence ΦB is an object
description homomorphism from B into Q(B).

Theorem 12. Let (X,RδΦ), (Y,RδΦ) be proximal relator spaces, A ⊂ X,
B ⊂ Y and let hΦ be a descriptive homomorphism. Then h is a descriptive
isometry from Q(B) to Q(A).

Proof. Let ΦB (b1) = ΦB (b2), b1, b2 ∈ B. Then ΦA (h (Φ(b1))) = hΦ (ΦB (b1)) =
hΦ (ΦB (Φ(b2))) = ΦA (h (Φ(b2))). Hence h is a descriptive isometry.
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