

Gen. Math. Notes, Vol. 27, No. 2, April 2015, pp.107-116 ISSN 2219-7184; Copyright ©ICSRS Publication, 2015 www.i-csrs.org Available free online at http://www.geman.in

On Ig-Continuous Functions

Ümit Karabıyık¹ and Aynur Keskin Kaymakcı²

¹Department of Mathematics, Computer Sciences, Faculty of Science Necmettin Erbakan University, Meram Campus, 42090 Meram, Konya, Turkey E-mail: ukarabiyik@konya.edu.tr ²Department of Mathematics, Faculty of Science Selcuk University, 42031 Selcuklu, Konya, Turkey E-mail: akeskin@selcuk.edu.tr

(Received: 3-3-15 / Accepted: 7-4-15)

Abstract

In this paper, we introduced some notions related g-closed set and we investigated some of properties of I_g -continuous and r_Ig -continuous functions which is derived in terms of I_g -closed set, r_Ig -closed set in ideal topological spaces. Also, we examined relationship with other types of functions.

Keywords: I_g -Closed set, r_Ig -Closed set, I_g -Continuous, r_Ig -Continuous, Ideal topological spaces.

1 Introduction

One of basic topics the continuity of functions in general topology which was researched by many authors. In 1990, Jankovic and Hamlett [4], were initiated the application ideal topological spaces. Khan and Noiri [4] were introduced semi-local functions in ideal topological spaces. Firstly, the notion of I_g -closed set was given by Dontchev et. al [2]. In 2007, Navaneethakrishnan and Joseph [13] was investigated some of properties of I_g -closed sets and I_g -open sets by using local function. Although Karabiyik [5], by defining r_Ig -closed set a weaker I_g -closed set was examined some properties, of these sets give some characterization.

In this paper, we define and characterize I_g -continuous and r_Ig -continuous functions in ideal topological spaces by the use of the I_g -closed set and r_Ig -closed set. We have investigate some of their properties. With the help of

other existing sets obtain decompositions of continuity.

2 Preliminaries

In this section, we give some known basic concepts in ideal topological spaces. An ideal I on a nonempty set X is a collection of subsets of X which satisfies the following properties $(i) \ A \in I$ and $B \subseteq A$ implies $B \in I$ and $(ii) \ A \in I$ and $B \in I$ implies $A \cup B \in I$.

A topological space (X, τ) with an ideal I on X is called an ideal topological space and is denoted by (X, τ, I) . If Y is a subset of X then $I_Y = \{V \cap Y : V \in I\}$ is an ideal on Y and $(Y, \tau_{/Y}, I_{/Y})$ denote the ideal topological sub space. Let P(X) is the set of all subset of X, a set operator $()^* : P(X) \longrightarrow P(X)$, called a local function of A with respect to τ and I is defined as follows: for $A \subset X$, $A^*(I, \tau) = \{x \in X : U \cap A \notin I \text{ for every } U \in \tau(X, x)\}$ [7]. We simply write A^* instead of $A^*(I, \tau)$ in case there is no concision. For every ideal topological space (X, τ, I) there exists a topology τ^* finer than τ defined as $\tau^* = \{U \subseteq X : cl^*(X - A) = X - A\}$ generated by the base $\beta(I, \tau) = \{U \subseteq J : U \in \tau \text{ and } J \in I\}$. A kuratowski closure operator $cl^*(.)$ for a topology $\tau^*(I, \tau)$ called the *-topology, finer than τ is defined by $cl^*(A) = A \cup A^*$ [16].

For a subset A of X, $cl^*(A)$ and $int^*(A)$ represent the closure of A and the interior of A in (X, τ^*) . A subset A of an ideal topological space (X, τ, I) is said to be τ^* -closed [4](resp.*-dense-in-itself, *-perfect [3]) if $A^* \subset A$ (resp. $A \subset A^*$, $A = A^*$). From [17], it follows that every *-perfect set is τ^* -closed and every *-perfect set is *-dense-in-itself set. A subset A of space (X, τ) said to be regular open [8](resp.regular closed) if A = int(cl(A))(resp.A = cl(int(A)))and A is said to be generalized closed [9] if $cl(A) \subset U$ whenever $A \subset U$ and is open. A subset A of a space (X, τ) is said to be rg-closed [14] if $cl(A) \subset U$ whenever $A \subset U$ and U regular open and rg-open(resp.g-open) if (X-A) is rgclosed(resp.g-closed). A subset A of space (X, τ, I) said to be regular-I-open [17] if $A = (int(A))^*$ and every regular-I- closed set is *-perfect.

3 I_q -Closed Set, $r_I g$ -Closed Set

Definition 3.1 (i) A subset A of an (X, τ, I) be a ideal topological space is said to be I_g -closed [2] $A^* \subset U$ whenever $A \subseteq U$ and is open in X. The complement of I_g -closed set is said to be I_g -open.

(ii) A subset A of an (X, τ, I) be a ideal topological space is said to be I_{rg} -closed [12] $A^* \subset U$ whenever $A \subseteq U$ and is regular open in X.

Definition 3.2 A subset A of an (X, τ, I) be a ideal topological space is said to be regular I-generalized set (briefly r_Ig -closed) [5] if $cl^*(A) \subset U$ whenever $A \subseteq U$ and is regular open in X. A is r_Ig -open if (X - A) is an r_Ig -closed set.

Lemma 3.3 [11] Let (X, τ, I) be a ideal topological space and $A \subset X$. If $A \subset A^*$, then $A^* = cl(A^*) = cl(A) = cl^*(A)$.

Proposition 3.4 (i) Every g-closed set is I_g -closed [2] set. (ii) Every I_g -closed set is r_Ig -closed set. (iii)Every rg-closed set is r_Ig -closed set. (iv)Every g-closed set is rg-closed [14] set.

Proof: The proof follows from the Definitions 3.1, 3.2.

Remark 3.5 By Proposition 3.4, converse is not true in general as the following example show.

Example 3.6 (i) $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b, d\}, \{a, b, d\}\}$ and $I = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. Then $A = \{a, b\} \subset X$ is I_g -closed but is not g-closed set. (ii) $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b, d\}, \{a, b, d\}\}$ and $I = \{\emptyset, \{c\}\}$. Then $A = \{a\} \subset X$ is r_Ig -closed but is not I_g -closed, since $A^* = \{a\}^* = \{a, c\}$ where A^* is contained in the regular open set U but $A^* \subset A$. (iii) Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{c\}, \{a, c\}, \{b, c\}, \{a, b, c\}, \{a, c, d\}\}$ and $I = \{\emptyset, \{c\}, \{d\}, \{c, d\}\}$. Then $A = \{c, d\}$ is r_Ig -closed set but is not rg-closed set. Since $A = \{c, d\} \subset \{a, c, d\}$ regular open set in X. $A^* = \{c, d\}^* = \emptyset \subset \{a, c, d\}, A$ is not an rg-closed set. (iv) [14], Example 3.9.

Every r_Ig -closed set in an I_{rg} -closed but not vice versa. The following Theorem shows that for *-dense-in-itself sets, the concepts r_Ig -closeness and I_{rg} -closeness are equivalent.

Theorem 3.7 Let (X, τ, I) be a ideal topological space. If A is a *-densein-itself and I_{ra} -closed subset of X, then A is r_{Ig} -closed.

Proof: According to Lemma 3.3, the proof of Theorem obvious.

Corollary 3.8 Let (X, τ, I) be a ideal topological space and $I = \{\emptyset\}$. Then, A is I_{rg} -closed if and only if A is r_{Ig} -closed.

Proof: A is I_{rg} -closed then $A^* \subset U$, $A \subset U$ and U regular open. If $I = \{\emptyset\}$ then $A^* = cl(A) = cl^*(A)$ for every subset A of X and so I_{rg} -closed sets coincide with r_Ig -closed sets.

Definition 3.9 Let (X, τ, I) be a ideal topological space and $A \subset X$. A is open and *-perfect then A is O^{*}-set.

It is well known that in both open and closed set is define *clopen* set. Clearly every O^* -set is *clopen* set.

Proposition 3.10 For a subset A of an ideal topological space (X, τ, I) the following properties hold: (i) Every O^{*}-set is regular-I-closed, (ii) Every = 1 along discussion of the space of th

(ii) Every τ^* -closed is I_g -closed.

Proof: (i) Let A be a O^* -set then we have $A \in \tau$ and A is *-perfect set. Since A is open set we have $A^* = (int(A))^*$. On the other hand A is *-perfect that $A = A^* = (int(A))^*$. Therefore we obtain $A = (int(A))^*$. This shows that A is regular-I-closed.

(*ii*) Let A be a τ^* -closed set and $A \subset U$. Then we have $A^* \subset A \subset U$. Thus $A^* \subset U$ and this shows that A is I_g -closed.

Remark 3.11 The converses of Proposition 3.10 need not be true as shown the following example.

Example 3.12 (i) Let $X = \{a, b, c, d\}$, $\tau = \{X, \emptyset, \{a\}, \{b, d\}, \{a, b, d\}\}$ and $I = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}$. Then $A = \{a, c\}$ is regular-*I*-closed set which is not O^* -set. For $A = \{a, c\} \subset X$ since $int(A) = \{a\}$, $(int(A))^* = \{a, c\} = A$, A is regular-*I*-closed set. On the other hand, since $A^* = \{a, c\} = A$, A is not O^* -set.

(ii) Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{b\}, \{a, c\}, \{a, b, c\}\}$ and $I = \{\emptyset, \{b\}\}$. Then $A = \{c, d\}$ is I_g -closed set which is not τ^* -closed set. Let $A = \{c, d\}$ open set. Since $A^* = \{a, c\} \subset U$, A is I_g -closed set. On the other hand, since $A^* = \{a, c\} \nsubseteq \{c, d\} = A$ we have A is not τ^* -closed set.

4 On Decompositions of I_g -Continuity and r_Ig -Continuity

In this section, with the help of the concepts introduced in Section 3, it is possible to define several forms of g-continuity.

Definition 4.1 A function $f: (X, \tau) \to (Y, \varphi)$ is called g-continuous [1](resp.rgcontinuous [14]) if for every closed set V in Y, $f^{-1}(V)$ is g-closed(resp.rgclosed) in (X, τ) . On I_q -Continuous Functions

Theorem 4.2 [15] For a function $f : (X, \tau) \to (Y, \varphi)$ the following properties are equivalent:

- (a) f is rg-continuous,
- (b) For every open set V of Y, $f^{-1}(V)$ is rg-open in X,
- (c) For every closed set V of Y, $f^{-1}(V)$ is rg-closed in X.

Proof: (a) \Rightarrow (b) Let $V \subset Y$ open set, such that (Y - V) is closed set. Therefore $f^{-1}(Y - V) = X - f^{-1}(V)$ is rg-closed set. Since, $X - f^{-1}(V)$ is rg-closed, $f^{-1}(V)$ is rg-open. (b) \Rightarrow (c) and (c) \Rightarrow (c) are proved in a cimilar way

 $(b) \Rightarrow (c)$ and $(c) \Rightarrow (a)$ are proved in a similar way.

Definition 4.3 A function $f : (X, \tau, I) \to (Y, \varphi)$ is called I_g -continuous(resp.r_Igcontinuous) if for every closed set F in Y, $f^{-1}(F)$ is I_g -closed(resp.r_Ig-closed) in (X, τ, I) .

Theorem 4.4 For a function $f : (X, \tau, I) \to (Y, \varphi)$, the following properties are equivalent:

(a) f is $r_I g$ -continuous,

(b) For every open set F of Y, $f^{-1}(F)$ is $r_I g$ -open in X,

(c) For every closed set F of Y, $f^{-1}(F)$ is r_Ig -closed in X.

Proof: (a) \Rightarrow (b) Let $F \subset Y$ open set, such that (Y - F) is closed set. Since, f is $r_I g$ -continuous we have $f^{-1}(Y - F) = X - f^{-1}(F)$ is $r_I g$ -closed set. Hence, $f^{-1}(F)$ is $r_I g$ -open in X.

 $(b) \Rightarrow (c)$ and $(c) \Rightarrow (a)$ are proved in a similar way.

Remark 4.5 By Definition 4.1, 4.3, we have the following diagram in which none of the implications is reversible as shown by four examples stated as below.

Example 4.6 Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$ and $Y = \{p, q\}, \varphi = \{Y, \emptyset, \{p\}\}$. $f : (X, \tau) \to (Y, \varphi)$ be a function defined as: f(b) = f(d) = p, f(a) = f(c) = q. Then, f is rg-continuous but not g-continuous. Since $V = \{q\}$ is closed in $Y, f^{-1}(V) = \{a, c\}$ and V is a rg-closed set of (X, τ) . Thus f is rg-continuous. On the other hand, since $cl(V) = \{a, c, d\} \not\subseteq \{a, b, c\}, V$ is not g-closed. Hence f is not g-continuous. **Example 4.7** Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{b\}, \{a, b\}\}$ and $I = \{\emptyset, \{c\}\}, Y = \{p, q\}, \varphi = \{Y, \emptyset, \{q\}\}$ and $f : (X, \tau, I) \to (Y, \varphi)$ be a function defined as: f(a) = p, f(b) = f(c) = q. Then, f is $r_I g$ -continuous but not I_g -continuous.

Example 4.8 Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b, d\}, \{a, b, d\}\}$ and $I = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}, Y = \{p, q\} \varphi = \{Y, \emptyset, \{q\}\}.$ $f : (X, \tau, I) \to (Y, \varphi)$ be a function defined as: f(a) = f(b) = p, f(c) = f(d) = q. Then, f is I_g -continuous but not g-continuous. $V = \{p\}$ is closed in Y. Since $f^{-1}(V) = \{a, b\}$ and $U = \{a, b, d\} \in \tau$ we have $\{a, b\}^* = \{b, d\} \subset U$. Thus, f is I_g -continuous. On the other hand, since $cl(\{a, b\}) = X \nsubseteq U$, f is not g-continuous.

Example 4.9 Example 4.8 in a given spaces, $f : (X, \tau, I) \to (Y, \varphi)$ be a function defined as: f(a) = f(b) = p, f(c) = f(d) = q. Then f is r_{Ig} -continuous but not rg-continuous. $V = \{q\}$ is closed in Y. Since $f^{-1}(V) = \{c,d\} \notin U = \{a,b,d\}$, f is not rg-continuous. On the other hand, since $cl^*(\{c,d\}) = cl(\emptyset) = \emptyset \subset \{a,c\}$, f is r_{Ig} -continuous.

Definition 4.10 A function $f : (X, \tau, I) \to (Y, \varphi)$ is said to be Ic-continuous if for every closed set F in Y, $f^{-1}(F) \in \tau^*(X, \tau, I)$.

Remark 4.11 Every Ic-continuous is I_g -continuous. The converse of this remark need not be true as the following example shows.

Example 4.12 Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{b\}, \{a, c\}\}$ and $I = \{\emptyset, \{b\}\}, Y = \{p, q\} \varphi = \{Y, \emptyset, \{p\}\}.$ $f : (X, \tau, I) \rightarrow (Y, \varphi)$ be a function defined as follows: f(c) = f(b) = q, f(a) = p. $V = \{q\}$ is closed in Y. Since $f^{-1}(V) = \{b, c\}$ and $U = \{a, b, c\} \in \tau$, we have $\{b, c\}^* = \{a, c\} \subset U$. Thus f is I_g -continuous. On the other hand, since $(\{b, c\})^* = \{a, c\} \nsubseteq \{b, c\}, f$ is not Ic-continuous.

Definition 4.13 A function $f: (X, \tau) \to (Y, \varphi)$ is said to be strongly continuous [10](resp.strongly rg-continuous [15]) if for every $V \in \varphi$, $f^{-1}(V)$ is a clopen set(reps.V is rg-open in Y, $f^{-1}(V) \in \tau$).

Definition 4.14 A function $f : (X, \tau, I) \to (Y, \varphi, J)$ is said to be strongly *I*-continuous(resp.strongly r_Ig -continuous) if for every $V \in \varphi$, $f^{-1}(V) \in O^*(X, \tau, I)$ (reps.every V is r_Ig -open set in Y, $f^{-1}(V) \in (X, \tau, I)$).

Proposition 4.15 For a function $f : (X, \tau, I) \to (Y, \varphi, J)$ the following properties holds:

a) If f is strongly continuous then f is strongly-I-continuous,

b) If f is strongly-I-continuous then f is strongly- r_Ig -continuous.

Proof: The proof is obvious.

Remark 4.16 The converse of the Proposition 4.15 is not true.

Example 4.17 (i) Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{b, c\}\}$ and $I = \{\emptyset, \{c\}\}, Y = \{p, q\} \varphi = \{Y, \emptyset, \{p\}\}$ and $J = \{\emptyset, \{p\}\}$. Define a function $f : (X, \tau, I) \to (Y, \varphi, J)$ as follows: f(c) = f(b) = p, f(a) = q. Then f is strongly-*I*-continuous but it is not strongly continuous. (ii) Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{d\}, \{a, c\}, \{a, c, d\}, \{a, b, c\}\}$ and $I = \{\emptyset, \{a\}, \{c\}\}, Y = \{p, q\} \varphi = \{Y, \emptyset, \{p\}\}$ and $J = \{\emptyset, \{p\}\}$. Define a function $f : (X, \tau, I) \to (Y, \varphi, J)$ as follows: f(b) = f(c) = f(a) = p, f(d) = q. Then f is strongly-*I*-continuous but it is not strongly-*I*-continuous.

Theorem 4.18 Let $f : (X, \tau, I) \to (Y, \varphi, J)$ strongly- r_Ig -continuous and $g : (Y, \varphi, J) \to (Z, \sigma)$ r_Ig -continuous so is $gof : (X, \tau, I) \to (Z, \sigma)$ is continuous function.

Proof: Let V be a closed set in Z. Since g is $r_I g$ -continuous, $g^{-1}(V)$ is $r_J g$ continuous in Y. Because of f is $r_I g$ -continuous, we can write $f^{-1}(g^{-1}(V)) = (gof)^{-1}(V) \in \tau$. Therefore gof is continuous.

Remark 4.19 Composition of two r_Ig -continuous functions need not to be r_Ig -continuous.

Example 4.20 Let $X = Y = Z = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b, c\}, \{a, b, c\}\},$ $I = \{\emptyset, \{b\}\}, \varphi = \{Y, \emptyset, \{a\}, \{b, d\}, \{a, b, d\}\}, J = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}, \sigma = \{Z, \emptyset, \{d\}, \{a, c\}, \{a, c, d\}, \{a, b, c\}\}.$ f is defined as f(a) = b, f(b) = c, f(c) = d, f(d) = a and g is the identity map. The functions f and g are r_Ig -continuous functions but their composition is not r_Ig -continuous. For the closed set $\{d\}$ in Z, $(gof)^{-1}(\{d\}) = f^{-1}(\{d\}) = \{c\}$ is not r_Ig -closed in X.

Definition 4.21 A function $f : (X, \tau, I) \to (Y, \varphi)$ is called R_IC -continuous [6] if for every closed set F in Y, $f^{-1}(F)$ is regular-I-closed in (X, τ, I) .

Definition 4.22 A function $f : (X, \tau, I) \to (Y, \varphi)$ is called perfectly r_Ig continuous if $f^{-1}(F)$ is clopen in (X, τ, I) for every r_Ig -open set F in Y.

Theorem 4.23 For a function $f : (X, \tau, I) \to (Y, \varphi, J)$, the following properties are equivalent:

- (a) f is perfectly $r_I g$ -continuous,
- (b) For every $r_I g$ -open set V of Y, $f^{-1}(V)$ is clopen in X,
- (c) For every r_Ig -closed set V of Y, $f^{-1}(V)$ is clopen in X.

Proof: $(a) \Rightarrow (b)$ This proof is obvious by Definition 4.22. $(b) \Rightarrow (c)$ Let $V \subset Y$ $r_I g$ -open set, such that (Y - V) is $r_I g$ -closed set. Since, f is $r_I g$ -continuous $f^{-1}(Y - F)$ is clopen set in X. Because of $f^{-1}(Y - F) = X - f^{-1}(F)$, $f^{-1}(F)$ is clopen set in X. $(c) \Rightarrow (a)$ is proved in a similar way $(b) \Rightarrow (c)$.

Remark 4.24 By Definitions 4.14, 4.21, 4.22 we have the following diagram in which none of the implications is reversible as shown by four examples stated below.

$$stronglycont. \longrightarrow strongly - I - cont. \longrightarrow strongly - r_Ig - cont.$$

$$perfectly - r_Ig - cont. \longrightarrow R_IC - cont. \longrightarrow Ic - cont.$$

Example 4.25 Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{d\}, \{a, c\}\{a, c, d\}, \{a, b, c\}\}$ and $I = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}, Y = \{p, q\} \varphi = \{Y, \emptyset, \{p, q\}\}$ and $J = \{\emptyset, \{p\}\}.$ Define a function $f : (X, \tau, I) \to (Y, \varphi, J)$ as follows: f(a) = f(c) = f(d) = p, f(b) = q. Then, f is strongly- $r_{I}g$ -continuous but not perfectly $r_{I}g$ -continuous.

Example 4.26 (i) Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b, d\}, \{a, b, d\}\}$ and $I = \{\emptyset, \{a\}, \{c\}, \{a, c\}\}, Y = \{p, q\} \varphi = \{Y, \emptyset, \{p\}\}$ and $J = \{\emptyset, \{p\}\}$. Let we define a function $f : (X, \tau, I) \to (Y, \varphi, J), f(a) = f(c) = q, f(b) = f(d) = p.$ Then, f is R_IC -continuous but not perfectly r_Ig -continuous. (ii) Let $X = \{a, b, c\}, \tau = \{X, \emptyset, \{a\}, \{a, b\}\}$ and $I = \{\emptyset, \{a\}, \{b\}, \{a, b\}\},$ $Y = \{p\} \varphi = \{Y, \emptyset, \{p\}\}$ and $J = \{\emptyset, \{p\}\}$. Define a function $f : (X, \tau, I) \to$ (Y, φ, J) as follows: f(a) = f(b) = p, f(c) = q. Then f is Ic-continuous but it is not strongly R_IC -continuous. (iii) Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{b, d\}, \{a, b, d\}\}$ and $I = \{\emptyset, \{a\}, \{c\}, \{a, c\}\},$ $Y = \{p, q\} \varphi = \{Y, \emptyset, \{p\}\}$. Define a function $f : (X, \tau, I) \to (Y, \varphi)$ as follows: f(a) = f(c) = p, f(b) = q. Then f is R_IC -continuous but it is not strongly strongly-I-continuous.

References

 K. Balachandran, P. Sundram and H. Maki, On generalized continuous maps in topological spaces, *Mem. Fac. Sci. Kochi Univ.*, 12(1991), 5-13.

- [2] J. Dontchev, M. Ganster and T. Noiri, Unfied operation approach of generalized closed sets via topological ideals, *Math Japonica*, 49(3) (1999), 395-401.
- [3] E. Hayashi, Topologies defined by local proporties, *Ath. Ann.*, 156(1964), 205-215.
- [4] D. Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer Math.Hungar, 97(4) (1990), 295-310.
- [5] U. Karabiyik, Some generalized closed sets and continuous functions in ideal topological spaces, *M.Sc. Thesis*, Selcuk Univ., Turkey, (2008).
- [6] A. Keskin, T. Noiri and S. Yuksel, RIC-sets and decomposition of continuity, Acta Math. Hungar., 104(4) (2004), 307-313.
- [7] M. Khan and T. Noiri, Semi-local function in ideal topological spaces, J. Adv. Res. Pure Math., 2(1) (2010), 36-42.
- [8] K. Kuratowski, *Topologie I*, Warszawa, (1933).
- [9] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2) (1970), 89-96.
- [10] N. Levine, Strong continuity in topological space, Amer. Math. Monthly, 67(1960), 269.
- [11] A.S. Moshhour, M.E. El-Monsef and S.N. El-Deep, On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt*, 53(1982), 47-53.
- [12] M. Navaneethakrishnan and D. Sivaroj, Regular generalized closed sets in ideal topological spaces, *Journal of adv. Res. n Pure Math.*, 2(3) (2010), 24-33.
- [13] M. Navaneethakrishnan and J. Joseph, g-Closed sets in ideal topological spaces, Acta Math. Hungar., 119(4) (2008), 365-371.
- [14] N. Palaniappan and K.C. Rao, Regular generalized closed sets, Kyungpook Math. J., 33(1993), 211-219.
- [15] A. Rani and K. Balachandran, On regular generalized continuous maps in topological spaces, *Kyunpook Math. J.*, 37(1997), 305-314.
- [16] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, (1946).

[17] S. Yuksel, A. Keskin and T. Noiri, Idealization of decomposition theorem, Acta Math. Hungar., 102(4) (2004), 269-277.