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Abstract
In this paper, we introduced some notions related g-closed set and we inves-

tigated some of properties of Ig-continuous and rIg-continuous functions which
is derived in terms of Ig-closed set, rIg-closed set in ideal topological spaces.
Also, we examined relationship with other types of functions.
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1 Introduction

One of basic topics the continuity of functions in general topology which was
researched by many authors. In 1990, Jankovic and Hamlett [4], were initiated
the application ideal topological spaces. Khan and Noiri [4] were introduced
semi-local functions in ideal topological spaces. Firstly, the notion of Ig-closed
set was given by Dontchev et. al [2]. In 2007, Navaneethakrishnan and Joseph
[13] was investigated some of properties of Ig-closed sets and Ig-open sets by
using local function. Although Karabiyik [5], by defining rIg-closed set a
weaker Ig-closed set was examined some properties, of these sets give some
characterization.
In this paper, we define and characterize Ig-continuous and rIg-continuous
functions in ideal topological spaces by the use of the Ig-closed set and rIg-
closed set. We have investigate some of their properties. With the help of
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other existing sets obtain decompositions of continuity.

2 Preliminaries

In this section, we give some known basic concepts in ideal topological spaces.
An ideal I on a nonempty set X is a collection of subsets of X which satisfies
the following properties (i) A ∈ I and B ⊆ A implies B ∈ I and (ii) A ∈ I
and B ∈ I implies A ∪B ∈ I.
A topological space (X, τ) with an ideal I on X is called an ideal topological
space and is denoted by (X, τ, I). If Y is a subset of X then IY = {V ∩Y : V ∈
I} is an ideal on Y and (Y, τ/Y , I/Y ) denote the ideal topological sub space.
Let P (X) is the set of all subset of X, a set operator ()∗ : P (X) −→ P (X),
called a local function of A with respect to τ and I is defined as follows: for
A ⊂ X , A∗(I, τ) = {x ∈ X : U ∩ A 6∈ I for every U ∈ τ(X, x)}[7]. We
simply write A∗ instead of A∗(I, τ) in case there is no concision. For ev-
ery ideal topological space (X, τ, I) there exists a topology τ ∗ finer than τ
defined as τ ∗ = {U ⊆ X : cl∗(X − A) = X − A} generated by the base
β(I, τ) = {U ⊆ J : U ∈ τ and J ∈ I}. A kuratowski closure operator
cl∗(.) for a topology τ ∗(I, τ) called the ∗-topology, finer than τ is defined by
cl∗(A) = A ∪ A∗ [16].

For a subset A of X, cl∗(A) and int∗(A) represent the closure of A and the
interior of A in (X, τ ∗). A subset A of an ideal topological space (X, τ, I) is said
to be τ ∗-closed [4](resp.∗-dense-in-itself, ∗-perfect [3]) if A∗ ⊂ A (resp.A ⊂ A∗,
A = A∗). From [17], it follows that every ∗-perfect set is τ ∗-closed and every
∗-perfect set is ∗-dense-in-itself set. A subset A of space (X, τ) said to be
regular open [8](resp.regular closed) if A = int(cl(A))(resp.A = cl(int(A)))
and A is said to be generalized closed [9] if cl(A) ⊂ U whenever A ⊂ U and
is open. A subset A of a space (X, τ) is said to be rg-closed [14] if cl(A) ⊂ U
whenever A ⊂ U and U regular open and rg-open(resp.g-open) if (X−A) is rg-
closed(resp.g-closed). A subset A of space (X, τ, I) said to be regular-I-open
[17] if A = (int(A))∗ and every regular-I- closed set is ∗-perfect.

3 Ig-Closed Set, rIg-Closed Set

Definition 3.1 (i) A subset A of an (X, τ, I) be a ideal topological space
is said to be Ig-closed [2] A∗ ⊂ U whenever A ⊆ U and is open in X. The
complement of Ig-closed set is said to be Ig-open.
(ii) A subset A of an (X, τ, I) be a ideal topological space is said to be Irg-closed
[12] A∗ ⊂ U whenever A ⊆ U and is regular open in X.
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Definition 3.2 A subset A of an (X, τ, I) be a ideal topological space is said
to be regularI-generalized set (briefly rIg-closed) [5] if cl∗(A) ⊂ U whenever
A ⊆ U and is regular open in X. A is rIg-open if (X − A) is an rIg-closed
set.

Lemma 3.3 [11] Let (X, τ, I) be a ideal topological space and A ⊂ X. If
A ⊂ A∗, then A∗ = cl(A∗) = cl(A) = cl∗(A).

Proposition 3.4 (i) Every g-closed set is Ig-closed [2] set.
(ii) Every Ig-closed set is rIg-closed set.
(iii)Every rg-closed set is rIg-closed set.
(iv)Every g-closed set is rg-closed [14] set.

Proof: The proof follows from the Definitions 3.1, 3.2.

Remark 3.5 By Proposition 3.4, converse is not true in general as the
following example show.

Example 3.6 (i) X = {a, b, c, d}, τ = {X, ∅, {a}, {b, d}, {a, b, d}} and I =
{∅, {a}, {c}, {a, c}}. Then A = {a, b} ⊂ X is Ig-closed but is not g-closed set.
(ii) X = {a, b, c, d}, τ = {X, ∅, {a}, {b, d}, {a, b, d}} and I = {∅, {c}}. Then
A = {a} ⊂ X is rIg-closed but is not Ig-closed, since A∗ = {a}∗ = {a, c}
where A∗ is contained in the regular open set U but A∗ ⊂ A.
(iii) Let X = {a, b, c, d}, τ = {X, ∅, {c}, {a, c}, {b, c}, {a, b, c}, {a, c, d}} and
I = {∅, {c}, {d}, {c, d}}. Then A = {c, d} is rIg-closed set but is not rg-closed
set. Since A = {c, d} ⊂ {a, c, d} regular open set in X. A∗ = {c, d}∗ = ∅ ⊂
{a, c, d}, A is not an rg-closed set.
(iv) [14], Example 3.9.

Every rIg-closed set in an Irg-closed but not vice versa. The following
Theorem shows that for ∗-dense-in-itself sets, the concepts rIg-closeness and
Irg-closeness are equivalent.

Theorem 3.7 Let (X, τ, I) be a ideal topological space. If A is a ∗-dense-
in-itself and Irg-closed subset of X, then A is rIg-closed.

Proof: According to Lemma 3.3, the proof of Theorem obvious.

Corollary 3.8 Let (X, τ, I) be a ideal topological space and I = {∅}. Then,
A is Irg-closed if and only if A is rIg-closed.

Proof: A is Irg-closed then A∗ ⊂ U , A ⊂ U and U regular open. If
I = {∅} then A∗ = cl(A) = cl∗(A) for every subset A of X and so Irg-closed
sets coincide with rIg-closed sets.
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Definition 3.9 Let (X, τ, I) be a ideal topological space and A ⊂ X. A is
open and ∗-perfect then A is O∗-set.

It is well known that in both open and closed set is define clopen set.
Clearly every O∗-set is clopen set.

Proposition 3.10 For a subset A of an ideal topological space (X, τ, I) the
following properties hold:
(i) Every O∗-set is regular-I-closed,
(ii) Every τ ∗-closed is Ig-closed.

Proof: (i) Let A be a O∗-set then we have A ∈ τ and A is ∗-perfect set.
Since A is open set we have A∗ = (int(A))∗. On the other hand A is ∗-perfect
that A = A∗ = (int(A))∗. Therefore we obtain A = (int(A))∗. This shows
that A is regular-I-closed.
(ii) Let A be a τ ∗-closed set and A ⊂ U . Then we have A∗ ⊂ A ⊂ U . Thus
A∗ ⊂ U and this shows that A is Ig-closed.

Remark 3.11 The converses of Proposition 3.10 need not be true as shown
the following example.

Example 3.12 (i) Let X = {a, b, c, d}, τ = {X, ∅, {a}, {b, d}, {a, b, d}} and
I = {∅, {a}, {c}, {a, c}}. Then A = {a, c} is regular-I-closed set which is not
O∗-set. For A = {a, c} ⊂ X since int(A) = {a}, (int(A))∗ = {a, c} = A, A
is regular-I-closed set. On the other hand, since A∗ = {a, c} = A, A is not
O∗-set.
(ii) Let X = {a, b, c, d}, τ = {X, ∅, {b}, {a, c}, {a, b, c}} and I = {∅, {b}}.
Then A = {c, d} is Ig-closed set which is not τ ∗-closed set. Let A = {c, d}
open set. Since A∗ = {a, c} ⊂ U , A is Ig-closed set. On the other hand, since
A∗ = {a, c} * {c, d} = A we have A is not τ ∗-closed set.

4 On Decompositions of Ig-Continuity and rIg-

Continuity

In this section, with the help of the concepts introduced in Section 3, it is
possible to define several forms of g-continuity.

Definition 4.1 A function f : (X, τ)→ (Y, ϕ) is called g-continuous [1](resp.rg-
continuous [14]) if for every closed set V in Y , f−1(V ) is g-closed(resp.rg-
closed) in (X, τ).
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Theorem 4.2 [15] For a function f : (X, τ) → (Y, ϕ) the following prop-
erties are equivalent:
(a) f is rg-continuous,
(b) For every open set V of Y , f−1(V ) is rg-open in X,
(c) For every closed set V of Y , f−1(V ) is rg-closed in X.

Proof: (a) ⇒ (b) Let V ⊂ Y open set, such that (Y − V ) is closed set.
Therefore f−1(Y − V ) = X − f−1(V ) is rg-closed set. Since, X − f−1(V ) is
rg-closed, f−1(V ) is rg-open.
(b)⇒ (c) and (c)⇒ (a) are proved in a similar way.

Definition 4.3 A function f : (X, τ, I)→ (Y, ϕ) is called Ig-continuous(resp.rIg-
continuous) if for every closed set F in Y , f−1(F ) is Ig-closed(resp.rIg-closed)
in (X, τ, I).

Theorem 4.4 For a function f : (X, τ, I) → (Y, ϕ), the following proper-
ties are equivalent:
(a) f is rIg-continuous,
(b) For every open set F of Y , f−1(F ) is rIg-open in X,
(c) For every closed set F of Y , f−1(F ) is rIg-closed in X.

Proof: (a) ⇒ (b) Let F ⊂ Y open set, such that (Y − F ) is closed set.
Since, f is rIg-continuous we have f−1(Y −F ) = X−f−1(F ) is rIg-closed set.
Hence, f−1(F ) is rIg-open in X.
(b)⇒ (c) and (c)⇒ (a) are proved in a similar way.

Remark 4.5 By Definition 4.1, 4.3, we have the following diagram in
which none of the implications is reversible as shown by four examples stated
as below.

continuous // g − continuous //

��

rg − continuous

��
Ig − continuous // rIg − continuous

Example 4.6 Let X = {a, b, c, d}, τ = {X, ∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}}
and Y = {p, q}, ϕ = {Y, ∅, {p}}. f : (X, τ) → (Y, ϕ) be a function defined
as: f(b) = f(d) = p, f(a) = f(c) = q. Then, f is rg-continuous but not
g-continuous. Since V = {q} is closed in Y , f−1(V ) = {a, c} and V is a
rg-closed set of (X, τ). Thus f is rg-continuous. On the other hand, since
cl(V ) = {a, c, d} * {a, b, c}, V is not g-closed. Hence f is not g-continuous.
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Example 4.7 Let X = {a, b, c}, τ = {X, ∅, {a}, {b}, {a, b}} and I = {∅, {c}},
Y = {p, q}, ϕ = {Y, ∅, {q}} and f : (X, τ, I)→ (Y, ϕ) be a function defined as:
f(a) = p, f(b) = f(c) = q. Then, f is rIg-continuous but not Ig-continuous.

Example 4.8 Let X = {a, b, c, d}, τ = {X, ∅, {a}, {b, d}, {a, b, d}} and I =
{∅, {a}, {c}, {a, c}}, Y = {p, q} ϕ = {Y, ∅, {q}}. f : (X, τ, I) → (Y, ϕ) be
a function defined as: f(a) = f(b) = p, f(c) = f(d) = q. Then, f is Ig-
continuous but not g-continuous. V = {p} is closed in Y . Since f−1(V ) =
{a, b} and U = {a, b, d} ∈ τ we have {a, b}∗ = {b, d} ⊂ U . Thus, f is
Ig-continuous. On the other hand, since cl({a, b}) = X * U , f is not g-
continuous.

Example 4.9 Example 4.8 in a given spaces, f : (X, τ, I) → (Y, ϕ) be a
function defined as: f(a) = f(b) = p, f(c) = f(d) = q. Then f is rIg-
continuous but not rg-continuous. V = {q} is closed in Y . Since f−1(V ) =
{c, d} * U = {a, b, d}, f is not rg-continuous. On the other hand, since
cl∗({c, d}) = cl(∅) = ∅ ⊂ {a, c}, f is rIg-continuous.

Definition 4.10 A function f : (X, τ, I)→ (Y, ϕ) is said to be Ic-continuous
if for every closed set F in Y , f−1(F ) ∈ τ ∗(X, τ, I).

Remark 4.11 Every Ic-continuous is Ig-continuous. The converse of this
remark need not be true as the following example shows.

Example 4.12 Let X = {a, b, c}, τ = {X, ∅, {b}, {a, c}} and I = {∅, {b}},
Y = {p, q} ϕ = {Y, ∅, {p}}. f : (X, τ, I) → (Y, ϕ) be a function defined
as follows: f(c) = f(b) = q, f(a) = p. V = {q} is closed in Y . Since
f−1(V ) = {b, c} and U = {a, b, c} ∈ τ , we have {b, c}∗ = {a, c} ⊂ U . Thus f
is Ig-continuous. On the other hand, since ({b, c})∗ = {a, c} * {b, c}, f is not
Ic-continuous.

Definition 4.13 A function f : (X, τ)→ (Y, ϕ) is said to be strongly con-
tinuous [10](resp.strongly rg-continuous [15]) if for every V ∈ ϕ, f−1(V ) is a
clopen set(reps.V is rg-open in Y , f−1(V ) ∈ τ).

Definition 4.14 A function f : (X, τ, I) → (Y, ϕ, J) is said to be strongly
I-continuous(resp.strongly rIg-continuous) if for every V ∈ ϕ, f−1(V ) ∈
O∗(X, τ, I)(reps.every V is rIg-open set in Y , f−1(V ) ∈ (X, τ, I)).

Proposition 4.15 For a function f : (X, τ, I) → (Y, ϕ, J) the following
properties holds:
a) If f is strongly continuous then f is strongly-I-continuous,
b) If f is strongly-I-continuous then f is strongly-rIg-continuous.
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Proof: The proof is obvious.

Remark 4.16 The converse of the Proposition 4.15 is not true.

Example 4.17 (i) Let X = {a, b, c}, τ = {X, ∅, {a}, {b, c}} and I =
{∅, {c}}, Y = {p, q} ϕ = {Y, ∅, {p}} and J = {∅, {p}}. Define a function
f : (X, τ, I) → (Y, ϕ, J) as follows: f(c) = f(b) = p, f(a) = q. Then f is
strongly-I-continuous but it is not strongly continuous.
(ii) Let X = {a, b, c, d}, τ = {X, ∅, {d}, {a, c}, {a, c, d}, {a, b, c}} and I =
{∅, {a}, {c}}, Y = {p, q} ϕ = {Y, ∅, {p}} and J = {∅, {p}}. Define a function
f : (X, τ, I)→ (Y, ϕ, J) as follows: f(b) = f(c) = f(a) = p, f(d) = q. Then f
is strongly-rIg-continuous but it is not strongly-I-continuous.

Theorem 4.18 Let f : (X, τ, I) → (Y, ϕ, J) strongly-rIg-continuous and
g : (Y, ϕ, J)→ (Z, σ) rIg-continuous so is gof : (X, τ, I)→ (Z, σ) is continu-
ous function.

Proof: Let V be a closed set in Z. Since g is rIg-continuous, g−1(V ) is rJg-
continuous in Y . Because of f is rIg-continuous, we can write f−1(g−1(V )) =
(gof)−1(V ) ∈ τ . Therefore gof is continuous.

Remark 4.19 Composition of two rIg-continuous functions need not to be
rIg-continuous.

Example 4.20 Let X = Y = Z = {a, b, c, d}, τ = {X, ∅, {a}, {b, c}, {a, b, c}},
I = {∅, {b}}, ϕ = {Y, ∅, {a}, {b, d}, {a, b, d}}, J = {∅, {a}, {c}, {a, c}}, σ =
{Z, ∅, {d}, {a, c}, {a, c, d}, {a, b, c}}. f is defined as f(a) = b, f(b) = c, f(c) =
d, f(d) = a and g is the identity map. The functions f and g are rIg-continuous
functions but their composition is not rIg-continuous. For the closed set {d}
in Z, (gof)−1({d}) = f−1({d}) = {c} is not rIg-closed in X.

Definition 4.21 A function f : (X, τ, I)→ (Y, ϕ) is called RIC-continuous
[6] if for every closed set F in Y , f−1(F ) is regular-I-closed in (X, τ, I).

Definition 4.22 A function f : (X, τ, I) → (Y, ϕ) is called perfectly rIg-
continuous if f−1(F ) is clopen in (X, τ, I) for every rIg-open set F in Y .

Theorem 4.23 For a function f : (X, τ, I)→ (Y, ϕ, J), the following prop-
erties are equivalent:
(a) f is perfectly rIg-continuous,
(b) For every rIg-open set V of Y , f−1(V ) is clopen in X,
(c) For every rIg-closed set V of Y , f−1(V ) is clopen in X.
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Proof: (a)⇒ (b) This proof is obvious by Definition 4.22.
(b)⇒ (c) Let V ⊂ Y rIg-open set, such that (Y − V ) is rIg-closed set. Since,
f is rIg-continuous f−1(Y − F ) is clopen set in X. Because of f−1(Y − F ) =
X − f−1(F ), f−1(F ) is clopen set in X.
(c)⇒ (a) is proved in a similar way (b)⇒ (c).

Remark 4.24 By Definitions 4.14, 4.21, 4.22 we have the following dia-
gram in which none of the implications is reversible as shown by four examples
stated below.

stronglycont. // strongly − I − cont. //

++

strongly − rIg − cont.

perfectly − rIg − cont. //

33

RIC − cont. // Ic− cont.

Example 4.25 Let X = {a, b, c, d}, τ = {X, ∅, {d}, {a, c}{a, c, d}, {a, b, c}}
and I = {∅, {a}, {c}, {a, c}}, Y = {p, q} ϕ = {Y, ∅, {p, q}} and J = {∅, {p}}.
Define a function f : (X, τ, I)→ (Y, ϕ, J) as follows: f(a) = f(c) = f(d) = p,
f(b) = q. Then, f is strongly-rIg-continuous but not perfectly rIg-continuous.

Example 4.26 (i) Let X = {a, b, c, d}, τ = {X, ∅, {a}, {b, d}, {a, b, d}} and
I = {∅, {a}, {c}, {a, c}}, Y = {p, q} ϕ = {Y, ∅, {p}} and J = {∅, {p}}. Let we
define a function f : (X, τ, I) → (Y, ϕ, J), f(a) = f(c) = q, f(b) = f(d) = p.
Then, f is RIC-continuous but not perfectly rIg-continuous.
(ii) Let X = {a, b, c}, τ = {X, ∅, {a}, {a, b}} and I = {∅, {a}, {b}, {a, b}},
Y = {p} ϕ = {Y, ∅, {p}} and J = {∅, {p}}. Define a function f : (X, τ, I) →
(Y, ϕ, J) as follows: f(a) = f(b) = p, f(c) = q. Then f is Ic-continuous but
it is not strongly RIC-continuous.
(iii) Let X = {a, b, c, d}, τ = {X, ∅, {a}, {b, d}, {a, b, d}} and I = {∅, {a}, {c}, {a, c}},
Y = {p, q} ϕ = {Y, ∅, {p}}. Define a function f : (X, τ, I)→ (Y, ϕ) as follows:
f(a) = f(c) = p, f(b) = q. Then f is RIC-continuous but it is not strongly
strongly-I-continuous.
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