Gen. Math. Notes, Vol. 25, No. 1, November 2014, pp. 91-102
ISSN 2219-7184; Copyright © ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

Unique Common Fixed Point Theorem for Three Pairs of Weakly Compatible Mappings in Complete G-metric Space

K.B. Bajpai $i^{1,2}$ and M.P. Gandhi ${ }^{2}$
${ }^{1}$ Department of Mathematics
Karmavir Dadasaheb Kannamwar College of Engineeing, Nagpur
E-mail: kavi_baj@rediffmail.com
${ }^{2}$ Department of Mathematics, Yeshwantrao Chavan College of Engineering Wanadongri, Nagpur
E-mail: manjusha_g2@rediffmail.com

(Received: 17-6-14 / Accepted: 11-8-14)

Abstract

In this paper a unique common fixed point theorem has been proved for three pairs of weakly compatible mappings in complete G - metric space. This theorem is the extension of many other results existing in the literature. An example has been provided to validate the main result of this paper.

Keywords: Common fixed point, Complete G - metric space, G - Cauchy sequence, Weakly compatible maps.

1 Introduction

The concept of the commutativity has been generalized in several ways. S. Sessa, [11] has introduced the concept of weakly commuting whereas Gerald Jungck [5] initiated the concept of compatibility. It can be easily verified that

- When the two mappings are commuting then they are compatible but not conversely.
- Compatible mappings are more general than commuting and weakly commuting mappings.
- Compatible maps are weakly compatible but not conversely.

Many authors like [3], [4], [1] and [10] worked on compatible mappings in metric space.

Mustafa in collaboration with Sims [14] introduced a new notation of generalized metric space called G- metric space in 2006. He proved many fixed point results for a self mapping in G- metric space under certain conditions.

The main aim of this paper is to prove unique common fixed point theorem for three pairs of weakly compatible maps satisfying a new contractive condition in a complete G - metric space.

Now, we give preliminaries and basic definitions which are used through-out the paper.

Definition 1.1: Let X be a non empty set, and let $G: X \times X \times X \rightarrow R^{+}$be a function satisfying the following properties:
$\left(G_{1}\right) G(x, y, z)=0$ if $x=y=z$
$\left(G_{2}\right) 0<G(x, x, y)$ for all $x, y \in X$, with $x \neq y$
$\left(G_{3}\right) G(x, x, y) \leq G(x, y, z)$ for all $x, y, z \in X$, with $y \neq z$
$\left(G_{4}\right) G(x, y, z)=G(x, z, y)=G(y, z, x) \quad$ (Symmetry in all three variables)
$\left(G_{5}\right) G(x, y, z) \leq G(x, a, a)+G(a, y, z) \quad$, for all $x, y, z, a \in X \quad$ (rectangle inequality)

Then the function G is called a generalized metric space, or more specially a Gmetric on X , and the pair (X, G) is called a G -metric space.

Definition 1.2: Let (X, G) be a G-metric space and let $\left\{x_{n}\right\}$ be a sequence of points of X, a point $x \in X$ is said to be the limit of the sequence $\left\{x_{n}\right\}$, if $\lim _{n, m \rightarrow+\infty} G\left(x, x_{n}, x_{m}\right)=0$, and we say that the sequence $\left\{x_{n}\right\}$ is G-convergent to x or $\left\{x_{n}\right\} G$-converges to x.

Thus, $x_{n} \rightarrow x$ in a G - metric space (X, G) if for any $\in>0$ there exists $k \in N$ such that $G\left(x, x_{n}, x_{m}\right)<\epsilon$, for all $m, n \geq k$

Proposition 1.3: Let (X, G) be a G-metric space. Then the following are equivalent:
i) $\quad\left\{x_{n}\right\}$ is G-convergent to x
ii) $\quad G\left(x_{n}, x_{n}, x\right) \rightarrow 0$ as $n \rightarrow+\infty$
iii) $\quad G\left(x_{n}, x, x\right) \rightarrow 0$ as $n \rightarrow+\infty$
iv) $\quad G\left(x_{n}, x_{m}, x\right) \rightarrow 0$ as $n, m \rightarrow+\infty$

Proposition 1.4: Let (X, G) be a G-metric space. Then for any x, y, z, a in X it follows that
i) If $G(x, y, z)=0$ then $x=y=z$
ii) $\quad G(x, y, z) \leq G(x, x, y)+G(x, x, z)$
iii) $\quad G(x, y, y) \leq 2 G(y, x, x)$
iv) $\quad G(x, y, z) \leq G(x, a, z)+G(a, y, z)$

Definition 1.5: Let (X, G) be a G-metric space. A sequence $\left\{x_{n}\right\}$ is called a G Cauchy sequence if for any $\in>0$ there exists $k \in N$ such that $G\left(x_{n}, x_{m}, x_{l}\right)<\epsilon$ for all $m, n, l \geq k$, that is $G\left(x_{n}, x_{m}, x_{l}\right) \rightarrow 0$ as $n, m, l \rightarrow+\infty$.

Proposition 1.6: Let (X, G) be a G - metric space .Then the following are equivalent:
i) The sequence $\left\{x_{n}\right\}$ is G-Cauchy;
ii) For any $\in>0$ there exists $k \in N$ such that $G\left(x_{n}, x_{m}, x_{m}\right)<\epsilon$ for all $m, n \geq k$

Proposition 1.7: $A G$-metric space (X, G) is called G-complete if every G Cauchy sequence is G-convergent in (X, G).

Proposition 1.8: Let (X, G) be a G-metric space. Then $f: X \rightarrow X$ is G continuous at $x \in X$, if and only if it is G-sequentially continuous at x, that is, whenever $\left\{x_{n}\right\}$ is G-convergent to $x,\left\{f\left(x_{n}\right)\right\}$ is G-convergent to $f(x)$.

Definition 1.9: Let \boldsymbol{f} and g be two self - maps on a set X. Maps f and g are said to be commuting if fgx $=g f x$, for all $x \in X$

Definition 1.10: Let \boldsymbol{f} and g be two self - maps on a set X. If $f x=g x$, for some $x \in X$ then x is called coincidence point of f and g.

Definition 1.11[6]: Let f and g be two self - maps defined on a set X, then f and g are said to be weakly compatible if they commute at coincidence points. That is if $f u=g u$ for some $u \in X$, then $f g u=g f u$.

Lemma 1.12 [5]: Let f and g be weakly compatible self mappings of a set X. If f and g have a unique point of coincidence, that is, $w=f x=g x$, then w is the unique common fixed point of f and g.

Definition 1.13: A function $\phi:[0, \infty) \rightarrow[0, \infty)$ is said to be special phi function if it satisfies:
i) $0<\phi(t)<t$, for all $t>0$
ii) The series $\sum_{n \geq 1} \phi^{n}(t)$ converges for all $t>0$
i.e. we may have $\lim _{n \rightarrow+\infty} \phi^{n}(t)=0$ for all >0 and
iii) $\quad \phi$ is an upper semi continuous function.

Definition 1.15: A real valued function ϕ defined on $X \subseteq R$ is said to be upper semi continuous if $\lim _{n \rightarrow \infty} \sup \phi\left(t_{n}\right) \leq \phi(t)$, for every sequence $\left\{t_{n}\right\} \in X$ with $t_{n} \rightarrow t$ as $n \rightarrow \infty$.

2 Main Result

Theorem 2.1: Let (X, G) be a complete G-metric space and
$A, B, C, L, M, N: X \rightarrow X$ be mappings such that
I) $\quad N(X) \subseteq A(X), L(X) \subseteq B(X), M(X) \subseteq C(X)$
II) $\quad G(L x, M y, N z) \leq \phi(\lambda(x, y, z))$, where ϕ is a special phi function and

$$
\lambda(x, y, z)=\max .\{G(A x, B y, C z), G(L x, A x, C z), G(M y, B y, A x), G(N z, C z, B y)\}
$$

III) The pairs $(L, A),(M, B)$ and (N, C) are weakly compatible.

Then A, B, C, L, M and N have a unique common fixed point in X.
Proof: Let x_{0} be an arbitrary point of X and define the sequence $\left\{x_{n}\right\}$ in X such that

$$
y_{n}=L x_{n}=B x_{n+1}, \quad y_{n+1}=M x_{n+1}=C x_{n+2}, \quad y_{n+2}=N x_{n+2}=A x_{n+3}
$$

Consider, $G\left(y_{n}, y_{n+1}, y_{n+2}\right)=G\left(L x_{n}, M x_{n+1}, N x_{n+2}\right)$

$$
\leq \phi\left(\lambda\left(x_{n}, x_{n+1}, x_{n+2}\right)\right)
$$

where

$$
\left.\left.\begin{array}{l}
\lambda\left(x_{n}, x_{n+1}, x_{n+2}\right)=\max \cdot\left\{\begin{array}{l}
G\left(A x_{n}, B x_{n+1}, C x_{n+2}\right), \\
G\left(L x_{n}, A x_{n}, C x_{n+2}\right), G\left(M x_{n+1}, B x_{n+1}, A x_{n}\right), G\left(N x_{n+2}, C x_{n+2}, B x_{n+1}\right)
\end{array}\right\} \\
=\max \cdot\left\{\begin{array}{l}
G\left(N x_{n-1}, L x_{n}, M x_{n+1}\right), G\left(L x_{n}, N x_{n-1}, M x_{n+1}\right), \\
G\left(M x_{n+1}, L x_{n}, N x_{n-1}\right), G\left(N x_{n+2}, M x_{n+1}, L x_{n}\right)
\end{array}\right\}
\end{array}\right\} \begin{array}{l}
\max .\left\{G\left(y_{n-1}, y_{n}, y_{n+1}\right), G\left(y_{n}, y_{n-1}, y_{n+1}\right), G\left(y_{n+1}, y_{n}, y_{n-1}\right), G\left(y_{n+2}, y_{n+1}, y_{n}\right)\right\}
\end{array}\right\}
$$

Since ϕ is a phi function,
Therefore $\lambda\left(x_{n}, x_{n+1}, x_{n+2}\right)=G\left(y_{n}, y_{n+1}, y_{n+2}\right)$ is not possible.
Therefore $G\left(y_{n}, y_{n+1}, y_{n+2}\right) \leq \phi\left(G\left(y_{n-1}, y_{n}, y_{n+1}\right)\right)$
Since ϕ is an upper semi continuous, special phi function, so equation (2.1.1) implies that the sequence $\left\{y_{n}\right\}$ is monotonic decreasing and continuous.

Hence there exists a real number say $r \geq 0$, such that $\lim _{n \rightarrow \infty} G\left(y_{n}, y_{n+1}, y_{n+2}\right)=r$ As $n \rightarrow \infty$, equation (2.1.1) implies that $r \leq \phi(r)$, which is possible only if $r=0$, because ϕ is a special phi function.

Therefore $\lim _{n \rightarrow \infty} G\left(y_{n}, y_{n+1}, y_{n+2}\right)=0$
Now we show that $\left\{y_{n}\right\}$ is a Cauchy sequence.
We have,

$$
\begin{aligned}
G\left(y_{n}, y_{n+1}, y_{n+2}\right) \leq & \phi\left(G\left(y_{n-1}, y_{n}, y_{n+1}\right)\right) \\
& \leq \phi\left(\phi\left(G\left(y_{n-2}, y_{n-1}, y_{n}\right)\right)\right) \\
& =\phi^{2}\left(G\left(y_{n-2}, y_{n-1}, y_{n}\right)\right) \\
& \cdot \\
& \cdot \\
& \leq \phi^{n}\left(G\left(y_{0}, y_{1}, y_{2}\right)\right)
\end{aligned}
$$

By using $\left(G_{3}\right),\left(G_{4}\right),\left(G_{5}\right)$ and condition (2.1.1) for any $k \in N$, we write

$$
\begin{align*}
& G\left(y_{n}, y_{n+k}, y_{n+k}\right) \leq G\left(y_{n}, y_{n+1}, y_{n+1}\right)+G\left(y_{n+1}, y_{n+2}, y_{n+2}\right)+G\left(y_{n+2}, y_{n+3}, y_{n+3}\right) \\
& +---+G\left(y_{n+k-2}, y_{n+k-1}, y_{n+k-1}\right)+G\left(y_{n+k-1}, y_{n+k}, y_{n+k}\right) \\
& \leq G\left(y_{n}, y_{n+1}, y_{n+2}\right)+G\left(y_{n+1}, y_{n+2}, y_{n+3}\right)+G\left(y_{n+2}, y_{n+3}, y_{n+4}\right) \\
& +--+G\left(y_{n+k-2}, y_{n+k-1}, y_{n+k}\right)+G\left(y_{n+k-1}, y_{n+k}, y_{n+k+1}\right) \\
& \leq \varphi^{n}\left(G\left(y_{0}, y_{1}, y_{2}\right)\right)+\varphi^{n+1}\left(G\left(y_{0}, y_{1}, y_{2}\right)\right)+\varphi^{n+2}\left(G\left(y_{0}, y_{1}, y_{2}\right)\right) \\
& +---+\varphi^{n+k}\left(G\left(y_{0}, y_{1}, y_{2}\right)\right) \\
& =\sum_{i=n}^{n+k} \phi^{i}\left(G\left(y_{0}, y_{1}, y_{2}\right)\right) \\
& \text { i.e. } G\left(y_{n}, y_{n+k}, y_{n+k}\right) \leq \sum_{i=n}^{\infty} \phi^{i}\left(G\left(y_{0}, y_{1}, y_{2}\right)\right) \tag{2.1.3}
\end{align*}
$$

By definition of function phi, we have $\sum_{i=n}^{\infty} \phi^{i}\left(G\left(y_{0}, y_{1}, y_{2}\right)\right)$ tends to 0 as $n \rightarrow \infty$

Therefore $\lim _{n \rightarrow \infty} G\left(y_{n}, y_{n+k}, y_{n+k}\right)=0 \quad$, for all $k \in N$
This means that $\left\{y_{n}\right\}$ is a Cauchy sequence and since X is complete, therefore there exists a point $u \in X$, such that $\lim _{n \rightarrow \infty} y_{n}=u$

Therefore $\lim _{n \rightarrow \infty} L x_{n}=\lim _{n \rightarrow \infty} B x_{n+1}=u, \lim _{n \rightarrow \infty} M x_{n+1}=\lim _{n \rightarrow \infty} C x_{n+2}=u$
and $\lim _{n \rightarrow \infty} N x_{n+2}=\lim _{n \rightarrow \infty} A x_{n+3}=u$
Since $N(X) \subseteq A(X)$, there exists a point $v \in X$ such that $u=A v$ Therefore by (II) we have,

$$
\begin{align*}
G(L v, u, u) & \leq G\left(L v, M x_{n+1}, u\right)+G\left(M x_{n+1}, u, u\right) \\
& \leq G\left(L v, M x_{n+1}, N x_{n+2}\right)+G\left(N x_{n+2}, u, M x_{n+1}\right)+G\left(M x_{n+1}, u, u\right) \\
& \left.\leq \phi\left(\lambda\left(v, x_{n+1}, x_{n+2}\right)\right)+G\left(N x_{n+2}, u, M x_{n+1}\right)+G\left(M x_{n+1}, u, u\right)\right) . \tag{2.1.5}
\end{align*}
$$

Where,

$$
\begin{aligned}
& \lambda\left(v, x_{n+1}, x_{n+2}\right)=\max \cdot\left\{\begin{array}{l}
G\left(A v, B x_{n+1}, C x_{n+2}\right), G\left(L v, A v, C x_{n+2}\right), \\
G\left(M x_{n+1}, B x_{n+1}, A v\right), G\left(N x_{n+2}, C x_{n+2}, B x_{n+1}\right)
\end{array}\right\} \\
& =\max .\left\{G\left(u, L x_{n}, M x_{n+1}\right), G\left(L v, u, M x_{n+1}\right), G\left(M x_{n+1}, L x_{n}, u\right), G\left(N x_{n+2}, M x_{n+1}, L x_{n}\right)\right\}
\end{aligned}
$$

Taking limit as $n \rightarrow \infty$ in the above relation, we get

$$
\lambda\left(v, x_{n+1}, x_{n+2}\right)=\max .\{G(u, u, u), G(L v, u, u), G(u, u, u), G(u, u, u)\}
$$

Therefore $\lambda\left(v, x_{n+1}, x_{n+2}\right)=G(L v, u, u)$
Thus as $n \rightarrow \infty$, we get from (2.1.5)
$G(L v, u, u) \leq \phi(G(L v, u, u))+G(u, u, u)+G(u, u, u)$
i.e. $G(L v, u, u) \leq \phi(G(L v, u, u))$

If $L v \neq u$, then $G(L v, u, u)>0$, and hence as ϕ is a special phi function
$\phi(G(L v, u, u))<G(L v, u, u)$
Therefore from (2.1.6) we have $G(L v, u, u)<G(L v, u, u)$, which is a contradiction
\therefore we must have $L v=u$. So we have $A v=L v=u$.
i.e. v is a coincidence point of L and A.

Since the pair of maps L and A are weakly compatible,
$\therefore L A v=A L v$ i.e. $L u=A u$
Again, since $L(X) \subseteq B(X)$, there exists a point $w \in X$ such that $u=B w$
Therefore by (II) we have,

$$
\begin{align*}
G(u, u, M w) & =G(L v, L v, M w) \quad(\because G(x, x, y) \leq G(x, y, z)) \\
& \leq G\left(L v, M w, N x_{n+2}\right) \\
& \leq \phi\left(\lambda\left(v, w, x_{n+2}\right)\right) \tag{2.1.7}
\end{align*}
$$

Where $\lambda\left(v, w, x_{n+2}\right)=\max .\left\{\begin{array}{l}G\left(A v, B w, C x_{n+2}\right), G\left(L v, A v, C x_{n+2}\right), \\ G\left(M w, B w, A x_{n+2}\right), G\left(N x_{n+2}, C x_{n+2}, B w\right)\end{array}\right\}$ $=\max .\left\{G\left(u, u, M x_{n+1}\right), G\left(u, u, M x_{n+1}\right), G\left(M w, u, N x_{n+1}\right), G\left(N x_{n+2}, M x_{n+1}, u\right)\right\}$

Taking limit as $n \rightarrow \infty$, we get
$\lambda\left(v, w, x_{n+2}\right)=\max .\{G(u, u, u), G(u, u, u), G(M w, u, u), G(u, u, u)\}$
Therefore $\lambda\left(v, w, x_{n+2}\right)=G(M w, u, u)=G(u, u, M w)$
Therefore from (2.1.7), we get $G(u, u, M w) \leq \phi(G(u, u, M w))$

If $M w \neq u$, then $G(u, u, M w)>0$ and hence as ϕ is a special phi function,
$\phi(G(u, u, M w))<G(u, u, M w)$

Therefore by using (2.1.8), we get, $G(u, u, M w)<G(u, u, M w)$, which is a contradiction.

Hence we have $M w=u$. Thus we have $M w=B w=u$ i.e. w is a coincidence point of M and B.
Since the pair of maps M and B are weakly compatible,
$\therefore M B w=B M w$ i.e. $M u=B u$
Now again, since $M(X) \subseteq C(X)$, there exists a point $p \in X$, such that $u=C p$ Therefore by (II), we have,

$$
\begin{align*}
G(u, u, N p) & =G(L v, M w, N p) \\
& \leq \phi(\lambda(v, w, p)) \tag{2.1.9}
\end{align*}
$$

Where

$$
\begin{aligned}
\lambda(v, w, p)=\max & \{G(A v, B w, C p), G(L v, A v, C p), G(M w, B w, A v), G(N p, C p, B w)\} \\
& =\max .\{G(u, u, u), G(u, u, u), G(u, u, u), G(N p, u, u)\}
\end{aligned}
$$

Therefore $\lambda(v, w, p)=G(N p, u, u)=G(u, u, N p)$
Therefore from (2.1.9), we have $G(u, u, N p) \leq \phi(G(u, u, N p))$

If $N p \neq u$, then $G(u, u, N p)>0$ and hence as ϕ is a special phi function,
$\phi(G(u, u, N p))<G(u, u, N p)$

Therefore from (2.1.10) we get, $G(u, u, N p)<G(u, u, N p)$, which is a contradiction.

Hence we must have $N p=u$. Thus we have $N p=C p=u$ i.e. p is a coincidence point of N and C. Since the pair of maps N and C are weakly compatible,
$\therefore N C p=C N p$ i.e. $N u=C u$
Now we show that ' u ' is a fixed point of L.
By (II), we have $G(L u, u, u)=G(L u, M w, N p)$

$$
\begin{equation*}
\leq \phi(\lambda(u, w, p)) \tag{2.1.11}
\end{equation*}
$$

Where

$$
\begin{align*}
\lambda(u, w, p)=\max . & \{G(A u, B w, C p), G(L u, A u, C p), G(M w, B w, A u), G(N p, C p, B w)\} \\
& =\max .\{G(L u, u, u), G(L u, L u, u), G(u, u, L u), G(u, u, u)\} \\
& =G(L u, u, u)----\quad \text { by (iv) of Proposition } 1.4 \tag{2.1.12}
\end{align*}
$$

Therefore from (2.1.11), we have, $G(L u, u, u) \leq \phi(G(L u, u, u))$
If $L u \neq u$, then $G(L u, u, u)>0$ and hence as ϕ is a special phi function,

$$
\therefore \phi(G(L u, u, u))<G(L u, u, u)
$$

Therefore (2.1.12) implies that $G(L u, u, u)<G(L u, u, u)$, which is a contradiction.
Hence we have $L u=u$. So we get $L u=A u=u$.
Now, we show that u is a fixed point of M.
Therefore by (II) we have, $G(u, u, M u)=G(L u, N p, M u)$

$$
\begin{align*}
& =G(L u, M u, N p) \\
& \leq \phi(\lambda(u, u, p)) \tag{2.1.13}
\end{align*}
$$

Where

$$
\begin{align*}
\lambda(u, u, p)=\max . & \{G(A u, B u, C p), G(L u, A u, C p), G(M u, B u, A u), G(N p, C p, B u)\} \\
& =\max \{G(L u, M u, u), G(L u, L u, u), G(M u, M u, f u), G(u, u, M u)\} \\
& =\max .\{G(u, M u, u), G(u, u, u), G(M u, M u, u), G(u, u, M u)\} \\
& =G(u, u, M u) \quad------\quad \text { by (iv) of Proposition } 1.4 \tag{2.1.14}
\end{align*}
$$

So from (2.1.13) we get, $G(u, u, M u) \leq \phi(G(u, u, M u))$
If $M u \neq u$, then $G(u, u, M u)>0$ and hence as ϕ is a special phi function,
$\phi(G(u, u, M u)<G(u, u, M u)$
Thus from (2.1.14) we get, $G(u, u, M u)<G(u, u, M u)$, which is a contradiction.
Therefore $M u=u$. Hence $M u=B u=u$

Now we show that u is a fixed point of N.
Therefore from (II) we have, $G(u, u, N u)=G(L u, M u, N u)$

$$
\begin{equation*}
\leq \phi(\lambda(u, u, u)) \tag{2.1.15}
\end{equation*}
$$

Where

$$
\begin{align*}
\lambda(u, u, u)=\max . & \{G(A u, B u, C u), G(L u, A u, C u), G(M u, B u, A u), G(N u, C u, B u)\} \\
& =\max .\{G(u, u, N u), G(u, L u, N u), G(u, M u, L u), G(N u, N u, M u)\} \\
& =\max .\{G(u, u, N u), G(u, u, N u), G(u, u, u), G(N u, N u, u)\} \\
& =G(u, u, N u) \quad-----\quad \text { by (iv) of Proposition } 1.4 \tag{2.1.16}
\end{align*}
$$

Thus from (2.1.15) we have, $G(u, u, N u) \leq \phi(G(u, u, N u))$
If $N u \neq u$, then $G(u, u, N u)>0$ and hence as ϕ is a special phi function,
$\phi(G(u, u, h u))<G(u, u, h u)$

Thus by using (2.1.16) we get, $G(u, u, N u)<G(u, u, N u)$, which is a contradiction.
Hence $N u=u$. Thus we have $N u=C u=u$
Therefore $L u=A u=M u=B u=N u=C u=u$ i.e. u is a common fixed point of L, A, M, B, N and C.

Now we show that ' u ' is unique common fixed point of L, A, M, B, N and C.

If possible, let us assume that ' m ' is another common fixed point of L, A, M, B, N and C.

By using (II) we have, $G(u, u, m)=G(L u, M u, N m)$

$$
\begin{equation*}
\leq \phi(\lambda(u, u, m)) \tag{2.1.17}
\end{equation*}
$$

Where

$$
\begin{align*}
\lambda(u, u, m)=\max . & \{G(A u, B u, C m), G(L u, A u, C m), G(M u, B u, A u), G(N m, C m, B u)\} \\
& =\max .\{G(u, u, m), G(u, u, m), G(u, u, u), G(m, m, u)\} \\
& =G(u, u, m) \quad------\quad \text { by (iv) of Proposition } 1.4 \tag{2.1.18}
\end{align*}
$$

Thus from (2.1.17) we have, $G(u, u, m) \leq \phi(G(u, u, m))$
If $u \neq m$, then $G(u, u, m)>0$ and hence as ϕ is a special phi function, $\phi(G(u, u, m))<G(u, u, m)$

Hence from (2.1.18) we get, $G(u, u, m)<G(u, u, m)$, which is a contradiction.

Hence we have $u=m$.
Thus ' u ' is the unique common fixed point of L, A, M, B, N and C.
Example 2.2: Let $X=[0, \infty)$ and G be a mapping defined on X as

$$
G(x, y, z)=|x-y|+|y-z|+|z-x|, \text { for all } x, y, z \in X .
$$

Then G is a complete G-metric on X and (X, G) is a complete G-metric space.
Let $A, B, C, L, M, N: X \rightarrow X$ be defined as $A x=\frac{x}{3}, \quad T x=\frac{x}{6} \quad, \quad C x=\frac{x}{9}$, $L x=\frac{x}{24}, M x=\frac{x}{36}$
and $N x=\frac{x}{12}$ then (i) $N(X) \subseteq A(X), L(X) \subseteq B(X), \quad M(X) \subseteq C(X)$
(ii) The pairs $(L, A),(M, B)$ and (N, C) are weakly compatible.
(iii) Also $G(L x, M y, N z) \leq \phi(\lambda(x, y, z))$

Where

$$
\lambda(x, y, z)=\max .\{G(A x, B y, C z), G(L x, A x, C z), G(M y, B y, A x), G(N z, C z, B y)\}
$$

Then ' 0 ' is unique common fixed point of L, A, M, B, N and C in X.
Corollary 2.3: Let (X, G) be a complete G-metric space and

$$
A, L, M, N: X \rightarrow X \text { be mappings such that }
$$

I) $\quad N(X) \subseteq A(X), L(X) \subseteq A(X), M(X) \subseteq A(X)$
II) $\quad G(L x, M y, N z) \leq \phi(\lambda(x, y, z))$, where ϕ is a special phi function and $\lambda(x, y, z)=\max .\{G(A x, A y, A z), G(L x, A x, A z), G(M y, A y, A x), G(N z, A z, A y)\}$
III) The pairs $(L, A),(M, A)$ and (N, A) are weakly compatible.

Then A, L, M and N have a unique common fixed point in X .
Proof: By taking $A=B=C$ in Theorem 2.1 we get the proof.
Corollary 2.4: Let (X, G) be a complete G-metric space and $A, L: X \rightarrow X$ be mappings such that
I) $\quad L(X) \subseteq A(X)$
II) $G(L x, L y, L z) \leq \phi(\lambda(x, y, z))$, where ϕ is a special phi function and $\lambda(x, y, z)=\max .\{G(A x, A y, A z), G(L x, A x, A z), G(L y, A y, A x), G(L z, A z, A y)\}$
III) The pair (L, A) is weakly compatible.

Then A, L have a unique common fixed point in X.
Proof: By taking $A=B=C \& L=M=N$ in Theorem 2.1 we get the proof.

References

[1] C. Renu and S. Kumar, Common fixed points for weakly compatible maps, Proc. Indian Acad. Sci. (Math. Sci.), 111(2) (May) (2001), 241-247 (Printed in India).
[2] M. Gugnani, M. Aggarwal and C. Renu, Common fixed point results in Gmetric spaces and applications, International Journal of Computer Applications, 43(11) (April) (2012), 0975-8887.
[3] K. Jha, Common fixed point for weakly compatible maps in metric space, Kathmandu University Journal of Science, Engineering and Technology, I(IV) (August) (2007), 6 pages.
[4] K. Jha, R.P. Pant and S.L. Singh, Common fixed points for compatible mappings in metric spaces, Radovi Matemati. Cki., 12(2003), 107-114.
[5] G. Jungck, Compatible mappings and common fixed points, Internet. I. Math and Math. Sci., 9(1986), 771-779.
[6] G. Jungck and B.E. Rhoades, Fixed point for set valued functions with-out continuity, Indian J. Pure Appl. Math, 29(3) (1998), 227-238.
[7] A. Kaewcharoen, Common fixed points for four mappings in G-metric spaces, Int. Journal of Math. Analysis, 6(47) (2012), 2345-2356.
[8] J. Matkowski, Fixed point theorems for mappings with a contractive iterate at a point, Proc. Amer. Math. Soc., 62(2) (1977), 344-348.
[9] G.J. Mehta and M.L. Joshi, On common fixed point theorem in complete metric space, Gen. Math. Notes, 2(1) (January) (2011), 55-63.
[10] S. Sedghi and M. Shobe, Common fixed point theorems for four mappings in complete metric spaces, Bulletin of the Irania Mathematical Society, 33(2) (2007), 37-47.
[11] S. Sessa, On a weak commutativity condition of mappings in a fixed point considerations, Publ. Inst Math. Debre., 32(1982), 149153.
[12] W. Shatanawi, Fixed point theory for contractive mappings satisfying ϕ maps in G-metric spaces, Fixed Point Theory and Applications, Article ID 181650(2010), 9 Pages.
[13] Z. Mustafa, A new structure for generalized metric spaces with applications to fixed point theory, Ph.D. Thesis, The University of Newcastle, Callaghan, Australia, (2005).
[14] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7(2006), 289-297.

