

Gen. Math. Notes, Vol. 25, No. 1, November 2014, pp. 91-102 ISSN 2219-7184; Copyright © ICSRS Publication, 2014 www.i-csrs.org Available free online at http://www.geman.in

Unique Common Fixed Point Theorem for Three Pairs of Weakly Compatible Mappings in Complete G-metric Space

K.B. Bajpai^{1,2} and M.P. Gandhi²

¹Department of Mathematics Karmavir Dadasaheb Kannamwar College of Engineeing, Nagpur E-mail: kavi_baj@rediffmail.com ²Department of Mathematics, Yeshwantrao Chavan College of Engineering Wanadongri, Nagpur E-mail: manjusha_g2@rediffmail.com

(Received: 17-6-14 / Accepted: 11-8-14)

Abstract

In this paper a unique common fixed point theorem has been proved for three pairs of weakly compatible mappings in complete G – metric space. This theorem is the extension of many other results existing in the literature. An example has been provided to validate the main result of this paper.

Keywords: Common fixed point, Complete G – metric space, G – Cauchy sequence, Weakly compatible maps.

1 Introduction

The concept of the commutativity has been generalized in several ways. S. Sessa, [11] has introduced the concept of weakly commuting whereas Gerald Jungck [5] initiated the concept of compatibility. It can be easily verified that

- When the two mappings are commuting then they are compatible but not conversely.
- Compatible mappings are more general than commuting and weakly commuting mappings.
- Compatible maps are weakly compatible but not conversely.

Many authors like [3], [4], [1] and [10] worked on compatible mappings in metric space.

Mustafa in collaboration with Sims [14] introduced a new notation of generalized metric space called G- metric space in 2006. He proved many fixed point results for a self mapping in G- metric space under certain conditions.

The main aim of this paper is to prove unique common fixed point theorem for three pairs of weakly compatible maps satisfying a new contractive condition in a complete G – metric space.

Now, we give preliminaries and basic definitions which are used through-out the paper.

Definition 1.1: Let X be a non empty set, and let $G: X \times X \times X \to R^+$ be a function satisfying the following properties:

 $\begin{array}{ll} (G_1) \ G(x,y,z) = 0 \ if \ x = y = z \\ (G_2) \ 0 < G(x,x,y) \ for \ all \ x,y \in X \ , with \ x \neq y \\ (G_3) \ G(x,x,y) \leq G(x,y,z) \ for \ all \ x,y,z \in X \ , with \ y \neq z \\ (G_4) \ G(x,y,z) = G(x,z,y) = G(y,z,x) \ (Symmetry \ in \ all \ three \ variables) \\ (G_5) \ G(x,y,z) \leq G(x,a,a) + G(a,y,z) \ , \ for \ all \ x,y,z,a \in X \ (rectangle \ inequality) \end{array}$

Then the function G is called a generalized metric space, or more specially a G-metric on X, and the pair (X,G) is called a G-metric space.

Definition 1.2: Let (X,G) be a G-metric space and let $\{x_n\}$ be a sequence of points of X, a point $x \in X$ is said to be the limit of the sequence $\{x_n\}$, if $\lim_{n,m\to\infty} G(x,x_n,x_m) = 0$, and we say that the sequence $\{x_n\}$ is G-convergent to x or $\{x_n\}$ G-converges to x.

Thus, $x_n \to x$ in a *G* - metric space (X, G) if for any $\in > 0$ there exists $k \in N$ such that $G(x, x_n, x_m) < \in$, for all $m, n \ge k$

Proposition 1.3: Let (X,G) be a G-metric space. Then the following are equivalent:

- i) $\{x_n\}$ is G convergent to x
- *ii)* $G(x_n, x_n, x) \to 0 \text{ as } n \to +\infty$
- *iii)* $G(x_n, x, x) \to 0 \text{ as } n \to +\infty$
- *iv*) $G(x_n, x_m, x) \to 0 \text{ as } n, m \to +\infty$

Proposition 1.4: Let (X,G) be a G - metric space. Then for any x, y, z, a in X it follows that

i) If G(x, y, z) = 0 then x = y = zii) $G(x, y, z) \le G(x, x, y) + G(x, x, z)$ iii) $G(x, y, y) \le 2G(y, x, x)$ iv) $G(x, y, z) \le G(x, a, z) + G(a, y, z)$

Definition 1.5: Let (X,G) be a G - metric space. A sequence $\{x_n\}$ is called a G -Cauchy sequence if for any $\in > 0$ there exists $k \in N$ such that $G(x_n, x_m, x_l) < \in$ for all $m, n, l \ge k$, that is $G(x_n, x_m, x_l) \to 0$ as $n, m, l \to +\infty$.

Proposition 1.6: Let (X,G) be a G-metric space. Then the following are equivalent:

- *i)* The sequence $\{x_n\}$ is G Cauchy;
- ii) For any $\in > 0$ there exists $k \in N$ such that $G(x_n, x_m, x_m) < \in$ for all $m, n \ge k$

Proposition 1.7: A G - metric space (X,G) is called G -complete if every G - Cauchy sequence is G -convergent in(X,G).

Proposition 1.8: Let (X,G) be a G-metric space. Then $f: X \to X$ is Gcontinuous at $x \in X$, if and only if it is G-sequentially continuous at x, that is, whenever $\{x_n\}$ is G-convergent to x, $\{f(x_n)\}$ is G-convergent to f(x).

Definition 1.9: Let f and g be two self – maps on a set X. Maps f and g are said to be commuting if fgx = gfx, for all $x \in X$

Definition 1.10: Let f and g be two self – maps on a set X. If fx = gx, for some $x \in X$ then x is called coincidence point of f and g.

Definition 1.11[6] : Let f and g be two self – maps defined on a set X, then f and g are said to be weakly compatible if they commute at coincidence points. That is if fu = gu for some $u \in X$, then fgu = gfu.

Lemma 1.12 [5]: Let f and g be weakly compatible self mappings of a set X. If f and g have a unique point of coincidence, that is, w = fx = gx, then w is the unique common fixed point of f and g.

Definition 1.13: A function $\phi:[0,\infty) \to [0,\infty)$ is said to be special phi function if *it satisfies:*

 $\begin{array}{ll} i) & 0 < \phi(t) < t \ , \ for \ all \ t > 0 \\ ii) & The \ series \ \sum_{n \ge 1} \phi^n(t) \ converges \ for \ all \ t > 0 \\ i.e. \ we \ may \ have \ \lim_{n \to +\infty} \phi^n(t) = 0 \ for \ all \ t > 0 \ and \\ iii) & \phi \ is \ an \ upper \ semi \ continuous \ function. \end{array}$

Definition 1.15: A real valued function ϕ defined on $X \subseteq R$ is said to be upper semi continuous if $\limsup_{n \to \infty} \phi(t_n) \le \phi(t)$, for every sequence $\{t_n\} \in X$ with $t_n \to t$ as $n \to \infty$.

2 Main Result

Theorem 2.1: Let (X,G) be a complete G - metric space and $A, B, C, L, M, N : X \rightarrow X$ be mappings such that

- $I \qquad \qquad N(X) \subseteq A(X) \ , \ L(X) \subseteq B(X) \ , \ M(X) \subseteq C(X)$
- $\begin{aligned} II) & G(Lx, My, Nz) \leq \phi(\lambda(x, y, z)) \ , \ where \ \phi \ is \ a \ special \ phi \ function \\ and \\ \lambda(x, y, z) = \max \left\{ G(Ax, By, Cz), G(Lx, Ax, Cz), G(My, By, Ax), G(Nz, Cz, By) \right\} \end{aligned}$
- III) The pairs (L, A), (M, B) and (N, C) are weakly compatible.

Then A, B, C, L, M and N have a unique common fixed point in X.

Proof: Let x_0 be an arbitrary point of X and define the sequence $\{x_n\}$ in X such that

$$y_n = Lx_n = Bx_{n+1}$$
, $y_{n+1} = Mx_{n+1} = Cx_{n+2}$, $y_{n+2} = Nx_{n+2} = Ax_{n+3}$

Consider, $G(y_n, y_{n+1}, y_{n+2}) = G(Lx_n, Mx_{n+1}, Nx_{n+2})$ $\leq \phi(\lambda(x_n, x_{n+1}, x_{n+2}))$ where

$$\begin{split} \lambda(x_n, x_{n+1}, x_{n+2}) &= \max \left\{ \begin{aligned} G(Ax_n, Bx_{n+1}, Cx_{n+2}), \\ G(Lx_n, Ax_n, Cx_{n+2}), G(Mx_{n+1}, Bx_{n+1}, Ax_n), G(Nx_{n+2}, Cx_{n+2}, Bx_{n+1}) \end{aligned} \right\} \\ &= \max \left\{ \begin{aligned} G(Nx_{n-1}, Lx_n, Mx_{n+1}), G(Lx_n, Nx_{n-1}, Mx_{n+1}), \\ G(Mx_{n+1}, Lx_n, Nx_{n-1}), G(Nx_{n+2}, Mx_{n+1}, Lx_n) \end{aligned} \right\} \\ &= \max \left\{ G(y_{n-1}, y_n, y_{n+1}), G(y_n, y_{n-1}, y_{n+1}), G(y_{n+1}, y_n, y_{n-1}), G(y_{n+2}, y_{n+1}, y_n) \right\} \\ &\text{i.e. } \lambda(x_n, x_{n+1}, x_{n+2}) = \max \left\{ G(y_{n-1}, y_n, y_{n+1}), G(y_n, y_{n+1}, y_{n+2}) \right\} \end{split}$$

Since ϕ is a phi function,

Therefore $\lambda(x_n, x_{n+1}, x_{n+2}) = G(y_n, y_{n+1}, y_{n+2})$ is not possible.

Therefore
$$G(y_n, y_{n+1}, y_{n+2}) \le \phi(G(y_{n-1}, y_n, y_{n+1}))$$
 ------(2.1.1)

Since ϕ is an upper semi continuous, special phi function, so equation (2.1.1) implies that the sequence $\{y_n\}$ is monotonic decreasing and continuous.

Hence there exists a real number say $r \ge 0$, such that $\lim_{n \to \infty} G(y_n, y_{n+1}, y_{n+2}) = r$ As $n \to \infty$, equation (2.1.1) implies that $r \le \phi(r)$, which is possible only if r = 0, because ϕ is a special phi function.

Therefore
$$\lim_{n \to \infty} G(y_n, y_{n+1}, y_{n+2}) = 0$$
 ------ (2.1.2)

Now we show that $\{y_n\}$ is a Cauchy sequence. We have,

By using (G_3) , (G_4) , (G_5) and condition (2.1.1) for any $k \in N$, we write

$$\begin{aligned} G(y_n, y_{n+k}, y_{n+k}) &\leq G(y_n, y_{n+1}, y_{n+1}) + G(y_{n+1}, y_{n+2}, y_{n+2}) + G(y_{n+2}, y_{n+3}, y_{n+3}) \\ &+ \dots - + G(y_{n+k-2}, y_{n+k-1}, y_{n+k-1}) + G(y_{n+k-1}, y_{n+k}, y_{n+k}) \\ &\leq G(y_n, y_{n+1}, y_{n+2}) + G(y_{n+1}, y_{n+2}, y_{n+3}) + G(y_{n+2}, y_{n+3}, y_{n+4}) \\ &+ \dots - + G(y_{n+k-2}, y_{n+k-1}, y_{n+k}) + G(y_{n+k-1}, y_{n+k}, y_{n+k+1}) \\ &\leq \varphi^n (G(y_0, y_1, y_2)) + \varphi^{n+1} (G(y_0, y_1, y_2)) + \varphi^{n+2} (G(y_0, y_1, y_2)) \\ &+ \dots - + \varphi^{n+k} (G(y_0, y_1, y_2)) \\ &= \sum_{i=n}^{n+k} \phi^i (G(y_0, y_1, y_2)) \\ &\text{i.e. } G(y_n, y_{n+k}, y_{n+k}) \leq \sum_{i=n}^{\infty} \phi^i (G(y_0, y_1, y_2)) \\ &- \dots - (2.1.3) \end{aligned}$$

By definition of function phi, we have $\sum_{i=n}^{\infty} \phi^i(G(y_0, y_1, y_2))$ tends to 0 as $n \to \infty$

Therefore $\lim_{n \to \infty} G(y_n, y_{n+k}, y_{n+k}) = 0$, for all $k \in N$ (2.1.4)

This means that $\{y_n\}$ is a Cauchy sequence and since X is complete, therefore there exists a point $u \in X$, such that $\lim_{n \to \infty} y_n = u$

Therefore $\lim_{n \to \infty} Lx_n = \lim_{n \to \infty} Bx_{n+1} = u$, $\lim_{n \to \infty} Mx_{n+1} = \lim_{n \to \infty} Cx_{n+2} = u$

and $\lim_{n \to \infty} Nx_{n+2} = \lim_{n \to \infty} Ax_{n+3} = u$

Since $N(X) \subseteq A(X)$, there exists a point $v \in X$ such that u = AvTherefore by (II) we have,

$$G(Lv, u, u) \leq G(Lv, Mx_{n+1}, u) + G(Mx_{n+1}, u, u)$$

$$\leq G(Lv, Mx_{n+1}, Nx_{n+2}) + G(Nx_{n+2}, u, Mx_{n+1}) + G(Mx_{n+1}, u, u)$$

$$\leq \phi(\lambda(v, x_{n+1}, x_{n+2})) + G(Nx_{n+2}, u, Mx_{n+1}) + G(Mx_{n+1}, u, u)) \quad ----- (2.1.5)$$

Where,

$$\lambda(v, x_{n+1}, x_{n+2}) = \max \left\{ \begin{cases} G(Av, Bx_{n+1}, Cx_{n+2}), G(Lv, Av, Cx_{n+2}), \\ G(Mx_{n+1}, Bx_{n+1}, Av), G(Nx_{n+2}, Cx_{n+2}, Bx_{n+1}) \end{cases} \right\}$$

= max \{G(u, Lx_n, Mx_{n+1}), G(Lv, u, Mx_{n+1}), G(Mx_{n+1}, Lx_n, u), G(Nx_{n+2}, Mx_{n+1}, Lx_n) \}

Taking limit as $n \rightarrow \infty$ in the above relation, we get

$$\lambda(v, x_{n+1}, x_{n+2}) = \max \{ G(u, u, u), G(Lv, u, u), G(u, u, u), G(u, u, u) \}$$

Therefore $\lambda(v, x_{n+1}, x_{n+2}) = G(Lv, u, u)$

Thus as $n \rightarrow \infty$, we get from (2.1.5)

 $G(Lv, u, u) \le \phi(G(Lv, u, u)) + G(u, u, u) + G(u, u, u)$

i.e. $G(Lv, u, u) \le \phi(G(Lv, u, u))$ ------ (2.1.6)

If $Lv \neq u$, then G(Lv, u, u) > 0, and hence as ϕ is a special phi function

 $\phi(G(Lv, u, u)) < G(Lv, u, u)$

Therefore from (2.1.6) we have G(Lv, u, u) < G(Lv, u, u), which is a contradiction

 \therefore we must have Lv = u. So we have Av = Lv = u.

i.e. v is a coincidence point of L and A.

Since the pair of maps *L* and *A* are weakly compatible,

$$\therefore$$
 LAv = ALv i.e. Lu = Au

Again, since $L(X) \subseteq B(X)$, there exists a point $w \in X$ such that u = Bw

Therefore by (II) we have,

$$G(u, u, Mw) = G(Lv, Lv, Mw) \quad (\because G(x, x, y) \le G(x, y, z))$$

$$\le G(Lv, Mw, Nx_{n+2})$$

$$\le \phi(\lambda(v, w, x_{n+2})) \qquad ------(2.1.7)$$

Where $\lambda(v, w, x_{n+2}) = \max \left\{ \begin{array}{l} G(Av, Bw, Cx_{n+2}), G(Lv, Av, Cx_{n+2}), \\ G(Mw, Bw, Ax_{n+2}), G(Nx_{n+2}, Cx_{n+2}, Bw) \end{array} \right\}$

 $= \max \left\{ G(u, u, Mx_{n+1}), G(u, u, Mx_{n+1}), G(Mw, u, Nx_{n+1}), G(Nx_{n+2}, Mx_{n+1}, u) \right\}$

Taking limit as $n \rightarrow \infty$, we get

$$\lambda(v, w, x_{n+2}) = \max \left\{ G(u, u, u), G(u, u, u), G(Mw, u, u), G(u, u, u) \right\}$$

Therefore $\lambda(v, w, x_{n+2}) = G(Mw, u, u) = G(u, u, Mw)$

Therefore from (2.1.7), we get $G(u, u, Mw) \le \phi(G(u, u, Mw))$ (2.1.8)

If $Mw \neq u$, then G(u, u, Mw) > 0 and hence as ϕ is a special phi function,

 $\phi(G(u, u, Mw)) < G(u, u, Mw)$

Therefore by using (2.1.8), we get, G(u,u,Mw) < G(u,u,Mw), which is a contradiction.

Hence we have Mw = u. Thus we have Mw = Bw = u i.e. w is a coincidence point of M and B. Since the pair of maps M and B are weakly compatible,

 $\therefore MBw = BMw$ i.e. Mu = Bu

Now again, since $M(X) \subseteq C(X)$, there exists a point $p \in X$, such that u = CpTherefore by (II), we have,

Where

$$\begin{split} \lambda(v,w,p) &= \max\left\{G(Av,Bw,Cp),G(Lv,Av,Cp),G(Mw,Bw,Av),G(Np,Cp,Bw)\right\} \\ &= \max\left\{G(u,u,u),G(u,u,u),G(u,u,u),G(Np,u,u)\right\} \end{split}$$

Therefore $\lambda(v, w, p) = G(Np, u, u) = G(u, u, Np)$

Therefore from (2.1.9), we have $G(u, u, Np) \le \phi(G(u, u, Np))$ ------ (2.1.10)

If $Np \neq u$, then G(u, u, Np) > 0 and hence as ϕ is a special phi function,

 $\phi(G(u, u, Np)) < G(u, u, Np)$

Therefore from (2.1.10) we get, G(u,u,Np) < G(u,u,Np), which is a contradiction.

Hence we must have Np = u. Thus we have Np = Cp = u i.e. p is a coincidence point of N and C. Since the pair of maps N and C are weakly compatible,

 \therefore *NCp* = *CNp* i.e. *Nu* = *Cu* Now we show that '*u*' is a fixed point of *L*.

By (II), we have
$$G(Lu, u, u) = G(Lu, Mw, Np)$$

 $\leq \phi(\lambda(u, w, p))$ ------ (2.1.11)

Where

Therefore from (2.1.11), we have, $G(Lu, u, u) \le \phi(G(Lu, u, u))$ ------ (2.1.12)

If $Lu \neq u$, then G(Lu, u, u) > 0 and hence as ϕ is a special phi function,

 $\therefore \phi(G(Lu, u, u)) < G(Lu, u, u)$

-

Therefore (2.1.12) implies that G(Lu, u, u) < G(Lu, u, u), which is a contradiction.

Hence we have Lu = u. So we get Lu = Au = u.

Now, we show that *u* is a fixed point of *M*.
Therefore by (II) we have,
$$G(u, u, Mu) = G(Lu, Np, Mu)$$

 $= G(Lu, Mu, Np)$
 $\leq \phi(\lambda(u, u, p))$ -------(2.1.13)

Where

So from (2.1.13) we get, $G(u, u, Mu) \le \phi(G(u, u, Mu))$ ------ (2.1.14)

If $Mu \neq u$, then G(u, u, Mu) > 0 and hence as ϕ is a special phi function,

 $\phi(G(u, u, Mu) < G(u, u, Mu)$

Thus from (2.1.14) we get, G(u, u, Mu) < G(u, u, Mu), which is a contradiction.

Therefore Mu = u. Hence Mu = Bu = u

Now we show that *u* is a fixed point of *N*. Therefore from (II) we have, $G(u, u, Nu) = G(Lu, Mu, Nu) \le \phi(\lambda(u, u, u))$ ------(2.1.15)

Where

Thus from (2.1.15) we have, $G(u, u, Nu) \le \phi(G(u, u, Nu))$ ------ (2.1.16)

If $Nu \neq u$, then G(u, u, Nu) > 0 and hence as ϕ is a special phi function,

 $\phi(G(u,u,hu)) < G(u,u,hu)$

Thus by using (2.1.16) we get, G(u, u, Nu) < G(u, u, Nu), which is a contradiction.

Hence Nu = u. Thus we have Nu = Cu = u

Therefore Lu = Au = Mu = Bu = Nu = Cu = u i.e. *u* is a common fixed point of *L*, *A*, *M*, *B*, *N* and *C*.

Now we show that 'u' is unique common fixed point of L, A, M, B, N and C.

If possible, let us assume that 'm' is another common fixed point of L, A, M, B, N and C.

By using (II) we have, G(u, u, m) = G(Lu, Mu, Nm) $\leq \phi(\lambda(u, u, m))$ ------(2.1.17)

Where

Thus from (2.1.17) we have, $G(u, u, m) \le \phi(G(u, u, m))$ ------ (2.1.18)

If $u \neq m$, then G(u, u, m) > 0 and hence as ϕ is a special phi function , $\phi(G(u, u, m)) < G(u, u, m)$

Hence from (2.1.18) we get, G(u, u, m) < G(u, u, m), which is a contradiction.

Hence we have u = m.

Thus 'u' is the unique common fixed point of L, A, M, B, N and C.

Example 2.2: Let $X = [0, \infty)$ and G be a mapping defined on X as

$$G(x, y, z) = |x - y| + |y - z| + |z - x| , for all x, y, z \in X$$

Then G is a complete G - metric on X and (X,G) is a complete G -metric space.

Let $A, B, C, L, M, N : X \to X$ be defined as $Ax = \frac{x}{3}$, $Tx = \frac{x}{6}$, $Cx = \frac{x}{9}$, $Lx = \frac{x}{24}$, $Mx = \frac{x}{36}$ and $Nx = \frac{x}{12}$ then (i) $N(X) \subseteq A(X)$, $L(X) \subseteq B(X)$, $M(X) \subseteq C(X)$

(ii) The pairs (L, A), (M, B) and (N, C) are weakly compatible. (iii) Also $G(Lx, My, Nz) \le \phi(\lambda(x, y, z))$

Where

$$\lambda(x, y, z) = \max \left\{ G(Ax, By, Cz), G(Lx, Ax, Cz), G(My, By, Ax), G(Nz, Cz, By) \right\}$$

Then '0' is unique common fixed point of L, A, M, B, N and C in X.

Corollary 2.3: Let (X,G) be a complete G - metric space and $A, L, M, N : X \rightarrow X$ be mappings such that

- $I) \qquad N(X) \subseteq A(X), \ L(X) \subseteq A(X), \ M(X) \subseteq A(X)$
- $\begin{array}{ll} II) & G(Lx, My, Nz) \leq \phi(\lambda(x, y, z)) & , \ where \ \phi \ is \ a \ special \ phi \ function \ and \\ \lambda(x, y, z) = \max \left\{ G(Ax, Ay, Az), G(Lx, Ax, Az), G(My, Ay, Ax), G(Nz, Az, Ay) \right\} \end{array}$
- III) The pairs (L, A), (M, A) and (N, A) are weakly compatible.

Then A, L, M and N have a unique common fixed point in X.

Proof: By taking A = B = C in **Theorem 2.1** we get the proof.

Corollary 2.4: Let (X,G) be a complete G - metric space and $A, L: X \to X$ be mappings such that

 $I) \qquad L(X) \subseteq A(X)$

- *II*) $G(Lx, Ly, Lz) \le \phi(\lambda(x, y, z))$, where ϕ is a special phi function and $\lambda(x, y, z) = \max \{ G(Ax, Ay, Az), G(Lx, Ax, Az), G(Ly, Ay, Ax), G(Lz, Az, Ay) \}$
- *III)* The pair (L, A) is weakly compatible.

Then A, L have a unique common fixed point in X.

Proof: By taking A = B = C & L = M = N in **Theorem 2.1** we get the proof.

References

- [1] C. Renu and S. Kumar, Common fixed points for weakly compatible maps, *Proc. Indian Acad. Sci. (Math. Sci.)*, 111(2) (May) (2001), 241-247 (Printed in India).
- [2] M. Gugnani, M. Aggarwal and C. Renu, Common fixed point results in Gmetric spaces and applications, *International Journal of Computer Applications*, 43(11) (April) (2012), 0975-8887.
- [3] K. Jha, Common fixed point for weakly compatible maps in metric space, *Kathmandu University Journal of Science, Engineering and Technology*, I(IV) (August) (2007), 6 pages.
- [4] K. Jha, R.P. Pant and S.L. Singh, Common fixed points for compatible mappings in metric spaces, *Radovi Matemati*. *Cki.*, 12(2003), 107-114.
- [5] G. Jungck, Compatible mappings and common fixed points, *Internet. I. Math and Math. Sci.*, 9(1986), 771-779.
- [6] G. Jungck and B.E. Rhoades, Fixed point for set valued functions with-out continuity, *Indian J. Pure Appl. Math*, 29(3) (1998), 227-238.
- [7] A. Kaewcharoen, Common fixed points for four mappings in *G*-metric spaces, *Int. Journal of Math. Analysis*, 6(47) (2012), 2345-2356.
- [8] J. Matkowski, Fixed point theorems for mappings with a contractive iterate at a point, *Proc. Amer. Math. Soc.*, 62(2) (1977), 344-348.
- [9] G.J. Mehta and M.L. Joshi, On common fixed point theorem in complete metric space, *Gen. Math. Notes*, 2(1) (January) (2011), 55-63.
- [10] S. Sedghi and M. Shobe, Common fixed point theorems for four mappings in complete metric spaces, *Bulletin of the Irania Mathematical Society*, 33(2) (2007), 37-47.
- [11] S. Sessa, On a weak commutativity condition of mappings in a fixed point considerations, *Publ. Inst Math. Debre.*, 32(1982), 149153.
- [12] W. Shatanawi, Fixed point theory for contractive mappings satisfying ϕ maps in G-metric spaces, *Fixed Point Theory and Applications*, Article ID 181650(2010), 9 Pages.
- [13] Z. Mustafa, A new structure for generalized metric spaces with applications to fixed point theory, *Ph.D. Thesis*, The University of Newcastle, Callaghan, Australia, (2005).
- [14] Z. Mustafa and B. Sims, A new approach to generalized metric spaces, *J. Nonlinear Convex Anal.*, 7(2006), 289-297.