Gen. Math. Notes, Vol. 23, No. 2, August 2014, pp.85-95
ISSN 2219-7184; Copyright ©ICSRS Publication, 2014
www.i-csrs.org
Available free online at http://www.geman.in

Weighted Szeged Index of Generalized Hierarchical Product of Graphs

S. Nagarajan ${ }^{1}$, K. Pattabiraman ${ }^{2}$ and M. Chandrasekharan ${ }^{3}$
${ }^{1}$ Department of Mathematics, Kongu Arts and Science College Erode - 638 107, India
E-mail: profnagarajan@rediffmail.com
${ }^{2}$ Department of Mathematics, Annamalai University
Annamalainagar - 608 002, India
E-mail: pramank@gmail.com
${ }^{3}$ Department of Mathematics, Erode Arts and Science College
Erode - 638 009, India
E-mail: mc.brinda@gmail.com

(Received: 16-4-14 / Accepted: 26-5-14)

Abstract

The Szeged index of a graph G, denoted by $S z(G)=\sum_{u v=e \in(G)} n_{u}^{G}(e) n_{v}^{G}(e)$. Similarly, the Weighted Szeged index of a graph G, denoted by $S z_{w}(G)=\sum_{u v=e \in E(G)}\left(d_{G}(u)+\right.$ $\left.d_{G}(v)\right) n_{u}^{G}(e) n_{v}^{G}(e)$, where $d_{G}(u)$ is the degree of the vertex u in G. In this paper, the exact formulae for the weighted Szeged indices of generalized hierarchical product and Cartesian product of two graphs are obtained.

Keywords: Generalized hierarchical product, Cartesian product, Szeged index, weighted Szeged index.

1 Introduction

All the graphs considered in this paper are connected and simple. A vertex $x \in$ $V(G)$ is said to be equidistant from the edge $e=u v$ of G if $d_{G}(u, x)=d_{G}(v, x)$, where $d_{G}(u, x)$ denotes the distance between u and x in G. The edges $e=u v$ and $f=x y$ of G are said to be equidistant edges if $\min \left\{d_{G}(u, x), d_{G}(u, y)\right\}=$
$\min \left\{d_{G}(v, x), d_{G}(v, y)\right\}$. The degree of the vertex u in G is denoted by $d_{G}(u)$.
For an edge $u v=e \in E(G)$, the number of vertices of G whose distance to the vertex u is smaller than the distance to the vertex v in G is denoted by $n_{u}^{G}(e)$; analogously, $n_{v}^{G}(e)$ is the number of vertices of G whose distance to the vertex v in G is smaller than the distance to the vertex u; the vertices equidistant from both the ends of the edge $e=u v$ are not counted.

Graph theory successfully provides the chemists with a variety of very useful tools, namely, different topological indices. A topological index of a graph is a parameter related to the graph; it does not depend on labeling or pictorial representation of the graph. In theoretical chemistry, molecular structure descriptors (also called topological indices) are used for modeling physicochemical, pharmacologic, toxicologic, biological and other properties of chemical compounds [14]. Several types of such indices exist, especially those based on vertex and edge distances. One of the most intensively studied topological indices is the Wiener index.

The two topological indices, namely, the Szeged index of G, denoted by $S z(G)$, and, weighted Szeged index of G, denoted by $S z_{w}(G)$, are defined as follows:

$$
\begin{gathered}
S z(G)=\sum_{e=u v \in E(G)} n_{u}^{G}(e) n_{v}^{G}(e), \\
S z_{w}(G)=\sum_{e=u v \in E(G)}\left(d_{G}(u)+d_{G}(v)\right) n_{u}^{G}(e) n_{v}^{G}(e) .
\end{gathered}
$$

A graph G with a specified vertex subset $U \subseteq V(G)$ is denoted by $G(U)$. Barriere et al. [1,2] defined a new product of graphs, namely, the generalized hierarchical product, as follows: Let G and H be two graphs with a nonempty vertex subset $U \subseteq V(G)$. Then the generalized hierarchical product, denoted by $G(U) \sqcap H$, is the graph with vertex set $V(G) \times V(H)$ and two vertices (g, h) and ($\left.g^{\prime}, h^{\prime}\right)$ are adjacent if and only if $g=g^{\prime} \in U$ and $h h^{\prime} \in E(H)$ or, $g g^{\prime} \in E(G)$ and $h=h^{\prime}$ (see Fig.1). The Cartesian product, $G \square H$, of graphs G and H has the vertex set $V(G \square H)=$ $V(G) \times V(H)$ and $(u, x)(v, y)$ is an edge of $G \square H$ if $u=v$ and $x y \in E(H)$ or, $u v \in E(G)$ and $x=y$, see Fig.2.

Fig.1. $P_{5}(U) \sqcap P_{4}$, where $U=\{2,3,4\}$
To each vertex $u \in V(G)$, there is an isomorphic copy of H in $G \square H$ and to each vertex $v \in V(H)$, there is an isomorphic copy of G in $G \square H$. But in the generalized
hierarchical product, to each vertex $u \in U$, there is an isomorphic copy of H and to each vertex $v \in V(G)$, there is an isomorphic copy of G. In particular, if $U=V(G)$, then $G \square H=G(U) \sqcap H$.

Fig.2. $P_{5} \square P_{4}$
Let G and H be simple connected graphs with vertex sets $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V(H)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$, respectively, and let U be a nonempty subset of G. Then $V(G(U) \sqcap H)=V(G) \times V(H)$; for our convenience, we write $V(G(U) \sqcap H)=$ $\bigcup_{i=1}^{n} X_{i}$, where $X_{i}=\left\{u_{i}\right\} \times V(H)$; we may also write $V(G(U) \sqcap H)=\bigcup_{j=1}^{m} Y_{j}$, where $Y_{j}=V(G) \times\left\{v_{j}\right\}$. We denote the vertices of X_{i} by $\left\{\left(u_{i}, v_{j}\right) \mid 1 \leq j \leq m\right\}$ and the vertices of Y_{j} by $\left\{\left(u_{i}, v_{j}\right) \mid 1 \leq i \leq n\right\}$ and we call $X_{i}, 1 \leq i \leq n$, the i-th layer of $G(U) \sqcap H$ and $Y_{j}, 1 \leq j \leq m$, the j-th column of $G(U) \sqcap H$.

Weighted Szeged index of graph G has been introduced by Illić and Milosavljević [11]. They are given the upper and lower bounds for weighted vertex PI index of graph. Also the exact formula for weighted vertex PI index of Cartesian product of graphs is obtained in [11]. The Szeged index studied by Gutman [5], Gutman and Dobrynin [6] and Khadikar et. al. [9] is closely related to the Wiener index of a graph. Basic properties of Szeged index and its analogy to the Wiener index are discussed by Klavžar et. al.[8] . It is proved that for a tree T the Wiener index of T is equal to its Szeged index. Ashrafi et. al. [10] have explained the differences between Szeged and Wiener indices of graphs. The mathematical properties and chemical applications of Szeged index are well studied by Dobrynin et. al. [3], Gutman et. al. [4] and Randic et. al. [13]. Recently Pisanski and Randic [12] studied the measuring network bipartivity using Szeged index. In this paper, the exact formulae for the weighted Szeged indices of generalized hierarchical product and Cartesian product of two graphs are obtained.

2 Weighted Szeged Index of $G(U) \sqcap H$

Let $G=(V, E)$ be a graph and $U \subseteq V$. In $G(U)$, an $u-v$ path through U is an u v path in G containing some vertex $w \in U$ (vertex w could be the vertex u or v). Let $d_{G(U)}(u, v)$ denote the length of a shortest $u-v$ path through U in G. Note that, if one of the vertices u and v belongs to U, then $d_{G(U)}(u, v)=d_{G}(u, v)$. A vertex $x \in V(G(U))$ is said to be equidistant from $e=u v \in E(G(U))$ through U in $G(U)$,
if $d_{G(U)}(u, x)=d_{G(U)}(v, x)$. For an edge e in $G(U)$, let $N_{G(U)}(e)$ denote the number of equidistant vertices of e through U in $G(U)$. Then $S z(G(U))$ and $S z_{w}(G(U))$ are defined as follows:

$$
\begin{aligned}
S z(G(U)) & =\sum_{e=u v \in E(G)}\left(n_{u}^{G(U)}(e)+n_{v}^{G(U)}(e)\right) \\
S z_{w}(G(U)) & =\sum_{e=u v \in E(G)}\left(d_{G(U)}(u)+d_{G(U)}(v)\right)\left(n_{u}^{G(U)}(e)+n_{v}^{G(U)}(e)\right) .
\end{aligned}
$$

For an edge $e=u v \in E(G)$, let $T_{G}(e, u)$ be the set of vertices closer to u than v and $T_{G}(e, v)$ be the set of vertices closer to v than u. That is,

$$
\begin{aligned}
T_{G}(e, u) & =\left\{x \in V(G) \mid d_{G}(u, x)<d_{G}(v, x)\right\} \\
T_{G}(e, v) & =\left\{x \in V(G) \mid d_{G}(u, x)>d_{G}(v, x)\right\} .
\end{aligned}
$$

Similarly, for an edge $e=u v \in E(G(U))$,

$$
\begin{aligned}
T_{G(U)}(e, u) & =\left\{x \in V(G(U)) \mid d_{G(U)}(u, x)<d_{G(U)}(v, x)\right\} \\
T_{G(U)}(e, v) & =\left\{x \in V(G(U)) \mid d_{G(U)}(u, x)>d_{G(U)}(v, x)\right\} .
\end{aligned}
$$

The proof of the following lemma is left to the reader as it follows easily from the structure of $G(U) \sqcap H$. The lemma is used in the proof of the main theorem of this section.

Lemma 2.1. Let G and H be graphs with $U \subseteq V(G)$. Then
(i) $|V(G(U) \sqcap H)|=|V(G)||V(H)|,|E(G(U) \sqcap H)|=|E(G)||V(H)|+|E(H)||U|$.
(ii) The degree of the vertex $(g, h) \in V(G(U) \sqcap H)$ is $d_{G(U)}(g)+\phi_{U}(g) d_{H}(h)$, where ϕ_{U} denote the characteristic function on the set U which is 1 on U and 0 outside U.
(iii) $d_{G(U) \sqcap H}\left((g, h)\left(g^{\prime}, h^{\prime}\right)\right)=\left\{\begin{array}{l}d_{G(U)}\left(g, g^{\prime}\right)+d_{H}\left(h, h^{\prime}\right), \text { if } h \neq h^{\prime}, \\ d_{G}\left(g, g^{\prime}\right), \text { if } h=h^{\prime} .\end{array}\right.$

Next we compute the weighted Szeged index of the generalized hierarchical product of two connected graphs G and H.

Theorem 2.2. Let G and H be two connected graphs with n, m vertices and p, q edges and let U be a nonempty subset of $V(G)$. Then $S z_{w}(G(U) \sqcap H)=$ $2 n^{2} S z(H)\left(\sum_{u_{r} \in U} d_{G(U)}\left(u_{r}\right)\right)+n^{2}|U| S z_{w}(H)+m S z_{w}(G)+m(m-1)^{2} S z_{w}(G(U))+m(m-$ 1) $\sum_{u_{i} u_{k} \in E(G)}\left(d_{G(U)}\left(u_{i}\right)+d_{G(U)}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G}(e) n_{u_{k}}^{G(U)}(e)+n_{u_{i}}^{G(U)}(e) n_{u_{k}}^{G}(e)\right)+2 q \sum_{u_{i} u_{k} \in E(G)}\left(\phi_{U}\left(u_{i}\right)+\right.$ $\left.\phi_{U}\left(u_{k}\right)\right) n_{u_{i}}^{G}(e) n_{u_{k}}^{G}(e)+2 q(m-1) \sum_{u_{i} u_{k} \in E(G)}\left(\phi_{U}\left(u_{i}\right)+\phi_{U}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G}(e) n_{u_{k}}^{G(U)}(e)+n_{u_{i}}^{G(U)}(e) n_{u_{k}}^{G}(e)\right)$ $+2 q(m-1)^{2} \sum_{u_{i} u_{k} \in E(G)}\left(\phi_{U}\left(u_{i}\right)+\phi_{U}\left(u_{k}\right)\right) n_{u_{i}}^{G(U)}(e) n_{u_{k}}^{G(U)}(e)$.

Proof. Let $V(G)=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}, V(H)=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ and let U be a nonempty subset of $V(G)$. For our convenience, we partition the edge set of $G(U) \sqcap$ H into two sets, $E_{1}=\left\{\left(u_{r}, v_{i}\right)\left(u_{r}, v_{k}\right) \mid u_{r} \in U, v_{i} v_{k} \in E(H)\right\}$ and $E_{2}=\left\{\left(u_{r}, v_{i}\right)\left(u_{s}, v_{i}\right) \mid\right.$ $\left.u_{r} u_{s} \in E(G), v_{i} \in V(H)\right\}$, that is, $E_{1}=\cup_{u_{i} \in U} E\left(\left\langle X_{i}\right\rangle\right)$ and $E_{2}=\cup_{j=1}^{m} E\left(\left\langle Y_{j}\right\rangle\right)$.

Let $e=v_{i} v_{k} \in E(H)$ and let $v_{j} \in T_{H}\left(e ; v_{i}\right)$. Then, for any $u_{r} \in U$ and $e^{\prime} \in$ $E_{1} \subset E(G(U) \sqcap H)$, the distance of $\left(u_{r}, v_{i}\right)$ to each vertex of Y_{j}, is less than its distance to the vertex $\left(u_{r}, v_{k}\right)$ in $G(U) \sqcap H$. It can be observed that if some vertex $v_{s} \notin T_{H}\left(e, v_{i}\right)$, then all the vertices of the column Y_{s} are not in $T_{G(U) \cap H}\left(e^{\prime} ;\left(u_{r}, v_{i}\right)\right)$ in $G(U) \sqcap H$. Also if v_{r} is equidistant to e in H, then every vertex of Y_{r} is equidistant to e^{\prime}. Consequently, for the edge $e^{\prime} \in E_{1}($ of $G(U) \sqcap H)$ corresponding to e (in H),

$$
\begin{equation*}
n_{\left(u_{r}, v_{i}\right)}^{G(U) \sqcap H}\left(e^{\prime}\right)=n n_{v_{i}}^{H}(e) \tag{1}
\end{equation*}
$$

and similarly,

$$
\begin{equation*}
n_{\left(u_{r}, v_{k}\right)}^{G(U) \sqcap H}\left(e^{\prime}\right)=n n_{v_{k}}^{H}(e) . \tag{2}
\end{equation*}
$$

Hence for E_{1} defined as above,

$$
\begin{aligned}
& \sum_{\left(u_{r}, v_{i}\right)\left(u_{r}, v_{k}\right)=e^{\prime} \in E_{1}}\left(d_{G(U) \sqcap H}\left(\left(u_{r}, v_{i}\right)\right)+d_{G(U) \sqcap H}\left(\left(u_{r}, v_{k}\right)\right)\right) n_{\left(u_{r}, v_{i}\right)}^{G(U) \sqcap H}\left(e^{\prime}\right) n_{\left(u_{r}, v_{k}\right)}^{G(U) \cap H}\left(e^{\prime}\right) \\
= & \sum_{\left(u_{r}, v_{i}\right)\left(u_{r}, v_{k}\right)=e^{\prime} \in E_{1}}\left(d_{G(U)}\left(u_{r}\right)+d_{H}\left(v_{i}\right)+d_{G(U)}\left(u_{r}\right)+d_{H}\left(v_{k}\right)\right)\left(n^{2} n_{v_{i}}^{H}(e) n_{v_{k}}^{H}(e)\right),
\end{aligned}
$$

$$
\text { by (1) and (2), where } e=v_{i} v_{k} \in E(H),
$$

$$
=n^{2} \sum_{u_{r} \in U} \sum_{v_{i} v_{k}=e \in E(H)} 2 d_{G(U)}\left(u_{r}\right)\left(n_{v_{i}}^{H}(e) n_{v_{k}}^{H}(e)\right)
$$

$$
+n^{2} \sum_{u_{r} \in U} \sum_{v_{i} v_{k}=e \in E(H)}\left(d_{H}\left(v_{i}\right)+d_{H}\left(v_{k}\right)\right)\left(n_{v_{i}}^{H}(e) n_{v_{k}}^{H}(e)\right), \text { since }\left|E_{1}\right|=|U||E(H)|,
$$

$$
\begin{equation*}
=2 n^{2} S z(H)\left(\sum_{u_{r} \in U} d_{G(U)}\left(u_{r}\right)\right)+n^{2}|U| S z_{w}(H) \tag{3}
\end{equation*}
$$

Let $e=u_{i} u_{k} \in E(G(U))$. Then, for any $v_{\ell} \in V(H) e^{\prime}=\left(u_{i}, v_{\ell}\right)\left(u_{k}, v_{\ell}\right) \in E_{2} \subset$ $E(G(U) \sqcap H)$. If $u_{j} \in T_{G}\left(e, u_{i}\right)$ then $\left(u_{j}, v_{\ell}\right) \in T_{G(U) \sqcap H}\left(e^{\prime},\left(u_{i}, v_{\ell}\right)\right)$. Hence $\left\{\left(u_{j}, v_{\ell}\right) \mid u_{j} \in\right.$ $\left.T_{G}\left(e, u_{i}\right)\right\} \subseteq T_{G(U) \sqcap H}\left(e^{\prime},\left(u_{i}, v_{r}\right)\right)$. If $\ell \neq s$ then since $d_{G(U) \sqcap H}\left(\left(u_{i}, v_{\ell}\right),\left(u_{j}, v_{s}\right)\right)<$ $d_{G(U) \sqcap H}\left(\left(u_{k}, v_{\ell}\right),\left(u_{j}, v_{s}\right)\right)$ if and only if $d_{G(U)}\left(\left(u_{i}, v_{j}\right)+d_{H}\left(v_{\ell}, v_{s}\right)<d_{G(U)}\left(\left(u_{k}, v_{j}\right)+\right.\right.$ $d_{H}\left(v_{\ell}, v_{s}\right)$ if and only if $d_{G(U)}\left(\left(u_{i}, v_{j}\right)<d_{G(U)}\left(\left(u_{k}, v_{j}\right)\right.\right.$.

Therefore $\left\{\left(u_{j}, v_{s}\right) \mid u_{j} \in T_{G(U)}\left(e, u_{i}\right)\right\} \subseteq T_{G(U) \cap H}\left(e^{\prime},\left(u_{i}, v_{\ell}\right)\right)$.
Hence,

$$
T_{G(U) \sqcap H}\left(e^{\prime},\left(u_{i}, v_{\ell}\right)\right)=\left|\left\{\left(u_{j}, v_{\ell}\right) \mid u_{j} \in T_{G}\left(e, u_{i}\right)\right\}\right|+\left|\left\{\left(u_{j}, v_{s}\right) \mid u_{j} \in T_{G(U)}\left(e, u_{i}\right)\right\}\right| .
$$

Consequently,

$$
\begin{equation*}
n_{\left(u_{i}, v_{e}\right)}^{G(U) \cap H}\left(e^{\prime}\right)=n_{u_{i}}^{G}(e)+(m-1) n_{u_{i}}^{G(U)}(e) \tag{4}
\end{equation*}
$$

and similarly,

$$
\begin{equation*}
n_{\left(u_{k}, v_{e}\right)}^{G(U) \sqcap H}\left(e^{\prime}\right)=n_{u_{k}}^{G}(e)+(m-1) n_{u_{k}}^{G(U)}(e) . \tag{5}
\end{equation*}
$$

Hence for E_{2} defined as above

$$
\begin{aligned}
& \quad \sum_{\left(u_{i}, v_{\ell}\right)\left(u_{k}, v_{l}\right)=e^{\prime} \in E_{2}}\left(d_{G(U) \sqcap H}\left(\left(u_{i}, v_{\ell}\right)\right)+d_{G(U) \sqcap H}\left(\left(u_{k}, v_{\ell}\right)\right)\right)\left(n_{\left(u_{i}, v_{\ell}\right)}^{G(U) \sqcap H}\left(e^{\prime}\right) n_{\left(u_{k}, v_{t}\right)}^{G(U) \sqcap H}\left(e^{\prime}\right)\right) \\
& =\sum_{v_{\ell} \in V(H)} \sum_{u_{i} \in E(G)}\left(\left(d_{G(U)}\left(u_{i}\right)+d_{G(U)}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G}(e)+(m-1) n_{u_{i}}^{G(U)}(e)\right)\right. \\
& \left.\left(n_{u_{k}}^{G}(e)+(m-1) n_{u_{k}}^{G(U)}(e)\right)\right) \\
& \quad+\sum_{v_{\epsilon} \in V(H)} \sum_{u_{i} u_{k} \in E(G)}\left(d_{H}\left(v_{\ell}\right)\left(\phi_{U}\left(u_{i}\right)+\phi_{U}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G}(e)+(m-1) n_{u_{i}}^{G(U)}(e)\right)\right. \\
& \left.\quad\left(n_{u_{k}}^{G}(e)+(m-1) n_{u_{k}}^{G(U)}(e)\right)\right),
\end{aligned}
$$

by (4) and (5), where $e=u_{i} u_{k} \in E(G(U))$
$=S_{1}+S_{2}$, where S_{1} and S_{2} are the sums of the above terms, in order.
We shall calculate S_{1} and S_{2} of (6) separately.

$$
\begin{align*}
& S_{1}=\sum_{v_{\epsilon} \in V(H)} \sum_{u_{i} u_{k} \in E(G)}\left(d_{G(U)}\left(u_{i}\right)+d_{G(U)}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G}(e) n_{u_{k}}^{G}(e)\right) \\
& +(m-1) \sum_{v_{\epsilon} \in V(H)} \sum_{u_{i} u_{k} \in E(G)}\left(d_{G(U)}\left(u_{i}\right)+d_{G(U)}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G}(e) n_{u_{k}}^{G(U)}(e)+n_{u_{i}}^{G(U)}(e) n_{u_{k}}^{G}(e)\right) \\
& +(m-1)^{2} \sum_{v_{\epsilon} \in V(H)} \sum_{u_{i} u_{k} \in E(G)}\left(d_{G(U)}\left(u_{i}\right)+d_{G(U)}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G(U)}(e) n_{u_{k}}^{G(U)}(e)\right) \\
& =m \sum_{u_{i} u_{k} \in E(G)}\left(d_{G}\left(u_{i}\right)+d_{G}\left(u_{k}\right)\right) n_{u_{i}}^{G}(e) n_{u_{k}}^{G}(e) \\
& +m(m-1) \sum_{u_{i} u_{k} \in E(G)}\left(d_{G(U)}\left(u_{i}\right)+d_{G(U)}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G}(e) n_{u_{k}}^{G(U)}(e)+n_{u_{i}}^{G(U)}(e) n_{u_{k}}^{G}(e)\right) \\
& +m(m-1)^{2} \sum_{u_{i} u_{k} \in E(G)}\left(d_{G(U)}\left(u_{i}\right)+d_{G(U)}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G(U)}(e) n_{u_{k}}^{G(U)}(e)\right) \\
& =m S z_{w}(G)+m(m-1)^{2} S z_{w}(G(U)) \\
& +m(m-1) \sum_{u_{i} u_{k} \in E(G)}\left(d_{G(U)}\left(u_{i}\right)+d_{G(U)}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G}(e) n_{u_{k}}^{G(U)}(e)+n_{u_{i}}^{G(U)}(e) n_{u_{k}}^{G}(e)\right) . \\
& S_{2}=\sum_{v_{\epsilon} \in V(H)} \sum_{u_{i} u_{k} \in E(G)} d_{H}\left(v_{\ell}\right)\left(\phi_{U}\left(u_{i}\right)+\phi_{U}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G}(e) n_{u_{k}}^{G}(e)\right. \\
& +(m-1) \sum_{v_{\ell} \in V(H)} \sum_{u_{i} u_{k} \in E(G)} d_{H}\left(v_{\ell}\right)\left(\phi_{U}\left(u_{i}\right)+\phi_{U}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G}(e) n_{u_{k}}^{G(U)}(e)+n_{u_{i}}^{G(U)}(e) n_{u_{k}}^{G}(e)\right) \\
& +(m-1)^{2} \sum_{v_{\epsilon} \in V(H)} \sum_{u_{i} u_{k} \in E(G)} d_{H}\left(v_{\ell}\right)\left(\phi_{U}\left(u_{i}\right)+\phi_{U}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G(U)}(e) n_{u_{k}}^{G(U)}(e)\right. \tag{8}
\end{align*}
$$

Using (6) and the sums S_{1} and S_{2} in (7) and (8), respectively, we have,

$$
\begin{aligned}
& S z_{w}(G(U) \sqcap H) \\
& =2 n^{2} S z(H)\left(\sum_{u_{r} \in U} d_{G(U)}\left(u_{r}\right)\right)+n^{2}|U| S z_{w}(H)+m S z_{w}(G)+m(m-1)^{2} S z_{w}(G(U)) \\
& +m(m-1) \sum_{u_{i} \in E(G)}\left(d_{G(U)}\left(u_{i}\right)+d_{G(U)}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G}(e) n_{u_{k}}^{G(U)}(e)+n_{u_{i}}^{G(U)}(e) n_{u_{k}}^{G}(e)\right) \\
& +2 q \sum_{u_{i} u_{k} \in E(G)}\left(\phi_{U}\left(u_{i}\right)+\phi_{U}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G}(e) n_{u_{k}}^{G}(e)\right. \\
& +2 q(m-1) \sum_{u_{i} \in E(G)}\left(\phi_{U}\left(u_{i}\right)+\phi_{U}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G}(e) n_{u_{k}}^{G(U)}(e)+n_{u_{i}}^{G(U)}(e) n_{u_{k}}^{G}(e)\right) \\
& +2 q(m-1)^{2} \sum_{u_{i} u_{k} \in E(G)}\left(\phi_{U}\left(u_{i}\right)+\phi_{U}\left(u_{k}\right)\right)\left(n_{u_{i}}^{G(U)}(e) n_{u_{k}}^{G(U)}(e) .\right.
\end{aligned}
$$

In the above theorem, if we set $U=V(G)$, we obtain the following corollary.

Corollary 2.3. [11] Let G and H be connected graphs. Then $S z_{w}(G \square H)=$ $|V(H)|^{3} S z_{w}(G)+|V(G)|^{3} S z_{w}(H)+4|V(H)|^{2}|E(H)| S z(G)+4|V(G)|^{2}|E(G)| S z(H)$.

Let $G_{1}, G_{2}, \ldots, G_{n}$ be graphs with vertex set $V\left(G_{i}\right)$ and edge set $E\left(G_{i}\right), 1 \leq$ $i \leq n$. Denote by $\square_{i=1}^{n} G_{i}$ the Cartesian product of graphs $G_{1}, G_{2}, \ldots, G_{n}$. Clearly, $\left|V\left(\square_{i=1}^{n} G_{i}\right)\right|=\prod_{i=1}^{n}\left|V\left(G_{i}\right)\right|$. By induction on n, one can see that $\left|E\left(\square_{i=1}^{n} G_{i}\right)\right|=\prod_{i=1}^{n}\left|V\left(G_{i}\right)\right|$ $\sum_{i=1}^{n} \frac{\left|E\left(G_{i}\right)\right|}{V V\left(G_{i}\right) \mid}$. In [8], S, Klavžar et al. have proved $S z\left(\square_{i=1}^{n} G_{i}\right)=\sum_{i=1}^{n} S z\left(G_{i}\right) \prod_{j=1, j \neq i}^{n}\left|V\left(G_{j}\right)\right|^{3}$.

Next we compute a similar result for the weighted Szeged index.

Theorem 2.4. Let $G_{1}, G_{2}, \ldots, G_{n}$ be connected graphs. Then $S z_{w}\left(\square_{i=1}^{n} G_{i}\right)=$ $\sum_{i=1}^{n} S z_{w}\left(G_{i}\right) \prod_{j=1, j \neq i}^{n}\left|V\left(G_{j}\right)\right|^{3}+4 \sum_{i, j=1}^{n} S z\left(G_{i}\right)\left|V\left(G_{j}\right)\right|^{2}\left|E\left(G_{j}\right)\right|_{k=1, i \neq k \neq j}^{n}\left|V\left(G_{k}\right)\right|^{3}$.

Proof. The case $n=2$ was proven in Theorem 2.2. We continue our argument by
mathematical induction. Suppose that the results is valid for some n graphs.

$$
\begin{aligned}
& S z_{w}\left(\square_{i=1}^{n+1} G_{i}\right)=S z_{w}\left(\square_{i=1}^{n} G_{i} \square G_{n+1}\right) \\
= & \left|V\left(\square_{i=1}^{n} G_{i}\right)\right|^{3} S z_{w}\left(G_{n+1}\right)+\left|V\left(G_{n+1}\right)\right|^{3} S z_{w}\left(\square_{i=1}^{n} G_{i}\right) \\
& +4\left(\left|V\left(\square_{i=1}^{n} G_{i}\right)\right|^{2}\left|E\left(\square_{i=1}^{n} G_{i}\right)\right| S z\left(G_{n+1}\right)+\left|V\left(G_{n+1}\right)\right|^{2}\left|E\left(G_{n+1}\right)\right| S z\left(\square_{i=1}^{n} G_{i}\right)\right) \\
= & S z_{w}\left(G_{n+1}\right) \prod_{i=1}^{n}\left|V\left(G_{i}\right)\right|^{3}+\left|V\left(G_{n+1}\right)\right|^{3} \sum_{i=1}^{n} S z_{w}\left(G_{i}\right) \prod_{j=1, j \neq i}^{n}\left|V\left(G_{j}\right)\right|^{3} \\
& +4 \sum_{i, j=1}^{n} S z\left(G_{i}\right)\left|V\left(G_{j}\right)\right|^{2}\left|E\left(G_{j}\right)\right|_{k=1, i \neq k \neq j}^{n}\left|V\left(G_{k}\right)\right|^{3} \\
& +4\left(S z\left(G_{n+1}\right) \sum_{i=1}^{n}\left|V\left(G_{i}\right)\right|^{2}\left|E\left(G_{i}\right)\right| \prod_{j=1, j \neq i}^{n}\left|V\left(G_{j}\right)\right|^{3}+\right. \\
& \left.\left|V\left(G_{n+1}\right)\right|\left|E\left(G_{n+1}\right)\right| \sum_{i=1}^{n} S z\left(G_{i}\right) \prod_{j=1, j \neq i}^{n}\left|V\left(G_{j}\right)\right|^{3}\right) \\
= & \sum_{i=1}^{n+1} S z_{w}\left(G_{i}\right) \prod_{j=1, j \neq i}^{n+1}\left|V\left(G_{j}\right)\right|^{3}+4\left(\sum_{i, j=1, i \neq j}^{n} S z\left(G_{i}\right)\left|V\left(G_{j}\right)\right|^{2}\left|E\left(G_{j}\right)\right| \prod_{k=1, i \neq k \neq j}^{n+1}\left|V\left(G_{k}\right)\right|^{3}\right. \\
& \left.+\sum_{i \leq j \leq n} S z\left(G_{i}\right)\left|V\left(G_{j}\right)\right|^{2}\left|E\left(G_{j}\right)\right|_{k=1, i \neq k \neq j}^{n+1}\left|V\left(G_{k}\right)\right|^{3}\right) \\
= & \sum_{i=1}^{n} S z_{w}\left(G_{i}\right) \prod_{j=1, j \neq i}^{n}\left|V\left(G_{j}\right)\right|^{3}+4 \sum_{i, j=1 i \neq j}^{n} S z\left(G_{i}\right)\left|V\left(G_{j}\right)\right|^{2}\left|E\left(G_{j}\right)\right| \prod_{k=1, i \neq k \neq j}^{n}\left|V\left(G_{k}\right)\right|^{3} .
\end{aligned}
$$

The proof of the following corollary directly follows from Theorem 2.4.
Corollary 2.5. Let G be a connected graph. Then $S z_{w}\left(\square G^{n}\right)=S z_{w}\left(\square_{i=1}^{n} G\right)=$ $n|V(G)|^{3 n-4}\left\{|V(G)| S z_{w}(G)+4(n-1)|E(G)| S z(G)\right\}$.

Example 2.6. Suppose Q_{n} denotes the hypercube of dimension n. Then by Theo$\operatorname{rem} 2.4, S z_{w}\left(Q_{n}\right)=S z_{w}\left(\square K_{2}^{n}\right)=n^{2} 2^{(3 n-2)}$.

Let us consider the graph G whose vertices are the N-tuples $b_{1} b_{2} \ldots b_{N}$ with $b_{i} \in\left\{0,1, \ldots, n_{i}-1\right\}, n_{i} \geq 2$, and two vertices be adjacent if the corresponding tuples differ in precisely one place; such a graph is called a Hamming graph. It is well-known fact that a graph G is a Hamming graph if and only if it can be written
in the form $G=\square_{i=1}^{N} K_{n_{i}}$ and so the Hamming graph is usually denoted by $H_{n_{1} n_{2} \ldots n_{N}}$. In the following lemma, the weighted Szeged index of a Hamming graph is computed.

It is easy to see that $S z\left(K_{n}\right)=\frac{n(n-1)}{2}$ and $S z_{w}\left(K_{n}\right)=n(n-1)^{2}$. The proof of the following lemma follows from Theorem 2.4.

Lemma 2.7. Let G be a Hamming graph with above parameter. Then
$S z_{w}\left(H_{n_{1} n_{2} \ldots n_{N}}\right)=\left(\sum_{i=1}^{N}\left(1-\frac{1}{n_{i}}\right)^{2}+\sum_{i, j=1, i \neq j}^{N} \frac{\left(n_{i}-1\right)\left(n_{j}-1\right)}{n_{i}^{2}}\right) \prod_{i=1}^{N} n_{i}{ }^{3}$.
Let C_{n} and P_{n} denote the cycle and path on n vertices, respectively. It is known that $S z\left(C_{n}\right)=\frac{n^{3}}{4}$ when n is even, and $\frac{n(n-1)^{2}}{4}$ otherwise and $S z\left(P_{n}\right)=\binom{n+1}{3}$; see [7]. It can be easily verified that $S z_{w}\left(C_{n}\right)=n^{3}$ when n is even, and $n(n-1)^{2}$ otherwise and $S z_{w}\left(P_{n}\right)=\frac{2(n-1)\left(n^{2}+n-3\right)}{3}$.

Using Theorems 2.2, 2.4 and $S z_{w}\left(P_{n}\right), S z_{w}\left(C_{n}\right), S z\left(P_{n}\right)$ and $S z\left(C_{n}\right)$, we obtain the exact weighted Szeged indices of the following graphs.

Example 2.8. The graphs $L_{n}=P_{n} \square K_{2}, R=P_{n} \square C_{m}, S=C_{m} \square C_{n}$ and $T=P_{m} \square P_{n}$ are known as ladder, C_{4} nanotubes, C_{4} nanotorus and grid, respectively. The exact weigted Szeged indices of these graphs are given below.

1. $S z_{w}\left(L_{n}\right)=14 n^{3}-4 n^{2}-24 n+16$.

2. $S z_{w}(S)=\left\{\begin{array}{l}2 n^{3} m(m-1)^{2}+2 m^{3} n(n-1)^{2} \quad \text { if } m \text { is odd } n \text { is odd } \\ 2 n^{3} m\left(2 m^{2}-2 m+1\right) \text { if } m \text { is odd } n \text { is even } \\ 2 m^{3} n\left(2 n^{2}-2 n+1\right) \text { if } m \text { is even } n \text { is odd } \\ 4 m^{3} n^{3} \text { if } m \text { is even } n \text { is even. }\end{array}\right.$
3. $S z_{w}(T)=\frac{2 m^{2}(n-1)}{3}\left(2 m n^{2}+2 m n-3 m-n^{2}-n\right)+\frac{2 n^{2}(m-1)}{3}\left(2 n m^{2}+2 m n-3 n-m^{2}-m\right)$.
4. $S z_{w}\left(C_{n_{1}} \square C_{n_{2}} \square \ldots \square C_{n_{k}}\right)=\left\{\begin{array}{l}k^{2} \prod_{i=1}^{k} n_{i}^{3} \quad \text { if each } n_{i} \text { is even } \\ k \prod_{i=1}^{k} n_{i}^{3} \sum_{i=1}^{k}\left(1-\frac{1}{n_{i}}\right)^{2} \quad \text { if each } n_{i} \text { is odd. }\end{array}\right.$

If each $n_{i}=n$, then $S z_{w}\left(\square C_{n}^{k}\right)=\left\{\begin{array}{l}k^{2} n^{3 k} \quad \text { if each } n_{i} \text { is even } \\ k^{2}(n-1)^{2} n^{3 k-2} \\ \text { if each } n_{i} \text { is odd. }\end{array}\right.$
Example 2.9. Let $G=C_{n_{1}} \square C_{n_{2}} \square \ldots \square C_{n_{k}}$ and $H=C_{m_{1}} \square C_{m_{2}} \square \ldots \square C_{m_{r}}$, where $n_{i}, 1 \leq i \leq k$ are even and $m_{j}, 1 \leq j \leq r$ are odd. Using Theorem 2.2 and the above example we obtain the weighted Szeged index of the graph $G \square H$.

$$
S z_{w}(G \square H)=\left(\prod_{i=1}^{k} n_{i}^{3}\right)\left(\prod_{j=1}^{r} m_{j}^{3}\right)\left(k^{2}+k r+(k+r) \sum_{i=1} r\left(1-\frac{1}{m_{i}}\right)^{2}\right) .
$$

If each $n_{i}=n \geq 3$ is even and $m_{j}=m \geq 3$ is odd, then $G=\square C_{n}^{k}$ and $H=\square C_{m}^{r}$ and $S z_{w}(G \square H)=n^{3 k} m^{3 r}\left(k^{2}+k r+(k+r) r\left(1-\frac{1}{m}\right)^{2}\right)$.

Example 2.10. Using Theorem 2.4, we obtain the exact weighted Szeged index of the grid graph $P_{n_{1}} \square P_{n_{2}} \square \ldots \square P_{n_{k}}$.
$S z_{w}\left(P_{n_{1}} \square P_{n_{2}} \square \ldots \square P_{n_{k}}\right)=\frac{2}{3}\left(\prod_{i=1}^{k} n_{i}^{3}\right)\left(\sum_{i=1}^{k} \frac{\left(n_{i}-1\right)\left(n_{i}^{2}+n_{i}-3\right)}{n_{i}^{3}}+\sum_{i, j=1, i \neq j}^{k}\left(1-\frac{1}{n_{i}}\right)\left(1+\frac{1}{n_{i}}\right)(1-\right.$ $\left.\frac{1}{n_{j}}\right)$.

If each $n_{i}=n$, then $S z_{w}\left(\square P_{n}^{k}\right)=\frac{2 k(n-1) n^{3(k-1)}}{3}\left(\left(n^{2}+n-3\right)+(k-1)(n+1)\right)$.

References

[1] L. Barriere, F. Comellas, C. Dalfo and M.A. Fiol, The hierarchical product of graphs, Discrete Appl. Math., 157(2009), 36-48.
[2] L. Barriere, C. Dalfo, M.A. Fiol and M. Mitjana, The generalized hierarchical product of graphs, Discrete Math., 309(2009), 3871-3881.
[3] A.A. Dobrynin, I. Gutman and G. Domotor, A Wiener-type graph invariant for some bipartite graphs, Appl. Math. Lett., 8(1995), 57-62.
[4] I. Gutman, P.V. Khadikar, P.V. Rajput and S. Karmarkar, The Szeged index of polyacenes, J. Serb. Chem. Soc., 60(1995), 759-764.
[5] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Graph Theory Notes, New York, 27(1994), 9-15.
[6] I. Gutman and A.A. Dobrynin, The Szeged index- A success story, Graph Theory Notes, New York, 34(1998), 37-44.
[7] M.H. Khalifeh, H.Y. Azari, A.R. Ashrafi and I. Gutman, The edge Szeged index of product graphs, Croatica Chemica Acta, 81(2008), 277-281.
[8] S. Klavžar, A. Rajapakse and I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett., 9(1996), 45-49.
[9] P.V. Khadikar, N.V. Deshpande, P.P. Kale, A.A. Dobrynin and I. Gutman, The Szeged index and an analogy with the Wiener index, J. Chem. Inf. Comput. Sci., 35(1995), 547-550.
[10] M.J. Nadjafi-Arani, H. Khodashenas and A.R. Ashrafi, On the differences between Szeged and Wiener indices of graphs, Discrete Math., 311(2011), 22332237.
[11] A. Ilić and N. Milosavljević, The Weighted vertex PI index, Math. Comput. Model., 57(2013), 623-631.
[12] T. Pisanski and M. Randić, Use of Szeged index for measuring bipartivity, Discrete Appl. Math., 158(2010), 1936-1944.
[13] M. Randić, M. Nović and D. Plavsić, Common vertex matrix: A novel characterization of molecular graphs by counting, J. Comput. Chem., 34(2013), 1409-1419.
[14] I. Gutman and O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer-Verlag, Berlin, (1986).

